Search results for: carbide contaminated soils
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1561

Search results for: carbide contaminated soils

1531 Effect of Edta in the Phytoextraction of Copper by Terminalia catappa (Talisay) Linnaeus

Authors: Ian Marc G. Cabugsa, Zarine M. Hermita

Abstract:

Phytoextraction capability of T. catappa in contaminated soils was done in the improvised greenhouse. The plant samples were planted to the soil which contained different concentrations of copper. Chelating agent EDTA was added to observe the uptake and translocation of copper in the plant samples. Results showed a significant increase of copper accumulation with the addition of EDTA at 250 and 1250 mgˑkg-1 concentration of copper in the contaminated soils (p<0.05). While translocation of copper was observed in all treatments, translocation of copper is not significantly enhanced by the addition of EDTA (p>0.05). Uptake and translocation were not directly affected the presence of EDTA. Furthermore, this study suggests that the T. catappa is not a hyperaccumulator of copper, and there is no relationship observed between the length of the plant and the copper uptake in all treatments.

Keywords: chelating agent EDTA, hyperaccumulator, phytoextraction, phytoremediation, terminalia catappa

Procedia PDF Downloads 355
1530 Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)

Authors: Violina R. Angelova

Abstract:

Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.

Keywords: Lathyrus sativus L, macroelements, microelements, quality

Procedia PDF Downloads 106
1529 Microstructure Characterization on Silicon Carbide Formation from Natural Wood

Authors: Noor Leha Abdul Rahman, Koay Mei Hyie, Anizah Kalam, Husna Elias, Teng Wang Dung

Abstract:

Dark Red Meranti and Kapur, kinds of important type of wood in Malaysia were used as a precursor to fabricate porous silicon carbide. A carbon template is produced by pyrolysis at 850°C in an oxygen free atmosphere. The carbon template then further subjected to infiltration with silicon by silicon melt infiltration method. The infiltration process was carried out in tube furnace in argon flow at 1500°C, at two different holding time; 2 hours and 3 hours. Thermo gravimetric analysis was done to investigate the decomposition behavior of two species of plants. The resulting silicon carbide was characterized by XRD which was found the formation of silicon carbide and also excess silicon. The microstructure was characterized by scanning electron microscope (SEM) and the density was determined by the Archimedes method. An increase in holding time during infiltration will increased the density as well as formation of silicon carbide. Dark Red Meranti precursor is likely suitable for production of silicon carbide compared to Kapur.

Keywords: density, SEM, silicon carbide, XRD

Procedia PDF Downloads 391
1528 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method

Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru

Abstract:

Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).

Keywords: electrochemical remediation, pollution, total petroleum hydrocarbons, soil contamination

Procedia PDF Downloads 212
1527 The Study of Aluminum Effects Layer Austenite Twins Adjacent to K-Carbide Plates in the Cellular Structure of a Mn-Al Alloy Steel

Authors: Wu Wei-Ting, Liu Po-Yen, Chang Chin-Tzu, Cheng Wei-Chun

Abstract:

Three types of low-temperature phase transformations in an Fe-12.5 Mn-6.53 Al-1.28 C (wt %) alloy have been studied. The steel underwent solution heat treatment at 1100℃ and isothermal holding at low temperatures. γ’ phase appears in the austenite matrix in the air-cooled steel. Coherent ultra-fine particles of γ’ phase precipitated uniformly in the austenite matrix after the air-cooling process. These ultra-fine particles were very small and only could be detected by TEM through dark-field images. After short periods of isothermal holding at low temperatures these particles of γ’ phase grew and could be easily detected by TEM. A pro-eutectoid reaction happened after isothermal holding at temperatures below 875 ℃. Proeutectoid κ-carbide and ferrite appear in the austenite matrix as grain boundary precipitates and cellular precipitates. The cellular precipitates are composed of lamellar κ-carbide and austenite. The lamellar κ-carbide grains are always accompanied by layers of austenite twins. The presence of twin layers adhering to the κ-carbide plates might be attributed to the lower activation energy for the precipitation of κ-carbide plates in the austenite. The final form of phase transformation is the eutectoid reaction for the decomposition of supersaturated austenite into stable κ-carbide and ferrite phases at temperatures below 700℃. The ferrite and κ-carbide are in the form of pearlite lamellae.

Keywords: austenite, austenite twin layers, κ-carbide, twins

Procedia PDF Downloads 197
1526 Bioremediation Influence on Shear Strength of Contaminated Soils

Authors: Tawar Mahmoodzadeh

Abstract:

Today soil contamination is an unavoidable issue; Irrespective of environmental impact, which happens during the soil contaminating and remediating process, the influence of this phenomenon on soil has not been searched thoroughly. In this study, unconfined compression and compaction tests were done on samples, contaminated and treated soil after 50 days of bio-treatment. The results show that rising in the amount of oil, cause decreased optimum water content and maximum dry density and increased strength. However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent.

