Search results for: boundary coverage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1890

Search results for: boundary coverage

1710 An Improved Mesh Deformation Method Based on Radial Basis Function

Authors: Xuan Zhou, Litian Zhang, Shuixiang Li

Abstract:

Mesh deformation using radial basis function interpolation method has been demonstrated to produce quality meshes with relatively little computational cost using a concise algorithm. However, it still suffers from the limited deformation ability, especially in large deformation. In this paper, a pre-displacement improvement is proposed to improve the problem that illegal meshes always appear near the moving inner boundaries owing to the large relative displacement of the nodes near inner boundaries. In this improvement, nodes near the inner boundaries are first associated to the near boundary nodes, and a pre-displacement based on the displacements of associated boundary nodes is added to the nodes near boundaries in order to make the displacement closer to the boundary deformation and improve the deformation capability. Several 2D and 3D numerical simulation cases have shown that the pre-displacement improvement for radial basis function (RBF) method significantly improves the mesh quality near inner boundaries and deformation capability, with little computational burden increasement.

Keywords: mesh deformation, mesh quality, background mesh, radial basis function

Procedia PDF Downloads 336
1709 Effect of Loose Bonding and Corrugated Boundary Surface on Propagation of Rayleigh-Type Wave

Authors: Kshitish Ch. Mistri, Abhishek Kumar Singh

Abstract:

The effect of undulatory boundary surface of a medium as well as the degree of bonding between two consecutive mediums, on the propagation of surface waves is an unavoidable matter of fact. Therefore, this paper investigates the propagation of Rayleigh-type wave in a corrugated fibre-reinforced layer overlying an initially stressed orthotropic half-space under gravity. Also, the two mediums are assumed to be loosely (or imperfectly) bonded. Numerical computation of the obtained frequency equation has been carried out which aids to analyze the influence of corrugation, loose bonding, initial stress and gravity on the phase velocity of Rayleigh-type wave. Moreover, the presence and absence of corrugation, loose bonding and initial stress are also discussed in a comparative manner.

Keywords: corrugated boundary surface, fibre-reinforced layer, initial stress, loose bonding, orthotropic half-space, Rayleigh-type wave

Procedia PDF Downloads 251
1708 Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate

Authors: Anna Bykalyuk, Frédéric Kuznik, Kévyn Johannes

Abstract:

In this paper, the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).

Keywords: CFD modeling, natural convection, thermal conductive plate, time-depending boundary conditions

Procedia PDF Downloads 247
1707 Ambulatory Care Utilization of Individuals with Cerebral Palsy in Taiwan- A Country with Universal Coverage and No Gatekeeper Regulation

Authors: Ming-Juei Chang, Hui-Ing Ma, Tsung-Hsueh Lu

Abstract:

Introduction: Because of the advance of medical care (e.g., ventilation techniques and gastrostomy feeding), more and more children with CP can live to adulthood. However, little is known about the use of health care services from children to adults who have CP. The patterns of utilization of ambulatory care are heavily influenced by insurance coverage and primary care gatekeeper regulation. The purpose of this study was to examine patterns of ambulatory care utilization among individuals with CP in Taiwan, a country with universal coverage and no gatekeeper regulation. Methods: A representative sample of one million patients (about 1/23 of total population) covered by Taiwan’s National Health Insurance was used to analyze the ambulatory care utilization in individuals with CP. Data were analyzed by 3 different age groups (children, youth and adults) during 2000 to 2003. Participants were identified by the presence of CP diagnosis made by pediatricians or physicians of physical and rehabilitation medicine and stated at least three times in claims data. Results: Annual rates of outpatient physician visits were 31680 for children, 16492 for youth, and 28617 for adults with CP (per 1000 persons). Individuals with CP received over 50% of their outpatient care from hospital outpatient department. Higher use of specialist physician services was found in children (54.7%) than in the other two age groups (28.4% in youth and 18.8% in adults). Diseases of respiratory system were the most frequent diagnoses for visits in both children and youth with CP. Diseases of the circulatory system were the main reasons (24.3%) that adults with CP visited hospital outpatient care department or clinics. Conclusion: This study showed different patterns of ambulatory care utilization among different age groups. It appears that youth and adults with CP continue to have complex health issues and rely heavily on the health care system. Additional studies are needed to determine the factors which influence ambulatory care utilization among individuals with CP.

