Search results for: advanced conversion technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6291

Search results for: advanced conversion technologies

1671 Management of Urban Watering: A Study of Appliance of Technologies and Legislation in Goiania, Brazil

Authors: Vinicius Marzall, Jussanã Milograna

Abstract:

The urban drainwatering remains a major challenge for most of the Brazilian cities. Not so different of the most part, Goiania, a state capital located in Midwest of the country has few legislations about the subject matter and only one registered solution of compensative techniques for drainwater. This paper clam to show some solutions which are adopted in other Brazilian cities with consolidated legislation, suggesting technics about detention tanks in a building sit. This study analyzed and compared the legislation of Curitiba, Porto Alegre e Sao Paulo, with the actual legislation and politics of Goiania. After this, were created models with adopted data for dimensioning the size of detention tanks using the envelope curve method considering synthetic series for intense precipitations and building sits between 250 m² and 600 m², with an impermeabilization tax of 50%. The results showed great differences between the legislation of Goiania and the documentation of the others cities analyzed, like the number of techniques for drainwatering applied to the reality of the cities, educational actions to awareness the population about care the water courses and political management by having a specified funds for drainwater subjects, for example. Besides, the use of detention tank showed itself practicable, have seen that the occupation of the tank is minor than 3% of the building sit, whatever the size of the terrain, granting the exit flow to pre-occupational taxes in extreme rainfall events. Also, was developed a linear equation to measure the detention tank based in the size of the building sit in Goiania, making simpler the calculation and implementation for non-specialized people.

Keywords: clean technology, legislation, rainwater management, urban drainwater

Procedia PDF Downloads 132
1670 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 101
1669 Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties

Authors: Jana Andzane, Gunta Kunakova, Margarita Baitimirova, Mikelis Marnauza, Floriana Lombardi, Donats Erts

Abstract:

Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed.

Keywords: bismuth seleinde, nanostructures, topological insulator, vapour-solid deposition

Procedia PDF Downloads 204
1668 Design Optimization of a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics

Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami

Abstract:

The use of Micro Gas Turbine (MGT) as the engine in Unmanned Aerobic Vehicles (UAVs) and power source in Robotics is widespread these days. Research has been conducted in the past decade or so to improve the performance of different components of MGT. This type of engine has interrelated components which have non-linear characteristics. Therefore, the overall engine performance depends on the individual engine element’s performance. Computational Fluid Dynamics (CFD) is one of the simulation method tools used to analyze or even optimize MGT system performance. In this study, the compressor of the MGT is designed, and performance optimization is being done using CFD. Performance of the micro compressor is improved in order to increase the overall performance of MGT. A high value of pressure ratio is to be achieved by studying the effect of change of different operating parameters like mass flow rate and revolutions per minute (RPM) and aerodynamical and geometrical parameters on the pressure ratio of the compressor. Two types of compressor designs are considered in this study; 3D centrifugal and ‘planar’ designs. For a 10 mm impeller, the planar model is the simplest compressor model with the ease in manufacturability. On the other hand, 3D centrifugal model, although more efficient, is very difficult to manufacture using current microfabrication resources. Therefore, the planar model is the best-suited model for a micro compressor. So. a planar micro compressor has been designed that has a good pressure ratio, and it is easy to manufacture using current microfabrication technologies. Future work is to fabricate the compressor to get experimental results and validate the theoretical model.

Keywords: computational fluid dynamics, microfabrication, MEMS, unmanned aerobic vehicles

Procedia PDF Downloads 116
1667 Evolution of Germany’s Feed-in Tariff Policy

Authors: Gaafar Muhammed, N. T. Ersoy

Abstract:

The role of electricity in the economic development of any country is undeniable. The main goal of utilizing renewable sources in electricity generation, especially in the emerging countries, is to improve electricity access, economic development and energy sustainability. Germany’s recent transition from conventional to renewable energy technologies is overwhelming, this might not be associated with its abundant natural resources but owing to the policies in place. In line with the fast economic and technological developments recorded in recent years, Germany currently produces approximately 1059 GW of its energy from renewable sources. Hence, at the end of 2016, Germany is among the world leaders in terms of installed renewable energy capacity. As one of the most important factors that lead to renewable energy utilization in any nation is an effective policy, this study aims at examining the effect of policies on renewable energy (RE) development in Germany. Also, the study will focus on the evolution of the adopted feed-in tariff policies, as this evolution has affected the renewable energy capacity in Germany over a period of 15 years (2000 to 2015). The main contribution of the study is to establish a link between the feed-in tariff and the increase of RE in Germany’s energy mix. This is done by analyzing the characteristics of various feed-in tariff mechanisms adopted through the years. These characteristics include the feed-in-tariff rate, degression, special conditions, supported technology, etc. Then, the renewable energy development in Germany has been analyzed through the years along with the targets and the progress in reaching these targets. The study reveals that Germany’s renewable energy support policies (especially feed-in tariff) lead to several benefits and contribute towards the targets existing for renewable energy.