Keywords: oil contamination soil, shear strength, compaction, bioremediation

Procedia PDF Downloads 119
1525 A Novel Eccentric Lapping Method with Two Rotatable Lapping Plates for Finishing Cemented Carbide Balls

Authors: C. C. Lv, Y. L. Sun, D. W. Zuo

Abstract:

Cemented carbide balls are usually implemented in industry under the environment of high speed, high temperature, corrosiveness and strong collisions. However, its application is limited due to high fabrication cost, processing efficiency and quality. A novel eccentric lapping method with two rotatable lapping plates was proposed in this paper. A mathematical model was constructed to analyze the influence of each design parameter on this lapping method. To validate this new lapping method, an orthogonal experiment was conducted with cemented carbide balls (YG6). The simulation model was verified and the optimal lapping parameters were derived. The results show that the surface roundness of the balls reaches to 0.65um from 2um in 1 hour using this lapping method. So, using this novel lapping method, it can effectively improve the machining precision and efficiency of cemented carbide balls.

Keywords: cemented carbide balls, eccentric lapping, high precision, lapping tracks, V-groove

Procedia PDF Downloads 364
1524 Heavy Metal Contamination of a Dumpsite Environment as Assessed with Pollution Indices

Authors: Olubunmi S. Shittu, Olufemi J. Ayodele, Augustus O. A. Ilori, Abidemi O. Filani, Adetola T. Afuye

Abstract:

Indiscriminate refuse dumping in and around Ado-Ekiti combined with improper management of few available dumpsites, such as Ilokun dumpsite, posed the threat of heavy metals pollution in the surrounding soils and underground water that needs assessment using pollution indices. Surface soils (0-15 cm) were taken from the centre of Ilokun dumpsite (0 m) and environs at different directions and distances during the dry and wet seasons, as well as a background sample at 1000 m away, adjacent to the dumpsite at Ilokun, Ado-Ekiti, Nigeria. The concentration of heavy metals used to calculate the pollution indices for the soils were determined using Atomic Adsorption Spectrophotometer. The soils recorded high concentrations of all the heavy metals above the background concentrations irrespective of the season with highest concentrations at the 0 m except Ni and Fe at 50 m during the dry and wet season, respectively. The heavy metals concentration were in the order of Ni > Mn > Pb > Cr > Cu > Cd > Fe during the dry season, and Fe > Cr > Cu > Pb > Ni > Cd > Mn during the wet season. Using the Contamination Factor (CF), the soils were classified to be moderately contaminated with Cd and Fe to very high contamination with other metals during the dry season and low Cd contamination (0.87), moderate contamination with Fe, Pb, Mn and Ni and very high contamination with Cr and Cu during the wet season. At both seasons, the Pollution Load Index (PLI) indicates the soils to be generally polluted with heavy metals and the Geoaccumulation Index (Igeo) calculated shown the soils to be in unpolluted to moderately polluted levels. Enrichment Factor (EF) implied the soils to be deficiently enriched with all the heavy metals except Cr (7.90) and Cu (6.42) that were at significantly enrichment levels during the wet season. Modified Degree of Contamination (mCd) recorded, indicated the soils to be of very high to extremely high degree of contamination during the dry season and moderate degree of contamination during the wet season except 0 m with high degree of contamination. The concentration of heavy metals in the soils combined with some of the pollution indices indicated the soils in and around the Ilokun Dumpsite are being polluted with heavy metals from anthropogenic sources constituted by the indiscriminate refuse dumping.

Keywords: contamination factor, enrichment factor, geoaccumulation index, modified degree of contamination, pollution load index

Procedia PDF Downloads 347
1523 Potential of Ozonation and Phytoremediation to Reduce Hydrocarbon Levels Remaining after the Pilot Scale Microbial Based Bioremediation (Land-Farming) of a Heavily Polluted Soil

Authors: Hakima Althalb

Abstract:

Petroleum contamination of sandy soils is a severe environmental problem in Libya, but relatively little work has been carried out to optimize the bioremediation of such heavily contaminated soil, particularly at a pilot scale. The purpose of this research was to determine the potential for the microbial-based bioremediation of hydrocarbon-contaminated soil obtained from an oil refinery in Libya and to assess the potential of both ozonation and phytoremediation (both applied after initial bioremediation) to reduce residual hydrocarbon levels. Plots containing 500 kg soil (triplicates) (contaminated soil diluted with clean soil 50% volume) were set up, (designated as Land Treatment Units; LTUs) containing five different nutrient levels and mixtures (Urea + NPK (nitrogen; phosphor; potassium) mixtures) to obtain C:N:P ratios 100:10:1, and monitored for 90 days. Hydrocarbon levels, microbial numbers, and toxicity (EC50 using luminescent microbial based tests) were assessed. Hydrocarbon levels in non-diluted and diluted soil ranged from 20 733-22 366 mg/kg and from 16 000-17 000 mg/kg respectively. Although all the land treatment units revealed a significant hydrocarbon reduction over time, the highest reduction in hydrocarbon levels obtained was around 60%. For example, 63% hydrocarbon removal was observed using a mixture of urea and NPK with a C:N:P ratio of 100:10:1). Soil toxicity (as assessed using luminescence based toxicity assays) reduced in line with the reduction in total petroleum hydrocarbons observed. However, as relatively high residual TPH (total petroleum hydrocarbon) levels (ranging from 6033-14166mg/kg) were still present after initial bioremediation two ‘post-treatments’ (phytoremediation and ozonation) were attempted to remove residual hydrocarbons remaining. Five locally grown (agriculturally important) plant species were tested. The germination of all plants examined was strongly inhibited (80-100%) and seedlings failed to grow well in the contaminated soil, indicating that the previously bioremediated soils were still toxic to the plants. Subsequent ozonation followed by another bioremediation of soil was more successful than phytoremediation. But even the most promising successful treatment in this study (ozonation for 6 hours at 25ppm followed by bioremediation) still only removed approximately 31% of the residual hydrocarbons. Overall, this work showed that the bioremediation of such highly contaminated soils is difficult and that a combination of treatments would be required to achieve successful remediation. Even after initial dilution and bioremediation the soils remained toxic to plant growth and were therefore not suitable for phytoremediation.

Keywords: bioremediation, petroleum hydrocarbons, ozone, phytoremediation

Procedia PDF Downloads 145
1522 Impact of Calcium Carbide Waste Dumpsites on Soil Chemical and Microbial Characteristics

Authors: C. E. Ihejirika, M. I. Nwachukwu, R. F. Njoku-Tony, O. C. Ihejirika, U. O. Enwereuzoh, E. O. Imo, D. C. Ashiegbu

Abstract:

Disposal of industrial solid wastes in the environment is a major environmental challenge. This study investigated the effects of calcium carbide waste dumpsites on soil quality. Soil samples were collected with hand auger from three different dumpsites at varying depths and made into composite samples. Samples were subjected to standard analytical procedures. pH varied from 10.38 to 8.28, nitrate from 5.6mg/kg to 9.3mg/kg, phosphate from 8.8mg/kg to 12.3mg/kg, calcium carbide reduced from 10% to to 3%. Calcium carbide was absent in control soil samples. Bacterial counts from dumpsites ranged from 1.8 x 105cfu/g - 2.5 x 105cfu/g while fungal ranged from 0.8 x 103cfu/g - 1.4 x 103cfu/g. Bacterial isolates included Pseudomonas spp, Flavobacterium spp, and Achromobacter spp, while fungal isolates include Penicillium notatum, Aspergillus niger, and Rhizopus stolonifer. No organism was isolated from the dumpsites at soil depth of 0-15 cm, while there were isolates from other soil depths. Toxicity might be due to alkaline condition of the dumpsite. Calcium carbide might be bactericidal and fungicidal leading to cellular physiology, growth retardation, death, general loss of biodiversity and reduction of ecosystem processes. Detoxification of calcium carbide waste before disposal on soil might be the best option in management.

Keywords: biodiversity, calcium-carbide, denitrification, toxicity

Procedia PDF Downloads 515
1521 Theoretical Method for Full Ab-Initio Calculation of Rhenium Carbide Compound

Authors: D.Rached, M.Rabah

Abstract:

First principles calculations are carried out to investigate the structural, electronic, and elastic properties of the utraincompressible materials, namely, noble metal carbide of Rhenium carbide (ReC) in four phases, the rocksalt (NaCl-B1), zinc blende (ZB-B2), the tungsten carbide(Bh) (WC), and the nickel arsenide (NiAs-B8).The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus its pressure derivate, and the hardness of ReC in these phases are systematically predicted by calculations from first–principles. The corresponding calculated bulk modulus is comparable with that of diamond, especially for the B8 –type rhenium carbide (ReC), the incompressibility along the c axis is demonstrated to exceed the linear incompressibility of diamond. Our calculations confirm in the nickel arsenide (B8) structure the ReC is found to be stable with a large bulk modulus B=440 GPa and the tungsten carbide (WC) structure becomes the most more favourable with to respect B3 and B1 structures, which ReC- WC is meta-stable. Furthermore, the highest bulk modulus values in the zinc blende (B3), rock salt (B1), tungsten carbide (WC), and the nickel arsenide (B8) structures (294GPa, 401GPa, 415GPa and 447 GPa, respectively) indicates that ReC is a hard material, and is superhard compound H(B8)= 36 GPa compared with the H(diamond)=96 GPa and H(c BN)=63.10 GPa.