Keywords: cerebral palsy, health services, lifespan, universal coverage

Procedia PDF Downloads 338
1706 Performance Assessment of GSO Satellites before and after Enhancing the Pointing Effect

Authors: Amr Emam, Joseph Victor, Mohamed Abd Elghany

Abstract:

The paper presents the effect of the orbit inclination on the pointing error of the satellite antenna and consequently on its footprint on earth for a typical Ku- band payload system. The performance assessment is examined both theoretically and by means of practical measurements, taking also into account all additional sources of pointing errors, such as East-West station keeping, orbit eccentricity and actual attitude control performance. An implementation and computation of the sinusoidal biases in satellite roll and pitch used to compensate the pointing error of the satellite antenna coverage is studied and evaluated before and after the pointing corrections performed. A method for evaluation of the performance of the implemented biases has been introduced through measuring satellite received level from a tracking 11m and fixed 4.8m transmitting antenna before and after the implementation of the pointing corrections.

Keywords: satellite, inclined orbit, pointing errors, coverage optimization

Procedia PDF Downloads 362
1705 On Confidence Intervals for the Difference between Inverse of Normal Means with Known Coefficients of Variation

Authors: Arunee Wongkhao, Suparat Niwitpong, Sa-aat Niwitpong

Abstract:

In this paper, we propose two new confidence intervals for the difference between the inverse of normal means with known coefficients of variation. One of these two confidence intervals for this problem is constructed based on the generalized confidence interval and the other confidence interval is constructed based on the closed form method of variance estimation. We examine the performance of these confidence intervals in terms of coverage probabilities and expected lengths via Monte Carlo simulation.

Keywords: coverage probability, expected length, inverse of normal mean, coefficient of variation, generalized confidence interval, closed form method of variance estimation

Procedia PDF Downloads 276
1704 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer

Authors: Yilei Song, Linlin Tian, Ning Zhao

Abstract:

Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.

Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake

Procedia PDF Downloads 134
1703 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

Authors: Roslinda Nazar, Ezad Hafidz Hafidzuddin, Norihan M. Arifin, Ioan Pop

Abstract:

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate, and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Keywords: boundary layer, exponentially stretching/shrinking sheet, generalized slip, heat transfer, numerical solutions

Procedia PDF Downloads 406
1702 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations

Authors: Tushar K. Routh

Abstract:

If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.

Keywords: DNN robustness, decision boundary, local curvature, network complexity

Procedia PDF Downloads 38
1701 MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions

Authors: Ibrahim Yakubu Seini, Oluwole Daniel Makinde

Abstract:

MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.

Keywords: boundary layer, surface slip, MHD flow, chemical reaction, heat transfer, mass transfer

Procedia PDF Downloads 508
1700 Coexistence of Two Different Types of Intermittency near the Boundary of Phase Synchronization in the Presence of Noise

Authors: Olga I. Moskalenko, Maksim O. Zhuravlev, Alexey A. Koronovskii, Alexander E. Hramov

Abstract:

Intermittent behavior near the boundary of phase synchronization in the presence of noise is studied. In certain range of the coupling parameter and noise intensity the intermittency of eyelet and ring intermittencies is shown to take place. Main results are illustrated using the example of two unidirectionally coupled Rössler systems. Similar behavior is shown to take place in two hydrodynamical models of Pierce diode coupled unidirectionally.

Keywords: chaotic oscillators, phase synchronization, noise, intermittency of intermittencies

Procedia PDF Downloads 592
1699 Simulation Model of Biosensor Based on Gold Nanoparticles

Authors: Kholod Hajo

Abstract:

In this study COMSOL Multiphysics was used to design lateral flow biosensors (LFBs) which provide advantages in low cost, simplicity, rapidity, stability and portability thus making LFBs popular in biomedical, agriculture, food and environmental sciences. This study was focused on simulation model of biosensor based on gold nanoparticles (GNPs) designed using software package (COMSOL Multiphysics), the magnitude of the laminar velocity field in the flow cell, concentration distribution in the analyte stream and surface coverage of adsorbed species and average fractional surface coverage of adsorbed analyte were discussed from the model and couples of suggestion was given in order to functionalize GNPs and to increase the accuracy of the biosensor design, all above were obtained acceptable results.