Keywords: feed-in tariff, Germany, policy, penewable energy

Procedia PDF Downloads 256
1666 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications

Procedia PDF Downloads 297
1665 Study of the Hydraulic Concrete Physical-Mechanical Properties by Using Admixtures

Authors: Natia Tabatadze

Abstract:

The research aim is to study the physical - mechanical characteristics of structural materials, in particular, hydraulic concrete in the surface active environment and receiving of high strength concrete, low-deformable, resistant to aggressive environment concrete due application of nano technologies. The obtained concrete with additives will by possible to apply in hydraulic structures. We used cement (compressive strength R28=39,42 mPa), sand (0- 5 mm), gravel (5-10 mm, 10-20 mm), admixture CHRYSO® Fuge B 1,5% dosage of cement. CHRYSO® Fuge B renders mortar and concrete highly resistant to capillary action and reduces, or even eliminates infiltration of water under pressure. The fine particles that CHRYSO® Fuge B contains combine with the lime in the cement to form water repellent particles. These obstruct the capillary action within concrete. CHRYSO® Fuge B does not significantly modify the characteristics of the fresh concrete and mortar, nor the compressive strength. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa), as well as the mass water absorption (W=3,37 % of admixture instead of W=1,41 %), volume water absorption (W=1,41 % of admixture instead of W=0,59 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.

Keywords: structural materials, hydraulic concrete, low-deformable, water absorption for mass, water absorption for volume

Procedia PDF Downloads 292
1664 A High Reliable Space-Borne File System with Applications of Device Partition and Intra-Channel Pipeline in Nand Flash

Authors: Xin Li, Ji-Yang Yu, Yue-Hua Niu, Lu-Yuan Wang

Abstract:

As an inevitable chain of the space data acquirement system, space-borne storage system based on Nand Flash has gradually been implemented in spacecraft. In face of massive, parallel and varied data on board, efficient data management become an important issue of storage research. Face to the requirements of high-performance and reliability in Nand Flash storage system, a combination of hardware and file system design can drastically increase system dependability, even for missions with a very long duration. More sophisticated flash storage concepts with advanced operating systems have been researched to improve the reliability of Nand Flash storage system on satellites. In this paper, architecture of file system with multi-channel data acquisition and storage on board is proposed, which obtains large-capacity and high-performance with the combine of intra-channel pipeline and device partition in Nand Flash. Multi-channel data in different rate are stored as independent files with parallel-storage system in device partition, which assures the high-effective and reliable throughput of file treatments. For massive and high-speed data storage, an efficiency assessment model is established to calculate the bandwidth formula of intra-channel pipeline. Information tables designed in Magnetoresistive RAM (MRAM) hold the management of bad block in Nand Flash and the arrangement of file system address for the high-reliability of data storage. During the full-load test, the throughput of 3D PLUS Module 160Gb Nand Flash can reach 120Mbps for store and reach 120Mbps for playback, which efficiently satisfies the requirement of multi-channel data acquisition in Satellite. Compared with previous literature, the results of experiments verify the advantages of the proposed system.

Keywords: device partition architecture, intra-channel pipelining, nand flash, parallel storage

Procedia PDF Downloads 262
1663 Using 3-Glycidoxypropyltrimethoxysilane Functionalized Silica Nanoparticles to Improve Flexural Properties of E-Glass/Epoxy Grid-Stiffened Composite Panels

Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh

Abstract:

Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silane coupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the fourier transform infrared spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3-GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. Also, 3-GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the grid-stiffened fibrous composite structures.

Keywords: isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties, energy absorption

Procedia PDF Downloads 214
1662 Balancing Act: Political Dynamics of Economic and Climatological Security in the Politics of the Middle East

Authors: Zahra Bakhtiari

Abstract:

Middle East countries confront a multitude of main environmental challenges which are inevitable. The unstable economic and political structure which dominates numerous middle East countries makes it difficult to react effectively to unfavorable climate change impacts. This study applies a qualitative methodology and relies on secondary literature aimed to investigate how countries in the Middle East are balancing economic security and climatic security in terms of budgeting, infrastructure investment, political engagement (domestically through discourses or internationally in terms of participation in international organizations or bargaining, etc.) There has been provided an outline of innovative measures in both economic and environmental fields that are in progress in the Middle East countries and what capacity they have for economic development and environmental adaptation, as well as what has already been performed. The primary outcome is that countries that rely more on infrastructure investment such as negative emissions technologies (NET) through green social capital enterprises and political engagement, especially nationally determined contributions (NDCs) commitments and United Nations Framework Convention on Climate Change (UNFCCC), experience more economic and climatological security balance in the Middle East. Since implementing these measures is not the same in all countries in the region, we see different levels of balance between climate security and economic security. The overall suggestion is that the collaboration of both the bottom-up and top-down approaches helps create strategic environmental strategies which are in line with the economic circumstances of each country and creates the desired balance.