Keywords: DFT, FP-LMTO, mechanical properties, elasticity, high pressure, thermodynamic properties, hard material

Procedia PDF Downloads 417
1520 Biochar-induced Metals Immobilization in the Soil as Affected by Citric Acid

Authors: Md. Shoffikul Islam, Hongqing Hu

Abstract:

Reducing trace elements' mobility and bioavailability through amendment addition, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to stabilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study explored the impact of BC derived from rice husk and citric acid (CA) and the combination of BC and CA on the redistribution of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the CA attack were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The 2, 5, 10, and 20 mM kg-1 (w/v) of CA were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC and CA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. Compared to CK, the application of BC, low level of CA (2 mM kg-1 soil) (CA2), and BC plus the low concentration of CA (BC-CA2) considerably declined the acid-soluble Cd, Pb, and Zn in which BC-CA2 was found to be the most effective treatment. The reversed trends were observed concerning the high levels of CA (>5-20 mM kg-1 soil) and the BC plus high concentrations of CA treatments. BC-CA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual forms with time. The most increased electronegative charges of BC-CA2 indicate its (BC-CA2) highest Cd, Pb, and Zn immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite in the case of Cd, Pb, and Zn immobilization, respectively. The findings depicted that the low concentration of CA increased metals' stabilization, whereas the high levels of CA enhanced their mobilization. The BC-CA2 emerged as the best amendment among treatments for metals stabilization in contaminated soils.

Keywords: Biochar, citric acid, immobilization, trace elements contaminated soil

Procedia PDF Downloads 50
1519 Phytoremediation of Hydrocarbon-Polluted Soils: Assess the Potentialities of Six Tropical Plant Species

Authors: Pulcherie Matsodoum Nguemte, Adrien Wanko Ngnien, Guy Valerie Djumyom Wafo, Ives Magloire Kengne Noumsi, Pierre Francois Djocgoue

Abstract:

The identification of plant species with the capacity to grow on hydrocarbon-polluted soils is an essential step for phytoremediation. In view of developing phytoremediation in Cameroon, floristic surveys have been conducted in 4 cities (Douala, Yaounde, Limbe, and Kribi). In each city, 13 hydrocarbon-polluted, as well as unpolluted sites (control), have been investigated using quadrat method. 106 species belonging to 76 genera and 30 families have been identified on hydrocarbon-polluted sites, unlike the control sites where floristic diversity was much higher (166 species contained in 125 genera and 50 families). Poaceae, Cyperaceae, Asteraceae and Amaranthaceae have higher taxonomic richness on polluted sites (16, 15,10 and 8 taxa, respectively). Shannon diversity index of the hydrocarbon-polluted sites (1.6 to 2.7 bits/ind.) were significantly lower than the control sites (2.7 to 3.2 bits/ind.). Based on a relative frequency > 10% and abundance > 7%, this study highlights more than ten plants predisposed to be effective in the cleaning-up attempts of soils contaminated by hydrocarbons. Based on the floristic indicators, 6 species (Eleusine indica (L.) Gaertn., Cynodon dactylon (L.) Pers., Alternanthera sessilis (L.) R. Br. ex DC †, Commelinpa benghalensis L., Cleome ciliata Schum. & Thonn. and Asystasia gangetica (L.) T. Anderson) were selected for a study to determine their capacity to remediate a soil contaminated with fuel oil (82.5 ml/ kg of soil). The experiments lasting 150 days takes into account three modalities - Tn: uncontaminated soils planted (6) To contaminated soils unplanted (3) and Tp: contaminated soil planted (18) – randomized arranged. 3 on 6 species (Eleusine indica, Cynodon dactylon, and Alternanthera sessilis) survived the climatic and soil conditions. E. indica presents a significantly higher growth rate for density and leaf area while C. dactylon had a significantly higher growth rate for stem size and leaf numbers. A. sessilis showed stunted growth and development throughout the experimental period. The species Eleusine indica (L.) Gaertn. and Cynodon dactylon (L.) Pers. can be qualified as polluo-tolerant plant species; polluo-tolerance being the ability of a species to survive and develop in the midst subject to extreme physical and chemical disturbances.

Keywords: Cameroon, cleaning-up, floristic surveys, phytoremediation

Procedia PDF Downloads 217
1518 Antioxidant Enzymes and Crude Mitochondria ATPases in the Radicle of Germinating Bean (Vigna unguiculata) Exposed to Different Concentrations of Crude Oil

Authors: Stella O. Olubodun, George E. Eriyamremu

Abstract:

The study examined the effect of Bonny Light whole crude oil (WC) and its water soluble fraction (WSF) on the activities of antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)) and crude mitochondria ATPases in the radicle of germinating bean (Vigna unguiculata). The percentage germination, level of lipid peroxidation, antioxidant enzyme, and mitochondria Ca2+ and Mg2+ ATPase activities were measured in the radicle of bean after 7, 14, and 21 days post germination. Viable bean seeds were planted in soils contaminated with 10ml, 25ml, and 50ml of whole crude oil (WC) and its water soluble fraction (WSF) to obtain 2, 5, and 10% v/w crude oil contamination. There was dose dependent reduction of the number of bean seeds that germinated in the contaminated soils compared with control (p<0.001). The activities of the antioxidant enzymes, as well as, adenosine triphosphatase enzymes, were also significantly (p<0.001) altered in the radicle of the plants grown in contaminated soil compared with the control. Generally, the level of lipid peroxidation was highest after 21 days post germination when compared with control. Stress to germinating bean caused by Bonny Light crude oil or its water soluble fraction resulted in adaptive changes in crude mitochondria ATPases in the radicle.

