Search results for: actuator fault
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 702

Search results for: actuator fault

612 Research on Dynamic Practical Byzantine Fault Tolerance Consensus Algorithm

Authors: Cao Xiaopeng, Shi Linkai

Abstract:

The practical Byzantine fault-tolerant algorithm does not add nodes dynamically. It is limited in practical application. In order to add nodes dynamically, Dynamic Practical Byzantine Fault Tolerance Algorithm (DPBFT) was proposed. Firstly, a new node sends request information to other nodes in the network. The nodes in the network decide their identities and requests. Then the nodes in the network reverse connect to the new node and send block information of the current network. The new node updates information. Finally, the new node participates in the next round of consensus, changes the view and selects the master node. This paper abstracts the decision of nodes into the undirected connected graph. The final consistency of the graph is used to prove that the proposed algorithm can adapt to the network dynamically. Compared with the PBFT algorithm, DPBFT has better fault tolerance and lower network bandwidth.

Keywords: practical byzantine, fault tolerance, blockchain, consensus algorithm, consistency analysis

Procedia PDF Downloads 101
611 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network

Authors: Z. Abdollahi Biron, P. Pisu

Abstract:

Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.

Keywords: fault diagnostics, communication network, connected vehicles, packet drop out, platoon

Procedia PDF Downloads 205
610 Inverter IGBT Open–Circuit Fault Detection Using Park's Vectors Enhanced by Polar Coordinates

Authors: Bendiabdellah Azzeddine, Cherif Bilal Djamal Eddine

Abstract:

The three-phase power converter voltage structure is widely used in many power applications but its failure can lead to partial or total loss of control of the phase currents and can cause serious system malfunctions or even a complete system shutdown. To ensure continuity of service in all circumstances, effective and rapid techniques of detection and location of inverter fault is to be implemented. The present paper is dedicated to open-circuit fault detection in a three-phase two-level inverter fed induction motor. For detection purpose, the proposed contribution addresses the Park’s current vectors associated to a polar coordinates calculation tool to compute the exact value of the fault angle corresponding directly to the faulty IGBT switch. The merit of the proposed contribution is illustrated by experimental results.

Keywords: diagnosis, detection, Park’s vectors, polar coordinates, open-circuit fault, inverter, IGBT switch

Procedia PDF Downloads 360
609 Fault-Tolerant Configuration for T-Type Nested Neutral Point Clamped Converter

Authors: S. Masoud Barakati, Mohsen Rahmani Haredasht

Abstract:

Recently, the use of T-type nested neutral point clamped (T-NNPC) converter has increased in medium voltage applications. However, the T-NNPC converter architecture's reliability and continuous operation are at risk by including semiconductor switches. Semiconductor switches are a prone option for open-circuit faults. As a result, fault-tolerant converters are required to improve the system's reliability and continuous functioning. This study's primary goal is to provide a fault-tolerant T-NNPC converter configuration. In the proposed design utilizing the cold reservation approach, a redundant phase is considered, which replaces the faulty phase once the fault is diagnosed in each phase. The suggested fault-tolerant configuration can be easily implemented in practical applications due to the use of a simple PWM control mechanism. The performance evaluation of the proposed configuration under different scenarios in the MATLAB-Simulink environment proves its efficiency.

Keywords: T-type nested neutral point clamped converter, reliability, continuous operation, open-circuit faults, fault-tolerant converters

Procedia PDF Downloads 82
608 Development of Fault Diagnosis Technology for Power System Based on Smart Meter

Authors: Chih-Chieh Yang, Chung-Neng Huang

Abstract:

In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.

Keywords: ANFIS, fault diagnosis, power system, smart meter

Procedia PDF Downloads 109
607 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.

Keywords: a breathing crack, fault, FFT, nonlinear, orbit, rotor-stator rub, vibration analysis

Procedia PDF Downloads 277
606 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 129
605 Application of Support Vector Machines in Fault Detection and Diagnosis of Power Transmission Lines

Authors: I. A. Farhat, M. Bin Hasan

Abstract:

A developed approach for the protection of power transmission lines using Support Vector Machines (SVM) technique is presented. In this paper, the SVM technique is utilized for the classification and isolation of faults in power transmission lines. Accurate fault classification and location results are obtained for all possible types of short circuit faults. As in distance protection, the approach utilizes the voltage and current post-fault samples as inputs. The main advantage of the method introduced here is that the method could easily be extended to any power transmission line.

Keywords: fault detection, classification, diagnosis, power transmission line protection, support vector machines (SVM)

Procedia PDF Downloads 530
604 Fault Diagnosis in Induction Motor

Authors: Kirti Gosavi, Anita Bhole

Abstract:

The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.

Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor

Procedia PDF Downloads 596
603 Behavior of an Elevated Liquid Storage Tank under Near-Fault Earthquakes

Authors: Koushik Roy, Sourav Gur, Sudib K. Mishra

Abstract:

Evidence of pulse type features in near-fault ground motions has raised serious concern to the structural engineering community, in view of their possible implications on the behavior of structures located on the fault regions. Studies in the recent past explore the effects of pulse type ground motion on the special structures, such as transmission towers in view of their high flexibility. Identically, long period sloshing of liquid in the storage tanks under dynamic loading might increase their failure vulnerability under near-fault pulses. Therefore, the behavior of the elevated liquid storage tank is taken up in this study. Simple lumped mass model is considered, with the bilinear force-deformation hysteresis behavior. Set of near-fault seismic ground acceleration time histories are adopted for this purpose, along with the far-field records for comparison. It has been demonstrated that pulse type motions lead to significant increase of the responses; in particular, sloshing of the fluid mass could be as high as 5 times, then the far field counterpart. For identical storage capacity, slender tanks are found to be more vulnerable than the broad ones.

Keywords: far-field motion, hysteresis, liquid storage tank, near fault earthquake, sloshing

Procedia PDF Downloads 375
602 Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology

Authors: Abhimanyu Kumar, Chirag Gupta

Abstract:

This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions.

Keywords: total harmonic distortion, fuzzy logic, renewable energy sources, MLI

Procedia PDF Downloads 70
601 Fault Analysis of Induction Machine Using Finite Element Method (FEM)

Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi

Abstract:

The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.

Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis

Procedia PDF Downloads 267
600 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.

Keywords: adaptive estimation, fault detection, GNSS, residual

Procedia PDF Downloads 542
599 Multiple Fault Detection and Classification in a Coupled Motor with Rotor Using Artificial Neural Network

Authors: Mehrdad Nouri Khajavi, Gollamhassan Payganeh, Mohsen Fallah Tafti

Abstract:

Fault diagnosis is an important aspect of maintaining rotating machinery health and increasing productivity. Many researches has been done in this regards. Many faults such as unbalance, misalignment, looseness, bearing faults, etc. have been considered and diagnosed with different techniques. Most of the researches in fault diagnosis of rotating machinery deal with single fault. Where as in reality faults usually occur simultaneously and it is, therefore, necessary to recognize them at the same time. In this research, two of the most common faults namely unbalance and misalignment have been considered simultaneously with different intensity and then identified and classified with the use of Multi-Layer Perception Neural Network (MLPNN). Processed Vibration signals are used as the input to the MLPNN, and the class of mixed unbalancy, and misalignment is the output of the NN.

Keywords: unbalance, parallel misalignment, combined faults, vibration signals

Procedia PDF Downloads 318
598 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 486
597 Transient Signal Generator For Fault Indicator Testing

Authors: Mohamed Shaban, Ali Alfallah

Abstract:

This paper describes an application for testing of a fault indicator but it could be used for other network protection testing. The application is created in the LabVIEW environment and consists of three parts. The first part of the application is determined for transient phenomenon generation and imitates voltage and current transient signal at ground fault originate. The second part allows to set sequences of trend for each current and voltage output signal, up to six trends for each phase. The last part of the application generates harmonic signal with continuously controllable amplitude of current or voltage output signal and phase shift of each signal can be changed there. Further any sub-harmonics and upper harmonics can be added to selected current output signal

Keywords: signal generator-fault indicator, harmonic signal generator, voltage output

Procedia PDF Downloads 468
596 Modeling and Control of an Acrobot Using MATLAB and Simulink

Authors: Dong Sang Yoo

Abstract:

The problem of finding control laws for underactuated systems has attracted growing attention since these systems are characterized by the fact that they have fewer actuators than the degrees of freedom to be controlled. The acrobot, which is a planar two-link robotic arm in the vertical plane with an actuator at the elbow but no actuator at the shoulder, is a representative of underactuated systems. In this paper, the dynamic model of the acrobot is implemented using Mathworks’ Simscape. And the sliding mode control is constructed using MATLAB and Simulink.