Keywords: climate change, economic growth, sustainability, the Middle East, green economy, renewable energy

Procedia PDF Downloads 51
1661 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model

Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf

Abstract:

Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.

Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV

Procedia PDF Downloads 92
1660 Influence of Hearing Aids on Non-medically Treatable Deafness

Authors: Donatien Niragira

Abstract:

The progress of technology creates new expectations for patients. The world of deafness is no exception. In recent years, there have been considerable advances in the field of technologies aimed at assisting failing hearing. According to the usual medical vocabulary, hearing aids are actually orthotics. They do not replace an organ but compensate for a functional impairment. The Amplifier Hearing amplification is useful for a large number of people with hearing loss. Hearing aids restore speech audibility. However, their benefits vary depending on the quality of residual hearing. The hearing aid is not a "cure" for deafness. It cannot correct all affected hearing abilities. It should be considered as an aid to communication. The urge to judge from the audiogram alone should be resisted here, as audiometry only indicates the ability to detect non-verbal sounds. To prevent hearing aids from ending up in the drawer, it is important to ensure that the patient's disability situations justify the use of this type of orthosis. If the problems of receptive Pre-fitting counseling are crucial: the person with hearing loss must be informed of the advantages and disadvantages of amplification in his or her case. Their expectations must be realistic. They also need to be aware that the adaptation process requires a good deal of patience and perseverance. They should be informed about the various models and types of hearing aids, including all the aesthetic, functional and financial considerations. If the person's motivation "survives" pre-fitting counseling, we are in the presence of a good candidate for amplification. In addition to its relevance, it shows that the results found in this study significantly improve the quality of audibility in the patient, from where this technology must be made accessible everywhere in the world.

Keywords: auditives protheses, hearing, aids, no medicaly treatable deafnes

Procedia PDF Downloads 21
1659 Virtual Prototyping of Ventilated Corrugated Fibreboard Carton of Fresh Fruit for Improved Containerized Transportation

Authors: Alemayehu Ambaw, Matia Mukama, Umezuruike Linus Opara

Abstract:

This study introduces a comprehensive method for designing ventilated corrugated fiberboard carton for fresh fruit packaging utilising virtual prototyping. The technique efficiently assesses and analyses the mechanical and thermal capabilities of fresh fruit packing boxes prior to making production investments. Comprehensive structural, aerodynamic, and thermodynamic data from designs were collected and evaluated in comparison to real-world packaging needs. Physical prototypes of potential designs were created and evaluated afterward. The virtual prototype is created with computer-aided graphics, computational structural dynamics, and computational fluid dynamics technologies. The virtual prototyping quickly generated data on carton compression strength, airflow resistance, produce cooling rate, spatiotemporal temperature, and product quality map in the cold chain within a few hours. Six distinct designs were analysed. All the various carton designs showed similar effectiveness in preserving the quality of the goods. The innovative packaging box design is more compact, resulting in a higher freight density of 1720 kg more fruit per reefer compared to the commercial counterpart. The precooling process was improved, resulting in a 17% increase in throughput and a 30% reduction in power usage.

Keywords: postharvest, container logistics, space/volume usage, computational method, packaging technology

Procedia PDF Downloads 26
1658 Using Building Information Modelling to Mitigate Risks Associated with Health and Safety in the Construction and Maintenance of Infrastructure Assets

Authors: Mohammed Muzafar, Darshan Ruikar

Abstract:

BIM, an acronym for Building Information Modelling relates to the practice of creating a computer generated model which is capable of displaying the planning, design, construction and operation of a structure. The resulting simulation is a data-rich, object-oriented, intelligent and parametric digital representation of the facility, from which views and data, appropriate to various users needs can be extracted and analysed to generate information that can be used to make decisions and to improve the process of delivering the facility. BIM also refers to a shift in culture that will influence the way the built environment and infrastructure operates and how it is delivered. One of the main issues of concern in the construction industry at present in the UK is its record on Health & Safety (H&S). It is, therefore, important that new technologies such as BIM are developed to help improve the quality of health and safety. Historically the H&S record of the construction industry in the UK is relatively poor as compared to the manufacturing industries. BIM and the digital environment it operates within now allow us to use design and construction data in a more intelligent way. It allows data generated by the design process to be re-purposed and contribute to improving efficiencies in other areas of a project. This evolutionary step in design is not only creating exciting opportunities for the designers themselves but it is also creating opportunity for every stakeholder in any given project. From designers, engineers, contractors through to H&S managers, BIM is accelerating a cultural change. The paper introduces the concept behind a research project that mitigates the H&S risks associated with the construction, operation and maintenance of assets through the adoption of BIM.