Keywords: antioxidant enzymes, bonny light crude oil, radicle, mitochondria ATPases

Procedia PDF Downloads 275
1517 In situ Immobilization of Mercury in a Contaminated Calcareous Soil Using Water Treatment Residual Nanoparticles

Authors: Elsayed A. Elkhatib, Ahmed M. Mahdy, Mohamed L. Moharem, Mohamed O. Mesalem

Abstract:

Mercury (Hg) is one of the most toxic and bio-accumulative heavy metal in the environment. However, cheap and effective in situ remediation technology is lacking. In this study, the effects of water treatment residuals nanoparticles (nWTR) on mobility, fractionation and speciation of mercury in an arid zone soil from Egypt were evaluated. Water treatment residual nanoparticles with high surface area (129 m 2 g-1) were prepared using Fritsch planetary mono mill. Scanning and transmission electron microscopy revealed that the nanoparticles of WTR nanoparticles are spherical in shape, and single particle sizes are in the range of 45 to 96 nm. The x-ray diffraction (XRD) results ascertained that amorphous iron, aluminum (hydr)oxides and silicon oxide dominating all nWTR, with no apparent crystalline iron–Al (hydr)oxides. Addition of nWTR, greatly increased the Hg sorption capacities of studied soils and greatly reduced the cumulative Hg released from the soils. Application of nWTR at 0.10 and 0.30 % rates reduced the released Hg from the soil by 50 and 85 % respectively. The power function and first order kinetics models well described the desorption process from soils and nWTR amended soils as evidenced by high coefficient of determination (R2) and low SE values. Application of nWTR greatly increased the association of Hg with the residual fraction. Meanwhile, application of nWTR at a rate of 0.3% greatly increased the association of Hg with the residual fraction (>93%) and significantly increased the most stable Hg species (Hg(OH)2 amor) which in turn enhanced Hg immobilization in the studied soils. Fourier transmission infrared spectroscopy analysis indicated the involvement of nWTR in the retention of Hg (II) through OH groups which suggest inner-sphere adsorption of Hg ions to surface functional groups on nWTR. These results demonstrated the feasibility of using a low-cost nWTR as best management practice to immobilize excess Hg in contaminated soils.

Keywords: release kinetics, Fourier transmission infrared spectroscopy, Hg fractionation, Hg species

Procedia PDF Downloads 200
1516 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon

Authors: Layan Moussa, Darine Salam, Samir Mustapha

Abstract:

Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.

Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination

Procedia PDF Downloads 68
1515 Phytoremediation-A Plant Based Cleansing Method to Obtain Quality Medicinal Plants and Natural Products

Authors: Hannah S. Elizabeth, D. Gnanasekaran, M. R. Manju Gowda, Antony George

Abstract:

Phytoremediation a new technology of remediating the contaminated soil, water and air using plants and serves as a green technology with environmental friendly approach. The main aim of this technique is cleansing and detoxifying of organic compounds, organo-phosphorous pesticides, heavy metals like arsenic, iron, cadmium, gold, radioactive elements which cause teratogenic and life threatening diseases to mankind and animal kingdom when consume the food crops, vegetables, fruits, cerals, and millets obtained from the contaminated soil. Also, directly they may damage the genetic materials thereby alters the biosynthetic pathways of secondary metabolites and other phytoconstituents which may have different pharmacological activities which lead to lost their efficacy and potency as well. It would reflect in mutagenicity, drug resistance and affect other antagonistic properties of normal metabolism. Is the technology for real clean-up of contaminated soils and the contaminants which are potentially toxic. It reduces the risks produced by a contaminated soil by decreasing contaminants using plants as a source. The advantages are cost-effectiveness and less ecosystem disruption. Plants may also help to stabilize contaminants by accumulating and precipitating toxic trace elements in the roots. Organic pollutants can potentially be chemically degraded and ultimately mineralized into harmless biological compounds. Hence, the use of plants to revitalize contaminated sites is gaining more attention and preferred for its cost-effective when compared to other chemical methods. The introduction of harmful substances into the environment has been shown to have many adverse effects on human health, agricultural productivity, and natural ecosystems. Because the costs of growing a crop are minimal compared to those of soil removal and replacement, the use of plants to remediate hazardous soils is seen as having great promise.