Keywords: model, gold nanoparticles, biosensor, COMSOL Multiphysics

Procedia PDF Downloads 218
1698 Practical Methods for Automatic MC/DC Test Cases Generation of Boolean Expressions

Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau

Abstract:

Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that aims to prove that all conditions involved in a Boolean expression can influence the result of that expression. In the context of automotive, MC/DC is highly recommended and even required for most security and safety applications testing. However, due to complex Boolean expressions that often embedded in those applications, generating a set of MC/DC compliant test cases for any of these expressions is a nontrivial task and can be time consuming for testers. In this paper we present an approach to automatically generate MC/DC test cases for any Boolean expression. We introduce novel techniques, essentially based on binary trees to quickly and optimally generate MC/DC test cases for the expressions. Thus, the approach can be used to reduce the manual testing effort of testers.

Keywords: binary trees, MC/DC, test case generation, nontrivial task

Procedia PDF Downloads 397
1697 Numerical Investigation of the Boundary Conditions at Liquid-Liquid Interfaces in the Presence of Surfactants

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Liquid-liquid interfacial flow is an important process that has applications across many spheres. One such applications are residual oil mobilization, where crude oil and low salinity water are emulsified due to lowered interfacial tension under the condition of low shear rates. The amphiphilic components (asphaltenes and resins) in crude oil are considered to assemble at the interface between the two immiscible liquids. To justify emulsification, drag and snap-off suppression as the main effects of low salinity water, mobilization of residual oil is visualized as thickening and slip of the wetting phase at the brine/crude oil interface which results in the squeezing and drag of the non-wetting phase to the pressure sinks. Meanwhile, defining the boundary conditions for such a system can be very challenging since the interfacial dynamics do not only depend on interfacial tension but also the flow rate. Hence, understanding the flow boundary condition at the brine/crude oil interface is an important step towards defining the influence of low salinity water composition on residual oil mobilization. This work presents a numerical evaluation of three slip boundary conditions that may apply at liquid-liquid interfaces. A mathematical model was developed to describe the evolution of a viscoelastic interfacial thin liquid film. The base model is developed by the asymptotic expansion of the full Navier-Stokes equations for fluid motion due to gradients of surface tension. This model was upscaled to describe the dynamics of the film surface deformation. Subsequently, Jeffrey’s model was integrated into the formulations to account for viscoelastic stress within a long wave approximation of the Navier-Stokes equations. To study the fluid response to a prescribed disturbance, a linear stability analysis (LSA) was performed. The dispersion relation and the corresponding characteristic equation for the growth rate were obtained. Three slip (slip, 1; locking, -1; and no-slip, 0) boundary conditions were examined using the resulted characteristic equation. Also, the dynamics of the evolved interfacial thin liquid film were numerically evaluated by considering the influence of the boundary conditions. The linear stability analysis shows that the boundary conditions of such systems are greatly impacted by the presence of amphiphilic molecules when three different values of interfacial tension were tested. The results for slip and locking conditions are consistent with the fundamental solution representation of the diffusion equation where there is film decay. The interfacial films at both boundary conditions respond to exposure time in a similar manner with increasing growth rate which resulted in the formation of more droplets with time. Contrarily, no-slip boundary condition yielded an unbounded growth and it is not affected by interfacial tension.

Keywords: boundary conditions, liquid-liquid interfaces, low salinity water, residual oil mobilization

Procedia PDF Downloads 107
1696 Boundary Layer Flow of a Casson Nanofluid Past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption

Authors: G. Sarojamma, K. Vendabai

Abstract:

An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.

Keywords: casson nanofluid, boundary layer flow, internal heat generation/absorption, exponentially stretching cylinder, heat transfer, brownian motion, thermophoresis

Procedia PDF Downloads 355
1695 Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel

Authors: Huei Chu Weng

Abstract:

This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.