Keywords: building information modeling, BIM levels, health, safety, integration

Procedia PDF Downloads 219
1657 Indian Business-Papers in Industrial Revolution 4.0: A Paradigm Shift

Authors: Disha Batra

Abstract:

The Industrial Revolution 4.0 is quite different, and a paradigm shift is underway in the media industry. With the advent of automated journalism and social media platforms, newspaper organizations have changed the way news was gathered and reported. The emergence of the fourth industrial revolution in the early 21st century has made the newspapers to adapt the changing technologies to remain relevant. This paper investigates the content of Indian business-papers in the era of the fourth industrial revolution and how these organizations have emerged in the time of convergence. The study is the content analyses of the top three Indian business dailies as per IRS (Indian Readership Survey) 2017 over a decade. The parametric analysis of the different parameters (source of information, use of illustrations, advertisements, layout, and framing, etc.) have been done in order to come across with the distinct adaptations and modifications by these dailies. The paper significantly dwells upon the thematic analysis of these newspapers in order to explore and find out the coverage given to various sub-themes of EBF (economic, business, and financial) journalism. Further, this study reveals the effect of high-speed algorithm-based trading, the aftermath of the fourth industrial revolution on the creative and investigative aspect of delivering financial stories by these respective newspapers. The study indicates a change heading towards an ongoing paradigm shift in the business newspaper industry with an adequate change in the source of information gathering along with the subtle increase in the coverage of financial news stories over the time.

Keywords: business-papers, business news, financial news, industrial revolution 4.0.

Procedia PDF Downloads 90
1656 Carbon Footprint of Educational Establishments: The Case of the University of Alicante

Authors: Maria R. Mula-Molina, Juan A. Ferriz-Papi

Abstract:

Environmental concerns are increasingly obtaining higher priority in sustainability agenda of educational establishments. This is important not only for its environmental performance in its own right as an organization, but also to present a model for its students. On the other hand, universities play an important role on research and innovative solutions for measuring, analyzing and reducing environmental impacts for different activities. The assessment and decision-making process during the activity of educational establishments is linked to the application of robust indicators. In this way, the carbon footprint is a developing indicator for sustainability that helps understand the direct impact on climate change. But it is not easy to implement. There is a large amount of considering factors involved that increases its complexity, such as different uses at the same time (research, lecturing, administration), different users (students, staff) or different levels of activity (lecturing, exam or holidays periods). The aim of this research is to develop a simplified methodology for calculating and comparing carbon emissions per user at university campus considering two main aspects for carbon accountings: Building operations and transport. Different methodologies applied in other Spanish university campuses are analyzed and compared to obtain a final proposal to be developed in this type of establishments. First, building operation calculation considers the different uses and energy sources consumed. Second, for transport calculation, the different users and working hours are calculated separately, as well as their origin and traveling preferences. For every transport, a different conversion factor is used depending on carbon emissions produced. The final result is obtained as an average of carbon emissions produced per user. A case study is applied to the University of Alicante campus in San Vicente del Raspeig (Spain), where the carbon footprint is calculated. While the building operation consumptions are known per building and month, it does not happen with transport. Only one survey about the habit of transport for users was developed in 2009/2010, so no evolution of results can be shown in this case. Besides, building operations are not split per use, as building services are not monitored separately. These results are analyzed in depth considering all factors and limitations. Besides, they are compared to other estimations in other campuses. Finally, the application of the presented methodology is also studied. The recommendations concluded in this study try to enhance carbon emission monitoring and control. A Carbon Action Plan is then a primary solution to be developed. On the other hand, the application developed in the University of Alicante campus cannot only further enhance the methodology itself, but also render the adoption by other educational establishments more readily possible and yet with a considerable degree of flexibility to cater for their specific requirements.

Keywords: building operations, built environment, carbon footprint, climate change, transport

Procedia PDF Downloads 256
1655 Towards Printed Green Time-Temperature Indicator

Authors: Mariia Zhuldybina, Ahmed Moulay, Mirko Torres, Mike Rozel, Ngoc-Duc Trinh, Chloé Bois

Abstract:

To reduce the global waste of perishable goods, a solution for monitoring and traceability of their environmental conditions is needed. Temperature is the most controllable environmental parameter determining the kinetics of physical, chemical, and microbial spoilage in food products. To store the time-temperature information, time-temperature indicator (TTI) is a promising solution. Printed electronics (PE) has shown a great potential to produce customized electronic devices using flexible substrates and inks with different functionalities. We propose to fabricate a hybrid printed TTI using environmentally friendly materials. The real-time TTI profile can be stored and transmitted to the smartphone via Near Field Communication (NFC). To ensure environmental performance, Canadian Green Electronics NSERC Network is developing green materials for the ink formulation with different functionalities. In terms of substrate, paper-based electronics has gained the great interest for utilization in a wide area of electronic systems because of their low costs in setup and methodology, as well as their eco-friendly fabrication technologies. The main objective is to deliver a prototype of TTI using small-scale printed techniques under typical printing conditions. All sub-components of the smart labels, including a memristor, a battery, an antenna compatible with NFC protocol, and a circuit compatible with integration performed by an offsite supplier will be fully printed with flexography or flat-bed screen printing.