Keywords: cost effective, eco-friendly, phytoremediation, secondary metabolites

Procedia PDF Downloads 245
1514 Potential of Castor Bean (Ricinus Communis L.) for Phytoremediation of Soils Contaminated with Heavy Metals

Authors: Violina Angelova, Mariana Perifanova-Nemska, Krasimir Ivanov

Abstract:

The aim of this research was to investigate the potential for the use of Ricinus communis L. (castor oil plant) to remediate metal-polluted sites. This study was performed in industrially polluted soils containing high concentrations of Zn, Pb and Cd, situated at different distances (0.3, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness, the castor oil plants were gathered and the contents of heavy metals in their different parts – roots, stems, leaves and seeds, were determined after dry ashing. Physico-chemical characterization, total, DTPA extractable and water-soluble metals in rhizospheric soil samples were carried. Translocation factors (TFs) were also determined. The quantitative measurements were carried out with ICP. A soxhlet extraction was used for the extraction of the oil, using hexane as solvent. The oil was recovered by simple distillation of the solvent. The residual oil obtained was investigated for physicochemical parameters and fatty acid composition. Bioaccumulation factor and translocation factor values (BAF and TF > 1) were greater than one suggesting efficient accumulation in the shoot. The castor oil plant may be preferred as a good candidate for phytoremediation (phytoextraction). These results indicate that R. communis has good potential for removing Pb from contaminated soils attributed to its fast growth, high biomass, strong absorption and accumulation for Pb. The concentrations of heavy metals in the oil were low as seed coats accumulated the highest concentrations of Cd and Pb. In addition, the result of the fatty acid composition analysis confirms the oil to be of good quality and can be used for industrial purposes such as cosmetics, soaps and paint.

Keywords: castor bean, heavy metals, phytoremediation, polluted soils

Procedia PDF Downloads 208
1513 Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement

Authors: M. Mlhem

Abstract:

Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils.

Keywords: additives, clay, compression strength, epoxy, stabilization

Procedia PDF Downloads 98
1512 Effect of Contaminants on the Behavior of Shallow Foundations

Authors: Ghazal Horiat, Alireza Hajiani Bushehrian

Abstract:

leakage of contamination from fuel or oil reservoirs can alter the geotechnical properties of the soil under their foundation and finally affect their performance in their service life. This article investigates the behavior of shallow foundations on the soil contaminated with diesel and kerosene using the Plaxis Tunnel3D V1.2 software. The information required for the numerical modeling in the paper was obtained from a similar experimental study. The present study seeks to compare the behavior of square foundations on sandy soil without contamination and the soil contaminated with different percentages of diesel and crude oil. The study was conducted on a small square foundation. The depth of the contamination was assumed constant, and the soil was evaluated with four different percentages of both contaminants. The results of analyses were plotted and assessed in the form of load-displacement curves for the foundation. The results indicate reduced bearing capacity of the foundation with the rise in the contamination percentage.

Keywords: bearing capacity, contaminated soils, shallow foundations, 3D numerical analysis

Procedia PDF Downloads 110
1511 Effect of Alloying Elements on Particle Incorporation of Boron Carbide Reinforced Aluminum Matrix Composites

Authors: Steven Ploetz, Andreas Lohmueller, Robert F. Singer

Abstract:

The outstanding performance of aluminum matrix composites (AMCs) regarding stiffness/weight ratio makes AMCs attractive material for lightweight construction. Low-density boride compounds promise simultaneously an increase in stiffness and decrease in composite density. This is why boron carbide is chosen for composite manufacturing. The composites are fabricated with the stir casting process. To avoid gas entrapment during mixing and ensure nonporous composites, partial vacuum is adapted during particle feeding and stirring. Poor wettability of boron carbide with liquid aluminum hinders particle incorporation, but alloying elements such as magnesium and titanium could improve wettability and thus particle incorporation. Next to alloying elements, adapted stirring parameters and impeller geometries improve particle incorporation and enable homogenous particle distribution and high particle volume fractions of boron carbide. AMCs with up to 15 vol.% of boron carbide particles are produced via melt stirring, resulting in an increase in stiffness and strength.

Keywords: aluminum matrix composites, boron carbide, stiffness, stir casting

Procedia PDF Downloads 285
1510 Effects of Amino Bisphosphonic Acid on the Growth and Phytoextraction Efficiency of Salix schwerinii Grown in Ni-Contaminated Soil

Authors: Muhammad Mohsin, Mir Md Abdus Salam, Pertti Pulkkinen, Ari Pappinen

Abstract:

Soil polluted with elevated level of nickel (Ni) concentration may cause severe hazards to humans and forest ecosystems, for example, by polluting underground water reserves, affecting food quality and by reducing agricultural productivity. The present study investigated the phytoextraction ability of Salix schwerinii, enhanced with an application of the N100 (11-amino-1-hydroxyundecylidene) chelate. N100 has proved to be a non-toxic, low risk of leaching, environmentally friendly and easily biodegradable chelate that has a potential for metal chelation. The Salix were grown in garden soil that was also amended with nickel (Ni; 150 mg kg⁻¹). Multiple doses of N100 were applied to the treatments as follows: Ni + N100 1.2 g and Ni+ N100 2.4 g. Furthermore, N100 doses were also repeated with the control soil. The effect of N100 on height growth, biomass, and the accumulation of Ni in Salix in polluted soils was studied. In this study, N100 application was found to be effective in enhancing height and biomass growth under polluted treatments. Total reflection X-ray fluorescence (TXRF) spectrometry was used to determine the concentration of Ni in the Salix tissues. The total Ni concentrations in the soils amended with N100 increased substantially by up to 324% as compared to the control. The Ni translocation factor (TF) and bioconcentration factor (BF) values for S. schwerinii increased with the application of N100 as varied from 0.45–1.25 and 0.80‒1.50, respectively. This study revealed that S. schwerinii is suitable for the phytoextraction of Ni-contaminated soils.