Keywords: microfluidics, forced convection, thermal creep, second-order boundary conditions

Procedia PDF Downloads 269
1694 Indirect Intergranular Slip Transfer Modeling Through Continuum Dislocation Dynamics

Authors: A. Kalaei, A. H. W. Ngan

Abstract:

In this study, a mesoscopic continuum dislocation dynamics (CDD) approach is applied to simulate the intergranular slip transfer. The CDD scheme applies an efficient kinematics equation to model the evolution of the “all-dislocation density,” which is the line-length of dislocations of each character per unit volume. As the consideration of every dislocation line can be a limiter for the simulation of slip transfer in large scales with a large quantity of participating dislocations, a coarse-grained, extensive description of dislocations in terms of their density is utilized to resolve the effect of collective motion of dislocation lines. For dynamics closure, namely, to obtain the dislocation velocity from a velocity law involving the effective glide stress, mutual elastic interaction of dislocations is calculated using Mura’s equation after singularity removal at the core of dislocation lines. The developed scheme for slip transfer can therefore resolve the effects of the elastic interaction and pile-up of dislocations, which are important physics omitted in coarser models like crystal plasticity finite element methods (CPFEMs). Also, the length and timescales of the simulationareconsiderably larger than those in molecular dynamics (MD) and discrete dislocation dynamics (DDD) models. The present work successfully simulates that, as dislocation density piles up in front of a grain boundary, the elastic stress on the other side increases, leading to dislocation nucleation and stress relaxation when the local glide stress exceeds the operation stress of dislocation sources seeded on the other side of the grain boundary. More importantly, the simulation verifiesa phenomenological misorientation factor often used by experimentalists, namely, the ease of slip transfer increases with the product of the cosines of misorientation angles of slip-plane normals and slip directions on either side of the grain boundary. Furthermore, to investigate the effects of the critical stress-intensity factor of the grain boundary, dislocation density sources are seeded at different distances from the grain boundary, and the critical applied stress to make slip transfer happen is studied.

Keywords: grain boundary, dislocation dynamics, slip transfer, elastic stress

Procedia PDF Downloads 95
1693 Series Solutions to Boundary Value Differential Equations

Authors: Armin Ardekani, Mohammad Akbari

Abstract:

We present a method of generating series solutions to large classes of nonlinear differential equations. The method is well suited to be adapted in mathematical software and unlike the available commercial solvers, we are capable of generating solutions to boundary value ODEs and PDEs. Many of the generated solutions converge to closed form solutions. Our method can also be applied to systems of ODEs or PDEs, providing all the solutions efficiently. As examples, we present results to many difficult differential equations in engineering fields.

Keywords: computational mathematics, differential equations, engineering, series

Procedia PDF Downloads 310
1692 The Phonology and Phonetics of Second Language Intonation in Case of “Downstep”

Authors: Tayebeh Norouzi

Abstract:

This study aims to investigate the acquisition process of intonation. It examines the intonation structure of Tokyo Japanese and its realization by Iranian learners of Japanese. Seven Iranian learners of Japanese, differing in fluency, and two Japanese speakers participated in the experiment. Two sentences were used to test the phonological and phonetic characteristics of lexical pitch-accent as well as the intonation patterns produced by the speakers. Both sentences consisted of similar words with the same number of syllables and lexical pitch-accents but different syntactic structure. Speakers were asked to read each sentence three times at normal speed, and the data were analyzed by Praat. The results show that lexical pitch-accent, Accentual Phrase (AP) and AP boundary tone realization vary depending on sentence type. For sentences of type XdeYwo, the lexical pitch-accent is realized properly. However, there is a rise in AP boundary tone regardless of speakers’ level of fluency. In contrast, in sentences of type XnoYwo, the lexical pitch-accent and AP boundary tone vary depending on the speakers’ fluency level. Advanced speakers are better at grouping words into phrases and produce more native-like intonation patterns, though they are not able to realize downstep properly. The non-native speakers tried to realize proper intonation patterns by making changes in lexical accent and boundary tone.

Keywords: intonation, Iranian learners, Japanese prosody, lexical accent, second language acquisition.

Procedia PDF Downloads 125
1691 Multi-Agent Coverage Control with Bounded Gain Forgetting Composite Adaptive Controller

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we present an adaptive controller for decentralized coordination problem of multiple non-holonomic agents. The performance of the presented Multi-Agent Bounded Gain Forgetting (BGF) Composite Adaptive controller is compared against the tracking error criterion with a Feedback Linearization controller. By using the method, the sensor nodes move and reconfigure themselves in a coordinated way in response to a sensed environment. The multi-agent coordination is achieved through Centroidal Voronoi Tessellations and Coverage Control. Also, a consensus protocol is used for synchronization of the parameter vectors. The two controllers are given with their Lyapunov stability analysis and their stability is verified with simulation results. The simulations are carried out in MATLAB and ROS environments. Better performance is obtained with BGF Adaptive Controller.