Keywords: NFC, printed electronics, time-temperature indicator, hybrid electronics

Procedia PDF Downloads 130
1654 Application of Hyperspectral Remote Sensing in Sambhar Salt Lake, A Ramsar Site of Rajasthan, India

Authors: Rajashree Naik, Laxmi Kant Sharma

Abstract:

Sambhar lake is the largest inland Salt Lake of India, declared as a Ramsar site on 23 March 1990. Due to high salinity and alkalinity condition its biodiversity richness is contributed by haloalkaliphilic flora and fauna along with the diverse land cover including waterbody, wetland, salt crust, saline soil, vegetation, scrub land and barren land which welcome large number of flamingos and other migratory birds for winter harboring. But with the gradual increase in the irrational salt extraction activities, the ecological diversity is at stake. There is an urgent need to assess the ecosystem. Advanced technology like remote sensing and GIS has enabled to look into the past, compare with the present for the future planning and management of the natural resources in a judicious way. This paper is a research work intended to present a vegetation in typical inland lake environment of Sambhar wetland using satellite data of NASA’s EO-1 Hyperion sensor launched in November 2000. With the spectral range of 0.4 to 2.5 micrometer at approximately 10nm spectral resolution with 242 bands 30m spatial resolution and 705km orbit was used to produce a vegetation map for a portion of the wetland. The vegetation map was tested for classification accuracy with a pre-existing detailed GIS wetland vegetation database. Though the accuracy varied greatly for different classes the algal communities were successfully identified which are the major sources of food for flamingo. The results from this study have practical implications for uses of spaceborne hyperspectral image data that are now becoming available. Practical limitations of using these satellite data for wetland vegetation mapping include inadequate spatial resolution, complexity of image processing procedures, and lack of stereo viewing.

Keywords: Algal community, NASA’s EO-1 Hyperion, salt-tolerant species, wetland vegetation mapping

Procedia PDF Downloads 103
1653 Challenges and Insights by Electrical Characterization of Large Area Graphene Layers

Authors: Marcus Klein, Martina GrießBach, Richard Kupke

Abstract:

The current advances in the research and manufacturing of large area graphene layers are promising towards the introduction of this exciting material in the display industry and other applications that benefit from excellent electrical and optical characteristics. New production technologies in the fabrication of flexible displays, touch screens or printed electronics apply graphene layers on non-metal substrates and bring new challenges to the required metrology. Traditional measurement concepts of layer thickness, sheet resistance, and layer uniformity, are difficult to apply to graphene production processes and are often harmful to the product layer. New non-contact sensor concepts are required to adapt to the challenges and even the foreseeable inline production of large area graphene. Dedicated non-contact measurement sensors are a pioneering method to leverage these issues in a large variety of applications, while significantly lowering the costs of development and process setup. Transferred and printed graphene layers can be characterized with high accuracy in a huge measurement range using a very high resolution. Large area graphene mappings are applied for process optimization and for efficient quality control for transfer, doping, annealing and stacking processes. Examples of doped, defected and excellent Graphene are presented as quality images and implications for manufacturers are explained.

Keywords: graphene, doping and defect testing, non-contact sheet resistance measurement, inline metrology

Procedia PDF Downloads 278
1652 The Relevance of Bioinspired Architecture and Programmable Materials for Development of 4D Printing

Authors: Daniela Ribeiro, Silvia Lenyra Meirelles Campos Titotto

Abstract:

Nature has long served as inspiration for humans, since various technologies present in society are a mirror of the natural world. This is due to the fact that nature has adapted for millions of years to possess the characteristics they have today. In this sense, man takes advantage of this situation and uses it to produce his own objects and solve his problems. This concept, which is known as biomimetics, is something relatively new, once it was only denominated in 1957. Nature, in turn, responds directly and consistently to environmental conditions. For example, plants that have touch sensitivity contract with this stimulus. Such a situation resembles a technology that has been gaining ground in the contemporary world of scientific innovation: 4D printing. 4D printing technology emerged in 2012 as a complement to 3D printing and presents numerous benefits since it provides a deficiency in the second kind of printing mentioned. This type of technology reaches several areas, since it is capable of producing materials that change over time, be it in its composition, form or properties and is such a characteristic that determines the additional dimension of the material. Precisely because of these factors, this type of impression resembles nature and is related to biomimetics. However, only certain types of ‘intelligent’ materials are generally employed in this type of impression, since only they will respond well to such stimuli, one of which is the hydrogel. The hydrogel is a biocompatible polymer that presents several applications, these in turn will be briefly mentioned in this article to exemplify its importance and the reason for choosing this material as object of study. In addition, aspects that configure 4D printing will be treated here, such as the importance of architecture, programming language and the reversibility of printed materials.