Keywords: acrobot, MATLAB and simulink, sliding mode control, underactuated system

Procedia PDF Downloads 742
595 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 373
594 Analysis of Fault Tolerance on Grid Computing in Real Time Approach

Authors: Parampal Kaur, Deepak Aggarwal

Abstract:

In the computational Grid, fault tolerance is an imperative issue to be considered during job scheduling. Due to the widespread use of resources, systems are highly prone to errors and failures. Hence, fault tolerance plays a key role in the grid to avoid the problem of unreliability. Scheduling the task to the appropriate resource is a vital requirement in computational Grid. The fittest resource scheduling algorithm searches for the appropriate resource based on the job requirements, in contrary to the general scheduling algorithms where jobs are scheduled to the resources with best performance factor. The proposed method is to improve the fault tolerance of the fittest resource scheduling algorithm by scheduling the job in coordination with job replication when the resource has low reliability. Based on the reliability index of the resource, the resource is identified as critical. The tasks are scheduled based on the criticality of the resources. Results show that the execution time of the tasks is comparatively reduced with the proposed algorithm using real-time approach rather than a simulator.

Keywords: computational grid, fault tolerance, task replication, job scheduling

Procedia PDF Downloads 408
593 A Secure Proxy Signature Scheme with Fault Tolerance Based on RSA System

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Due to the rapid growth in modern communication systems, fault tolerance and data security are two important issues in a secure transaction. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a secure proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.

Keywords: proxy signature, fault tolerance, rsa, key agreement protocol

Procedia PDF Downloads 253
592 Queueing Modeling of M/G/1 Fault Tolerant System with Threshold Recovery and Imperfect Coverage

Authors: Madhu Jain, Rakesh Kumar Meena

Abstract:

This paper investigates a finite M/G/1 fault tolerant multi-component machining system. The system incorporates the features such as standby support, threshold recovery and imperfect coverage make the study closer to real time systems. The performance prediction of M/G/1 fault tolerant system is carried out using recursive approach by treating remaining service time as a supplementary variable. The numerical results are presented to illustrate the computational tractability of analytical results by taking three different service time distributions viz. exponential, 3-stage Erlang and deterministic. Moreover, the cost function is constructed to determine the optimal choice of system descriptors to upgrading the system.

Keywords: fault tolerant, machine repair, threshold recovery policy, imperfect coverage, supplementary variable technique

Procedia PDF Downloads 261
591 Design and Development of an Optimal Fault Tolerant 3 Degree of Freedom Robotic Manipulator

Authors: Ramish, Farhan Khalique Awan

Abstract:

Kinematic redundancy within the manipulators presents extended dexterity and manipulability to the manipulators. Redundant serial robotic manipulators are very popular in industries due to its competencies to keep away from singularities during normal operation and fault tolerance because of failure of one or more joints. Such fault tolerant manipulators are extraordinarily beneficial in applications where human interference for repair and overhaul is both impossible or tough; like in case of robotic arms for space programs, nuclear applications and so on. The design of this sort of fault tolerant serial 3 DoF manipulator is presented in this paper. This work was the extension of the author’s previous work of designing the simple 3R serial manipulator. This work is the realization of the previous design with optimizing the link lengths for incorporating the feature of fault tolerance. Various measures have been followed by the researchers to quantify the fault tolerance of such redundant manipulators. The fault tolerance in this work has been described in terms of the worst-case measure of relative manipulability that is, in fact, a local measure of optimization that works properly for certain configuration of the manipulators. An optimum fault tolerant Jacobian matrix has been determined first based on prescribed null space properties after which the link parameters have been described to meet the given Jacobian matrix. A solid model of the manipulator was then developed to realize the mathematically rigorous design. Further work was executed on determining the dynamic properties of the fault tolerant design and simulations of the movement for various trajectories have been carried out to evaluate the joint torques. The mathematical model of the system was derived via the Euler-Lagrange approach after which the same has been tested using the RoboAnalyzer© software. The results have been quite in agreement. From the CAD model and dynamic simulation data, the manipulator was fabricated in the workshop and Advanced Machining lab of NED University of Engineering and Technology.

Keywords: fault tolerant, Graham matrix, Jacobian, kinematics, Lagrange-Euler

Procedia PDF Downloads 194
590 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction

Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh

Abstract:

Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.

Keywords: feature selection, neural network, particle swarm optimization, software fault prediction

Procedia PDF Downloads 56
589 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes

Authors: Hyun-Woo Cho

Abstract:

The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.