Keywords: adaptive control, centroidal voronoi tessellations, composite adaptation, coordination, multi robots

Procedia PDF Downloads 316
1690 Authorization of Commercial Communication Satellite Grounds for Promoting Turkish Data Relay System

Authors: Celal Dudak, Aslı Utku, Burak Yağlioğlu

Abstract:

Uninterrupted and continuous satellite communication through the whole orbit time is becoming more indispensable every day. Data relay systems are developed and built for various high/low data rate information exchanges like TDRSS of USA and EDRSS of Europe. In these missions, a couple of task-dedicated communication satellites exist. In this regard, for Turkey a data relay system is attempted to be defined exchanging low data rate information (i.e. TTC) for Earth-observing LEO satellites appointing commercial GEO communication satellites all over the world. First, justification of this attempt is given, demonstrating duration enhancements in the link. Discussion of preference of RF communication is, also, given instead of laser communication. Then, preferred communication GEOs – including TURKSAT4A already belonging to Turkey- are given, together with the coverage enhancements through STK simulations and the corresponding link budget. Also, a block diagram of the communication system is given on the LEO satellite.

Keywords: communication, GEO satellite, data relay system, coverage

Procedia PDF Downloads 408
1689 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

Authors: M. A. Talha, M. Osman Gani, M. Ferdows

Abstract:

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

Keywords: convection flow, similarity, numerical analysis, spectral method, Williamson nanofluid, internal heat generation

Procedia PDF Downloads 149
1688 The Flow Separation Delay on the Aircraft Wing

Authors: Ishtiaq A. Chaudhry, Z. R. Tahir, F. A. Siddiqui, Z. Anwar, F. Valenzuelacalva

Abstract:

A series of experiments involving the particle image velocimetry technique are carried out to analyse the quantitative effectiveness of the synthesized vortical structures towards actual flow separation control. The streamwise vortices are synthesized from the synthetic jet actuator and introduced into the attached and separating boundary layer developed on the flat plate surface. Two types of actuators with different geometrical set up are used to analyse the evolution of vortical structures in the near wall region and their impact towards achieving separation delay on the actual aircraft wing. Firstly a single circular jet is synthesized at varying actuator operating parameters and issued into the boundary layer to evaluate the dynamics of the interaction between the vortical structures and the near wall low momentum fluid in the separated region. Secondly, an array of jets has been issued into the artificially separated region to assess the effectiveness of various vortical structures towards achieving the reattachment of the separated flow in the streamwise direction.

Keywords: boundary layer, flow separation, streamwise vortices, synthetic jet actuator

Procedia PDF Downloads 424
1687 Catalytic Thermodynamics of Nanocluster Adsorbates from Informational Statistical Mechanics

Authors: Forrest Kaatz, Adhemar Bultheel

Abstract:

We use an informational statistical mechanics approach to study the catalytic thermodynamics of platinum and palladium cuboctahedral nanoclusters. Nanoclusters and their adatoms are viewed as chemical graphs with a nearest neighbor adjacency matrix. We use the Morse potential to determine bond energies between cluster atoms in a coordination type calculation. We use adsorbate energies calculated from density functional theory (DFT) to study the adatom effects on the thermodynamic quantities, which are derived from a Hamiltonian. Oxygen radical and molecular adsorbates are studied on platinum clusters and hydrogen on palladium clusters. We calculate the entropy, free energy, and total energy as the coverage of adsorbates increases from bridge and hollow sites on the surface. Thermodynamic behavior versus adatom coverage is related to the structural distribution of adatoms on the nanocluster surfaces. The thermodynamic functions are characterized using a simple adsorption model, with linear trends as the coverage of adatoms increases. The data exhibits size effects for the measured thermodynamic properties with cluster diameters between 2 and 5 nm. Entropy and enthalpy calculations of Pt-O2 compare well with previous theoretical data for Pt(111)-O2, and our Pd-H results show similar trends as experimental measurements for Pd-H2 nanoclusters. Our methods are general and may be applied to wide variety of nanocluster adsorbate systems.