Keywords: 4D printing, biomimetic, hydrogel, materials

Procedia PDF Downloads 142
1651 The Urban Expansion Characterization of the Bir El Djir Municipality using Remote Sensing and GIS

Authors: Fatima Achouri, Zakaria Smahi

Abstract:

Bir El Djir is an important coastal township in Oran department, located at 450 Km far away from Algiers on northwest of Algeria. In this coastal area, the urban sprawl is one of the main problems that reduce the limited highly fertile land. So, using the remote sensing and GIS technologies have shown their great capabilities to solve many earth resources issues. The aim of this study is to produce land use and cover map for the studied area at varied periods to monitor possible changes that may occurred, particularly in the urban areas and subsequently predict likely changes. For this, two spatial images SPOT and Landsat satellites from 1987 and 2014 respectively were used to assess the changes of urban expansion and encroachment during this period with photo-interpretation and GIS approach. The results revealed that the town of Bir El Djir has shown a highest growth rate in the period 1987-2014 which is 521.1 hectares in terms of area. These expansions largely concern the new real estate constructions falling within the social and promotional housing programs launched by the government. Indeed, during the last census period (1998 -2008), the population of this town has almost doubled from 73 029 to 152 151 inhabitants with an average annual growth of 5.2%. This also significant population growth is causing an accelerated urban expansion of the periphery which causing its conurbation with the towns of Oran in the West side. The most urban expansion is characterized by the new construction in the form of spontaneous or peripheral precarious habitat, but also unstructured slums settled especially in the southeastern part of town.

Keywords: urban expansion, remote sensing, photo-interpretation, spatial dynamics

Procedia PDF Downloads 243
1650 The Effect of Primary Treatment on Histopathological Patterns and Choice of Neck Dissection in Regional Failure of Nasopharyngeal Carcinoma Patients

Authors: Ralene Sim, Stefan Mueller, N. Gopalakrishna Iyer, Ngian Chye Tan, Khee Chee Soo, R. Shetty Mahalakshmi, Hiang Khoon Tan

Abstract:

Background: Regional failure in nasopharyngeal carcinoma (NPC) is managed by salvage treatment in the form of neck dissection. Radical neck dissection (RND) is preferred over modified radical neck dissection (MRND) since it is traditionally believed to offer better long-term disease control. However, with the advent of more advanced imaging modalities like high-resolution Magnetic Resonance Imaging, Computed Tomography, and Positron Emission Tomography-CT scans, earlier detection is achieved. Additionally, concurrent chemotherapy also contributes to reduced tumour burden. Hence, there may be a lesser need for an RND and a greater role for MRND. With this retrospective study, the primary aim is to ascertain whether MRND, as opposed to RND, has similar outcomes and hence, whether there would be more grounds to offer a less aggressive procedure to achieve lower patient morbidity. Methods: This is a retrospective study of 66 NPC patients treated at Singapore General Hospital between 1994 to 2016 for histologically proven regional recurrence, of which 41 patients underwent RND and 25 who underwent MRND, based on surgeon preference. The type of ND performed, primary treatment mode, adjuvant treatment, and pattern of recurrence were reviewed. Overall survival (OS) was calculated using Kaplan-Meier estimate and compared. Results: Overall, the disease parameters such as nodal involvement and extranodal extension were comparable between the two groups. Comparing MRND and RND, the median (IQR) OS is 1.76 (0.58 to 3.49) and 2.41 (0.78 to 4.11) respectively. However, the p-value found is 0.5301 and hence not statistically significant. Conclusion: RND is more aggressive and has been associated with greater morbidity. Hence, with similar outcomes, MRND could be an alternative salvage procedure for regional failure in selected NPC patients, allowing similar salvage rates with lesser mortality and morbidity.

Keywords: nasopharyngeal carcinoma, neck dissection, modified neck dissection, radical neck dissection

Procedia PDF Downloads 140
1649 Effect of Supplementation of Hay with Noug Seed Cake (Guizotia abyssinica), Wheat Bran and Their Mixtures on Feed Utilization, Digestiblity and Live Weight Change in Farta Sheep

Authors: Fentie Bishaw Wagayie

Abstract:

This study was carried out with the objective of studying the response of Farta sheep in feed intake and live weight change when fed on hay supplemented with noug seed cake (NSC), wheat bran (WB), and their mixtures. The digestibility trial of 7 days and 90 days of feeding trial was conducted using 25 intact male Farta sheep with a mean initial live weight of 16.83 ± 0.169 kg. The experimental animals were arranged randomly into five blocks based on the initial live weight, and the five treatments were assigned randomly to each animal in a block. Five dietary treatments used in the experiment comprised of grass hay fed ad libitum (T1), grass hay ad libitum + 300 g DM WB (T2), grass hay ad libitum + 300 g DM (67% WB: 33% NSC mixture) (T3), grass hay ad libitum + 300 g DM (67% NSC: 33% WB) (T4) and 300 g DM/ head/day NSC (T5). Common salt and water were offered ad libitum. The supplements were offered twice daily at 0800 and 1600 hours. The experimental sheep were kept in individual pens. Supplementation of NSC, WB, and their mixtures significantly increased (p < 0.01) the total dry matter (DM) (665.84-788 g/head/day) and (p < 0.001) crude protein (CP) intake. Unsupplemented sheep consumed significantly higher (p < 0.01) grass hay DM (540.5g/head/day) as compared to the supplemented treatments (365.8-488 g/h/d), except T2. Among supplemented sheep, T5 had significantly higher (p < 0.001) CP intake (99.98 g/head/day) than the others (85.52-90.2 g/head/day). Supplementation significantly improved (p < 0.001) the digestibility of CP (66.61-78.9%), but there was no significant effect (p > 0.05) on DM, OM, NDF, and ADF digestibility between supplemented and control treatments. Very low CP digestibility (11.55%) observed in the basal diet (grass hay) used in this study indicated that feeding sole grass hay could not provide nutrients even for the maintenance requirement of growing sheep. Significant final and daily live weight gain (p < 0.001) in the range of 70.11-82.44 g/head/day was observed in supplemented Farta sheep, but unsupplemented sheep lost weight by 9.11g/head/day. Numerically, among the supplemented treatments, sheep supplemented with a higher proportion of NSC in T4 (201 NSC + 99 g WB) gained more weight than the rest, though not statistically significant (p > 0.05). The absence of statistical difference in daily body weight gain between all supplemented sheep indicated that the supplementation of NSC, WB, and their mixtures had similar potential to provide nutrients. Generally, supplementation of NSC, WB, and their mixtures to the basal grass hay diet improved feed conversion ratio, total DM intake, CP intake, and CP digestibility, and it also improved the growth performance with a similar trend for all supplemented Farta sheep over the control group. Therefore, from a biological point of view, to attain the required level of slaughter body weight within a short period of the growing program, sheep producer can use all the supplement types depending upon their local availability, but in the order of priority, T4, T5, T3, and T2, respectively. However, based on partial budget analysis, supplementation of 300 g DM/head /day NSC (T5) could be recommended as profitable for producers with no capital limitation, whereas T4 supplementation (201 g NSC + 99 WB DM/day) is recommended when there is capital scarcity.

Keywords: weight gain, supplement, Farta sheep, hay as basal diet

Procedia PDF Downloads 30
1648 Urban Flood Risk Mapping–a Review

Authors: Sherly M. A., Subhankar Karmakar, Terence Chan, Christian Rau

Abstract:

Floods are one of the most frequent natural disasters, causing widespread devastation, economic damage and threat to human lives. Hydrologic impacts of climate change and intensification of urbanization are two root causes of increased flood occurrences, and recent research trends are oriented towards understanding these aspects. Due to rapid urbanization, population of cities across the world has increased exponentially leading to improperly planned developments. Climate change due to natural and anthropogenic activities on our environment has resulted in spatiotemporal changes in rainfall patterns. The combined effect of both aggravates the vulnerability of urban populations to floods. In this context, an efficient and effective flood risk management with its core component as flood risk mapping is essential in prevention and mitigation of flood disasters. Urban flood risk mapping involves zoning of an urban region based on its flood risk, which depicts the spatiotemporal pattern of frequency and severity of hazards, exposure to hazards, and degree of vulnerability of the population in terms of socio-economic, environmental and infrastructural aspects. Although vulnerability is a key component of risk, its assessment and mapping is often less advanced than hazard mapping and quantification. A synergic effort from technical experts and social scientists is vital for the effectiveness of flood risk management programs. Despite an increasing volume of quality research conducted on urban flood risk, a comprehensive multidisciplinary approach towards flood risk mapping still remains neglected due to which many of the input parameters and definitions of flood risk concepts are imprecise. Thus, the objectives of this review are to introduce and precisely define the relevant input parameters, concepts and terms in urban flood risk mapping, along with its methodology, current status and limitations. The review also aims at providing thought-provoking insights to potential future researchers and flood management professionals.