Keywords: process data, data mining, process operation, real-time monitoring

Procedia PDF Downloads 605
588 Analog Voltage Inverter Drive for Capacitive Load with Adaptive Gain Control

Authors: Sun-Ki Hong, Yong-Ho Cho, Ki-Seok Kim, Tae-Sam Kang

Abstract:

Piezoelectric actuator is treated as RC load when it is modeled electrically. For some piezoelectric actuator applications, arbitrary voltage is required to actuate. Especially for unidirectional arbitrary voltage driving like as sine wave, some special inverter with circuit that can charge and discharge the capacitive energy can be used. In this case, the difference between power supply level and the object voltage level for RC load is varied. Because the control gain is constant, the controlled output is not uniform according to the voltage difference. In this paper, for charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator, the controller gain is controlled according to the voltage difference. With the proposed simple idea, the load voltage can have controlled smoothly although the voltage difference is varied. The appropriateness is proved from the simulation of the proposed circuit.

Keywords: analog voltage inverter, capacitive load, gain control, dc-dc converter, piezoelectric, voltage waveform

Procedia PDF Downloads 613
587 Analysis of Vibratory Signals Based on Local Mean Decomposition (LMD) for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Medkour Mihoub, Slimane Mekhilef

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally nonstationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA), and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, rolling element bearing, local mean decomposition, condition monitoring

Procedia PDF Downloads 357
586 Strip Size Optimization for Spiral Type Actuator Coil Used in Electromagnetic Flat Sheet Forming Experiment

Authors: M. A. Aleem, M. S. Awan

Abstract:

Flat spiral coil for electromagnetic forming system has been modelled in FEMM 4.2 software. Copper strip was chosen as the material for designing the actuator coil. Relationship between height to width ratio (S-factor) of the copper strip and coil’s performance has been studied. Magnetic field intensities, eddy currents, and Lorentz force were calculated for the coils that were designed using six different 'S-factor' values (0.65, 0.75, 1.05, 1.25, 1.54 and 1.75), keeping the cross-sectional area of strip the same. Results obtained through simulation suggest that actuator coil with S-factor ~ 1 shows optimum forming performance as it exerts maximum Lorentz force (84 kN) on work piece. The same coils were fabricated and used for electromagnetic sheet forming experiments. Aluminum 6061 sheets of thickness 1.5 mm have been formed using different voltage levels of capacitor bank. Smooth forming profiles were obtained with dome heights 28, 35 and 40 mm in work piece at 800, 1150 and 1250 V respectively.

Keywords: FEM modelling, electromagnetic forming, spiral coil, Lorentz force

Procedia PDF Downloads 258
585 Development of 35kV SF6 Phase-Control Circuit Breaker Equipped with EFDA

Authors: Duanlei Yuan, Guangchao Yan, Zhanqing Chen, Xian Cheng

Abstract:

This paper mainly focuses on the problem that high voltage circuit breaker’s closing and opening operation at random phase brings harmful electromagnetic transient effects on the power system. To repress the negative transient effects, a 35 kV SF6 phase-control circuit breaker equipped with electromagnetic force driving actuator is designed in this paper. Based on the constructed mathematical and structural models, the static magnetic field distribution and dynamic properties of the under loading actuator are simulated. The prototype of 35 kV SF6 phase-control circuit breaker is developed based on theories analysis and simulation. Tests are carried on to verify the operating reliability of the prototype. The developed circuit breaker can control its operating speed intelligently and switches with phase selection. Results of the tests and simulation prove that the phase-control circuit breaker is feasible for industrial applications.

Keywords: phase-control, circuit breaker, electromagnetic force driving actuator, tests and simulation

Procedia PDF Downloads 362
584 DGA Data Interpretation Using Extension Theory for Power Transformer Diagnostics

Authors: O. P. Rahi, Manoj Kumar

Abstract:

Power transformers are essential and expensive equipments in electrical power system. Dissolved gas analysis (DGA) is one of the most useful techniques to detect incipient faults in power transformers. However, the identification of the faulted location by conventional method is not always an easy task due to variability of gas data and operational variables. In this paper, an extension theory based power transformer fault diagnosis method is presented. Extension theory tries to solve contradictions and incompatibility problems. This paper first briefly introduces the basic concept of matter element theory, establishes the matter element models for three-ratio method, and then briefly discusses extension set theory. Detailed analysis is carried out on the extended relation function (ERF) adopted in this paper for transformer fault diagnosis. The detailed diagnosing steps are offered. Simulation proves that the proposed method can overcome the drawbacks of the conventional three-ratio method, such as no matching and failure to diagnose multi-fault. It enhances diagnosing accuracy.

Keywords: DGA, extension theory, ERF, fault diagnosis power transformers, fault diagnosis, fuzzy logic

Procedia PDF Downloads 374
583 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing

Authors: T. Bensana, S. Mekhilef

Abstract:

The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.

Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising

Procedia PDF Downloads 345