Keywords: bisphosphonic acid, nickel, phytoextraction, Salix

Procedia PDF Downloads 121
1509 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils

Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen

Abstract:

Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.

Keywords: copper, Klara, lime, N100, phytoextraction

Procedia PDF Downloads 120
1508 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide

Authors: Almontas Vilutis, Vytenis Jankauskas

Abstract:

The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.

Keywords: friction, composite, carbide, factors

Procedia PDF Downloads 48
1507 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability

Procedia PDF Downloads 224
1506 GIS Technology for Environmentally Polluted Sites with Innovative Process to Improve the Quality and Assesses the Environmental Impact Assessment (EIA)

Authors: Hamad Almebayedh, Chuxia Lin, Yu wang

Abstract:

The environmental impact assessment (EIA) must be improved, assessed, and quality checked for human and environmental health and safety. Soil contamination is expanding, and sites and soil remediation activities proceeding around the word which simplifies the answer “quality soil characterization” will lead to “quality EIA” to illuminate the contamination level and extent and reveal the unknown for the way forward to remediate, countifying, containing, minimizing and eliminating the environmental damage. Spatial interpolation methods play a significant role in decision making, planning remediation strategies, environmental management, and risk assessment, as it provides essential elements towards site characterization, which need to be informed into the EIA. The Innovative 3D soil mapping and soil characterization technology presented in this research paper reveal the unknown information and the extent of the contaminated soil in specific and enhance soil characterization information in general which will be reflected in improving the information provided in developing the EIA related to specific sites. The foremost aims of this research paper are to present novel 3D mapping technology to quality and cost-effectively characterize and estimate the distribution of key soil characteristics in contaminated sites and develop Innovative process/procedure “assessment measures” for EIA quality and assessment. The contaminated site and field investigation was conducted by innovative 3D mapping technology to characterize the composition of petroleum hydrocarbons contaminated soils in a decommissioned oilfield waste pit in Kuwait. The results show the depth and extent of the contamination, which has been interred into a developed assessment process and procedure for the EIA quality review checklist to enhance the EIA and drive remediation and risk assessment strategies. We have concluded that to minimize the possible adverse environmental impacts on the investigated site in Kuwait, the soil-capping approach may be sufficient and may represent a cost-effective management option as the environmental risk from the contaminated soils is considered to be relatively low. This research paper adopts a multi-method approach involving reviewing the existing literature related to the research area, case studies, and computer simulation.

Keywords: quality EIA, spatial interpolation, soil characterization, contaminated site

Procedia PDF Downloads 61
1505 Rhizoremediation of Contaminated Soils in Sub-Saharan Africa: Experimental Insights of Microbe Growth and Effects of Paspalum Spp. for Degrading Hydrocarbons in Soils

Authors: David Adade-Boateng, Benard Fei Baffoe, Colin A. Booth, Michael A. Fullen

Abstract:

Remediation of diesel fuel, oil and grease in contaminated soils obtained from a mine site in Ghana are explored using rhizoremediation technology with different levels of nutrient amendments (i.e. N (nitrogen) in Compost (0.2, 0.5 and 0.8%), Urea (0.2, 0.5 and 0.8%) and Topsoil (0.2, 0.5 and 0.8%)) for a native species. A Ghanaian native grass species, Paspalum spp. from the Poaceae family, indicative across Sub-Saharan Africa, was selected following the development of essential and desirable growth criteria. Vegetative parts of the species were subjected to ten treatments in a Randomized Complete Block Design (RCBD) in three replicates. The plant-associated microbial community was examined in Paspalum spp. An assessment of the influence of Paspalum spp on the abundance and activity of micro-organisms in the rhizosphere revealed a build-up of microbial communities over a three month period. This was assessed using the MPN method, which showed rhizospheric samples from the treatments were significantly different (P <0.05). Multiple comparisons showed how microbial populations built-up in the rhizosphere for the different treatments. Treatments G (0.2% compost), H (0.5% compost) and I (0.8% compost) performed significantly better done other treatments, while treatments D (0.2% topsoil) and F (0.8% topsoil) were insignificant. Furthermore, treatment A (0.2% urea), B (0.5% urea), C (0.8% urea) and E (0.5% topsoil) also performed the same. Residual diesel and oil concentrations (as total petroleum hydrocarbons, TPH and oil and grease) were measured using infra-red spectroscopy and gravimetric methods, respectively. The presence of single species successfully enhanced the removal of hydrocarbons from soil. Paspalum spp. subjected to compost levels (0.5% and 0.8%) and topsoil levels (0.5% and 0.8%) showed significantly lower residual hydrocarbon concentrations compared to those treated with Urea. A strong relationship (p<0.001) between the abundance of hydrocarbon degrading micro-organisms in the rhizosphere and hydrocarbon biodegradation was demonstrated for rhizospheric samples with treatment G (0.2% compost), H (0.5% compost) and I (0.8% compost) (P <0.001). The same level of amendment with 0.8% compost (N-level) can improve the application effectiveness. These findings have wide-reaching implications for the environmental management of soils contaminated by hydrocarbons in Sub-Saharan Africa. However, it is necessary to further investigate the in situ rhizoremediation potential of Paspalum spp. at the field scale.