Keywords: catalytic thermodynamics, palladium nanocluster absorbates, platinum nanocluster absorbates, statistical mechanics

Procedia PDF Downloads 119
1686 A Varicella Outbreak in a Highly Vaccinated School Population in Voluntary 2-Dose Era in Beijing, China

Authors: Chengbin Wang, Li Lu, Luodan Suo, Qinghai Wang, Fan Yang, Xu Wang, Mona Marin

Abstract:

Background: Two-dose varicella vaccination has been recommended in Beijing since November 2012. We investigated a varicella outbreak in a highly vaccinated elementary school population to examine transmission patterns and risk factors for vaccine failure. Methods: A varicella case was defined as an acute generalized maculopapulovesicular rash without other apparent cause in a student attending the school from March 28 to May 17, 2015. Breakthrough varicella was defined as varicella >42 days after last vaccine dose. Vaccination information was collected from immunization records. Information on prior disease and clinical presentation was collected via survey of students’ parents. Results: Of the 1056 school students, 1028 (97.3%) reported no varicella history, of whom 364 (35.4%) had received 1-dose and 650 (63.2%) had received 2-dose varicella vaccine, for 98.6% school-wide vaccination coverage with ≥ 1 dose before the outbreak. A total of 20 cases were identified for an overall attack rate of 1.9%. The index case was in a 2-dose vaccinated student who was not isolated. The majority of cases were breakthrough (19/20, 95%) with attack rates of 7.1% (1/14), 1.6% (6/364) and 2.0% (13/650) among unvaccinated, 1-dose, and 2-dose students, respectively. Most cases had < 50 lesions (18/20, 90%). No difference was found between 1-dose and 2-dose breakthrough cases in disease severity or sociodemographic factors. Conclusion: Moderate 2-dose varicella vaccine coverage was insufficient to prevent a varicella outbreak. Two-dose breakthrough varicella is still contagious. High 2-dose varicella vaccine coverage and timely isolation of ill persons might be needed for varicella outbreak control in the 2-dose era.

Keywords: varicella, outbreak, breakthrough varicella, vaccination

Procedia PDF Downloads 298
1685 Comparative Study of Urban Structure between an Island-Type and a General-Type City

Authors: Tomoya Oshiro, Hiroko Ono

Abstract:

Japan's aging population is increasing due to the decrease in birthrate. It causes various problems like the decrease in the gross domestic product of the country. The reason is why the local government of Japan has been on the way to a sustainable city recently. Then it is essential to get control of an urban structure to make the compact city successful. There are many kinds of paper about the compact city; however, the paper about a compact city of the island-type city is less. The purpose of this study is to clarify difference of urban structure between an island-type and a general city type. The method which has conducted in this research has two steps. First of all, by using evaluation indexes in the handbook, we evaluated the urban structures among each same -population-class cities from 50,000 to 100,000 people. Next, to clear the difference about the urban structure and feature between island-type and general-type cities compare the radar chart which is composed with each evaluation indexes of urban structure. Moreover, in order to clarify the relationship between evaluation indexes and the place of residence by using GIS software to show up population density on the map. As a result of this research, the management of local government and the local economy in evaluation indexes are indicated to be negative point in comparison of island-type cities with general cities. However, evaluation indexes of safety/security and low-carbon/energy are proved to be positive point. The research to find the difference features of the island-type of urban structure proves that the management of local government or the local economy is negative point in these island-type cities. In addition, the public transportation coverage in Miyako Island, Sado Island, and Amakusa Island show low value compare with other islands and average value. Relationship between evaluation indexes of an urban structure and the place of residence prove that the place of residence is related to public transportation coverage. If the place of residence is spread out, the public transportation coverage will be decreased. The results of this research reveal that the finances in island-type cities are negative point compare to general cities. This problem is caused by declining population. In addition, the place of residence is related to the public transportation coverage. Even though, it needs a much money to increase the public transportation coverage. It is possibly to cause other problems furthermore the aspect of finance is influenced by that as well. The conclusion in this research suggests that it is important for creating the compact city in island-type cities that we first need to address solving the problems about the management of local government and the local economy.