Keywords: flood risk, flood hazard, flood vulnerability, flood modeling, urban flooding, urban flood risk mapping

Procedia PDF Downloads 552
1647 Critically Analyzing the Application of Big Data for Smart Transportation: A Case Study of Mumbai

Authors: Tanuj Joshi

Abstract:

Smart transportation is fast emerging as a solution to modern cities’ approach mobility issues, delayed emergency response rate and high congestion on streets. Present day scenario with Google Maps, Waze, Yelp etc. demonstrates how information and communications technologies controls the intelligent transportation system. This intangible and invisible infrastructure is largely guided by the big data analytics. On the other side, the exponential increase in Indian urban population has intensified the demand for better services and infrastructure to satisfy the transportation needs of its citizens. No doubt, India’s huge internet usage is looked as an important resource to guide to achieve this. However, with a projected number of over 40 billion objects connected to the Internet by 2025, the need for systems to handle massive volume of data (big data) also arises. This research paper attempts to identify the ways of exploiting the big data variables which will aid commuters on Indian tracks. This study explores real life inputs by conducting survey and interviews to identify which gaps need to be targeted to better satisfy the customers. Several experts at Mumbai Metropolitan Region Development Authority (MMRDA), Mumbai Metro and Brihanmumbai Electric Supply and Transport (BEST) were interviewed regarding the Information Technology (IT) systems currently in use. The interviews give relevant insights and requirements into the workings of public transportation systems whereas the survey investigates the macro situation.

Keywords: smart transportation, mobility issue, Mumbai transportation, big data, data analysis

Procedia PDF Downloads 148
1646 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement

Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer

Abstract:

Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.

Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator

Procedia PDF Downloads 199
1645 Modular 3D Environmental Development for Augmented Reality

Authors: Kevin William Taylor

Abstract:

This work used industry-standard practices and technologies as a foundation to explore current and future advancements in modularity for 3D environmental production. Covering environmental generation, and AI-assisted generation, this study investigated how these areas will shape the industries goal to achieve full immersion within augmented reality environments. This study will explore modular environmental construction techniques utilized in large scale 3D productions. This will include the reasoning behind this approach to production, the principles in the successful development, potential pitfalls, and different methodologies for successful implementation of practice in commercial and proprietary interactive engines. A focus will be on the role of the 3D artists in the future of environmental development, requiring adaptability to new approaches, as the field evolves in response to tandem technological advancements. Industry findings and projections theorize how these factors will impact the widespread utilization of augmented reality in daily life. This will continue to inform the direction of technology towards expansive interactive environments. It will change the tools and techniques utilized in the development of environments for game, film, and VFX. This study concludes that this technology will be the cornerstone for the creation of AI-driven AR that is able to fully theme our world, change how we see and engage with one another. This will impact the concept of a virtual self-identity that will be as prevalent as real-world identity. While this progression scares or even threaten some, it is safe to say that we are seeing the beginnings of a technological revolution that will surpass the impact that the smartphone had on modern society.

Keywords: virtual reality, augmented reality, training, 3D environments

Procedia PDF Downloads 93
1644 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland

Authors: Alireza Ansariyar, Safieh Laaly

Abstract:

Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.

Keywords: connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models

Procedia PDF Downloads 417
1643 Neuropalliative Care in Patients with Progressive Neurological Disease in Czech Republic: Study Protocol

Authors: R. Bužgová, R. Kozáková, M. Škutová, M. Bar, P. Ressner, P. Bártová

Abstract:

Introduction: Currently, there has been an increasing concern about the provision of palliative care in non-oncological patients in both professional literature and clinical practice. However, there is not much scientific information on how to provide neurological and palliative care together. The main objective of the project is to create and to verify a concept of neuro-palliative and rehabilitative care for patients with selected neurological diseases in an advanced stage of the disease and also to evaluate bio-psychosocial and spiritual needs of these patients and their caregivers related to the quality of life using created standardized tools. Methodology: Triangulation of research methods (qualitative and quantitative) will be used. A concept of care and assessment tools will be developed by analyzing interviews and focus groups. Qualitative data will be analyzed using grounded theory. The concept of care will be tested in the context of the intervention study. Using quantitative analysis, we will assess the effect of an intervention provided on the saturation of needs, quality of life, and quality of care. A research sample will be made up of the patients with selected neurological diseases (Parkinson´s syndrome, motor neuron disease, multiple sclerosis, Huntington’s disease), together with patients´ family members. Based on the results, educational materials and a certified course for health care professionals will be created. Findings: Based on qualitative data analysis, we will propose the concept of integrated care model combining neurological, rehabilitative and specialist palliative care for patients with selected neurological diseases in different settings of care and services. Patients´ needs related to quality of life will be described by newly created and validated measuring tools before the start of intervention (application of neuro-palliative and palliative approach) and then in the time interval. Conclusion: Based on the results, educational materials and a certified course for doctors and health care professionals will be created.

Keywords: multidisciplinary approach, neuropalliative care, research, quality of life

Procedia PDF Downloads 261
1642 Using 3-Glycidoxypropyltrimethoxysilane Functionalized SiO2 Nanoparticles to Improve Flexural Properties of Glass Fibers/Epoxy Grid-Stiffened Composite Panels

Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh

Abstract:

Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures, which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components, which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silane-coupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the fourier transform infrared spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3-GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, considerable energy absorption was observed after the primary failure related to the load peak. In addition, 3-GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the grid-stiffened fibrous composite structures.

Keywords: isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties

Procedia PDF Downloads 203