Keywords: rhizoremediation, microbial population, rhizospheric sample, treatments

Procedia PDF Downloads 274
1504 Simultaneous Removal of Arsenic and Toxic Metals from Contaminated Soil: a Pilot-Scale Demonstration

Authors: Juan Francisco Morales Arteaga, Simon Gluhar, Anela Kaurin, Domen Lestan

Abstract:

Contaminated soils are recognized as one of the most pressing global environmental problems. As is one of the most hazardous elements: chronic exposure to arsenic has devastating effects on health, cardiovascular diseases, cancer, and eventually death. Pb, Zn and Cd are very highly toxic metals that affect almost every organ in the body. With this in mind, new technologies for soil remediation processes are urgently needed. Calcareous artificially contaminated soil containing 231 mg kg-1 As and historically contaminated with Pb, Zn and Cd was washed with a 1:1.5 solid-liquid ratio of 90 mM EDTA, 100 mM oxalic acid, and 50 mM sodium dithionite to remove 59, 75, 29, and 53% of As, Pb, Zn, and Cd, respectively. To reduce emissions of residual EDTA and chelated metals from the remediated soil, zero valent iron (ZVI) was added (1% w/w) to the slurry of the washed soil immediately prior to rinsing. Experimental controls were conducted without the addition of ZVI after remediation. The use of ZVI reduced metal leachability and minimized toxic emissions 21 days after remediation. After this time, NH4NO3 extraction was performed to determine the mobility of toxic elements in the soil. In addition, Unified Human BioaccessibilityMethod (UBM) was performed to quantify the bioaccessibility levels of metals in stimulated human gastric and gastrointestinal phases.

Keywords: soil remediation, soil science, soil washing, toxic metals removal

Procedia PDF Downloads 146
1503 Assesment of the Economic Potential of Lead Contaminated Brownfield for Growth of Oil Producing Crop Like Helianthus annus (Sunflower)

Authors: Shahenaz Sidi, S. K. Tank

Abstract:

When sparsely used industrial and commercial facilities are retired or abandoned, one of the biggest issues that arise is what to do with the remaining land. This land, referred to as a ‘Brownfield site’ or simply ‘Brownfield’ is often contaminated with waste and pollutants left behind by the defunct industrial facilities and factories that stand on the land. Phytoremediation has been proved a promising greener and cleaner technology in remediating the land unlike other chemical excavation methods. Helianthus annus is a hyper accumulator of lead. Helianthus annus can be used for remediation procedures in metal contaminated soils. It is a fast-growing crop which would favour soil stabilization. Its tough leaves and stems are rarely eaten by animals. The seeds (actively eaten by birds) have very low concentrations of potentially toxic elements, and represent low risk for the food web. The study is conducted to determine the phytoextraction potentials of the plant and the eventual seed harvesting and commercial oil production on remediated soil.

Keywords: Brownfield, phytoextraction, helianthus, oil, commercial

Procedia PDF Downloads 301
1502 The Study on Treatment Technology of Fused Carbonized Blast Furnace Slag

Authors: Jiaxu Huang

Abstract:

The melt carbonized blast furnace slag containing TiC was produced by carbothermal reduction of high titanium blast furnace slag. The treatment technology of melt carbonized blast furnace slag with TiC as raw material was studied, including the influence of different cooling methods, crushing atmosphere and sieving particle size on the target product TiC in the slag. The results show that air-cooling and water-cooling have little effect on TiC content of molten carbide blast furnace slag, and have great effect on crystal structure and grain size. TiC content in slag is different when carbide blast furnace slag is crushed in argon atmosphere and air atmosphere. After screening, the difference of TiC content of carbide blast furnace slag with different particle size distribution is obvious. The average TiC content of 100-400 mesh carbide blast furnace slag is 14%. And the average TiC content of carbide blast furnace slag with particle size less than 400 mesh is 10.5%.

Keywords: crushing atmosphere, cooling methods, sieving particle size, TiC

Procedia PDF Downloads 104