Keywords: sustainable city, comparative analysis, geographic information system, urban structure

Procedia PDF Downloads 119
1684 Influence of the Test Environment on the Dynamic Response of a Composite Beam

Authors: B. Moueddene, B. Labbaci, L. Missoum, R. Abdeldjebar

Abstract:

Quality estimation of the experimental simulation of boundary conditions is one of the problems encountered while performing an experimental program. In fact, it is not easy to estimate directly the effective influence of these simulations on the results of experimental investigation. The aim of this is article to evaluate the effect of boundary conditions uncertainties on structure response, using the change of the dynamics characteristics. The experimental models used and the correlation by the Frequency Domain Assurance Criterion (FDAC) allowed an interpretation of the change in the dynamic characteristics. The application of this strategy to stratified composite structures (glass/ polyester) has given satisfactory results.

Keywords: vibration, composite, endommagement, correlation

Procedia PDF Downloads 336
1683 An Analysis of Conditions for Efficiency Gains in Large ICEs Using Cycling

Authors: Bauer Peter, Murillo Jenny

Abstract:

This paper investigates the bounds of achievable fuel efficiency improvements in engines due to cycling between two operating points assuming a series hybrid configuration . It is shown that for linear bsfc dependencies (as a function of power), cycling is only beneficial if the average power needs are smaller than the power at the optimal bsfc value. Exact expressions for the fuel efficiency gains relative to the constant output power case are derived. This asymptotic analysis is then extended to the case where transient losses due to a change in the operating point are also considered. The case of the boundary bsfc trajectory where constant power application and cycling yield the same fuel consumption.is investigated. It is shown that the boundary bsfc locations of the second non-optimal operating points is hyperbolic. The analysis of the boundary case allows to evaluate whether for a particular engine, cycling can be beneficial. The introduced concepts are illustrated through a number of real world examples, i.e. large production Diesel engines in series hybrid configurations.

Keywords: cycling, efficiency, bsfc, series hybrid, diesel, operating point

Procedia PDF Downloads 477
1682 Surface Roughness Prediction Using Numerical Scheme and Adaptive Control

Authors: Michael K.O. Ayomoh, Khaled A. Abou-El-Hossein., Sameh F.M. Ghobashy

Abstract:

This paper proposes a numerical modelling scheme for surface roughness prediction. The approach is premised on the use of 3D difference analysis method enhanced with the use of feedback control loop where a set of adaptive weights are generated. The surface roughness values utilized in this paper were adapted from [1]. Their experiments were carried out using S55C high carbon steel. A comparison was further carried out between the proposed technique and those utilized in [1]. The experimental design has three cutting parameters namely: depth of cut, feed rate and cutting speed with twenty-seven experimental sample-space. The simulation trials conducted using Matlab software is of two sub-classes namely: prediction of the surface roughness readings for the non-boundary cutting combinations (NBCC) with the aid of the known surface roughness readings of the boundary cutting combinations (BCC). The following simulation involved the use of the predicted outputs from the NBCC to recover the surface roughness readings for the boundary cutting combinations (BCC). The simulation trial for the NBCC attained a state of total stability in the 7th iteration i.e. a point where the actual and desired roughness readings are equal such that error is minimized to zero by using a set of dynamic weights generated in every following simulation trial. A comparative study among the three methods showed that the proposed difference analysis technique with adaptive weight from feedback control, produced a much accurate output as against the abductive and regression analysis techniques presented in this.

Keywords: Difference Analysis, Surface Roughness; Mesh- Analysis, Feedback control, Adaptive weight, Boundary Element

Procedia PDF Downloads 596
1681 Natural Convection between Two Parallel Wavy Plates

Authors: Si Abdallah Mayouf

Abstract:

In this work, the effects of the wavy surface on free convection heat transfer boundary layer flow between two parallel wavy plates have been studied numerically. The two plates are considered at a constant temperature. The equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm. The important parameters in this problem are the amplitude of the wavy surfaces and the distance between the two wavy plates. Results are presented as velocity profiles, temperature profiles and local Nusselt number according to the important parameters.

Keywords: free convection, wavy surface, parallel plates, fluid dynamics

Procedia PDF Downloads 274