Search results for: Speckle noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1142

Search results for: Speckle noise

932 Large-Eddy Simulations for Flow Control

Authors: Reda Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is imbedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating and cooling, Etc. In this work will present an overview of the development of this field. Some examples will include: Airfoil Noise Suppression: LES is used to simulate the effect of the synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In a vertical takeoff of Aircraft or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protect the structure and pay load from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aerodynamics, simulations, aeroacoustics, active flow control (AFC), Large-Eddy Simulations (LES)

Procedia PDF Downloads 253
931 Far-Field Noise Prediction of Tandem Cylinders Using Incompressible Large Eddy Simulation

Authors: Jesus Ruano, Francesc Xavier Trias, Asensi Oliva

Abstract:

A three-dimensional incompressible Large Eddy Simulation (LES) is performed to compute the hydrodynamic field around a pair of tandem cylinders. Symmetry-preserving schemes will be used during this simulation in conjunction with Finite Volume Method (FVM) to obtain the hydrodynamic field around the selected geometry. A set of results consisting of pressure and velocity and the combination of them will be stored at different surfaces near the cylinders as the initial input for the second part of the study. A post-processing of the obtained results based on Ffowcs-Williams and Hawkings (FWH) equation with a Fourier Transform of the acoustic sources will be used to compute noise at several probes located far away from the region where the hydrodynamics are computed. Directivities as well as spectral profile of the obtained acoustic field will be analyzed.

Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, long-span bodies

Procedia PDF Downloads 342
930 Large-Eddy Simulations for Aeronautical Systems

Authors: R. R. Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is embedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating, and cooling, etc. In this work will present an overview of the development of this field. Some examples will include Airfoil Noise Suppression: Large-Eddy Simulations (LES) is used to simulate the effect of synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In vertical takeoff of Aircrafts or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protecting the structure and payload from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aeroacoustics, flow control, aerodynamics, large eddy simulations

Procedia PDF Downloads 261
929 Nonuniformity Correction Technique in Infrared Video Using Feedback Recursive Least Square Algorithm

Authors: Flavio O. Torres, Maria J. Castilla, Rodrigo A. Augsburger, Pedro I. Cachana, Katherine S. Reyes

Abstract:

In this paper, we present a scene-based nonuniformity correction method using a modified recursive least square algorithm with a feedback system on the updates. The feedback is designed to remove impulsive noise contamination images produced by a recursive least square algorithm by measuring the output of the proposed algorithm. The key advantage of the method is based on its capacity to estimate detectors parameters and then compensate for impulsive noise contamination image in a frame by frame basics. We define the algorithm and present several experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published recursive least square-based methods. We show that the proposed method removes impulsive noise contamination image.

Keywords: infrared focal plane arrays, infrared imaging, least mean square, nonuniformity correction

Procedia PDF Downloads 116
928 The Use of Hearing Protection Devices and Hearing Loss in Steel Industry Workers in Samut Prakan Province, Thailand

Authors: Petcharat Kerdonfag, Surasak Taneepanichskul, Winai Wadwongtham

Abstract:

Background: Although there have not been effective treatments for Noise Induced Hearing Loss (NIHL), it can be definitely preventable with promoting the use of Hearing Protection devices (HPDs) among workers who have been exposed to excessive noise for a long period. Objectives: The objectives of this study were to explore the use of HPDs among steel industrial workers in the high noise level zone in Samut Prakan province, Thailand and to examine the relationships of the HPDs use and hearing loss. Materials and Methods: In this cross-sectional study, eligible ninety-three participants were recruited in the designated zone of higher noise (> 85dBA) of two factories, using simple random sampling. The use of HPDs was gathered by the self-record form, examined and confirmed by the researcher team. Hearing loss was assessed by the audiometric screening at the regional Samut Prakan hospital. If an average threshold level exceeds 25 dBA at high frequency (4 and 6 Hz) in each ear, participants would be lost of hearing. Data were collected from October to December, 2016. All participants were examined by the same examiners for the validity. An Audiometric testing was performed with the participants who have been exposed to high noise levels at least 14 hours from workplace. Results: Sixty participants (64.5%) had secondary level of education. The average mean score of percent time of using HPDs was 60.5% (SD = 25.34). Sixty-seven participants (72.0%) had abnormal hearing which they have still needed to increase lower percent time of using HPDs (Mean = 37.01, SD = 23.81) than those having normal hearing (Mean = 45.77, SD = 28.44). However, there was no difference in the mean average of percent time of using HPDs between these two groups.Conclusion: The findings of this study have confirmed that the steel industrial workers still need to be motivated to use HPDs regularly. Future research should pay more attentions for creating a meaningful innovation to steel industrial workers.

Keywords: hearing protection devices, noise induced hearing loss, audiometric testing, steel industry

Procedia PDF Downloads 226
927 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, rayleigh fading channel

Procedia PDF Downloads 424
926 A Differential Detection Method for Chip-Scale Spin-Exchange Relaxation Free Atomic Magnetometer

Authors: Yi Zhang, Yuan Tian, Jiehua Chen, Sihong Gu

Abstract:

Chip-scale spin-exchange relaxation free (SERF) atomic magnetometer makes use of millimeter-scale vapor cells micro-fabricated by Micro-electromechanical Systems (MEMS) technique and SERF mechanism, resulting in the characteristics of high spatial resolution and high sensitivity. It is useful for biomagnetic imaging including magnetoencephalography and magnetocardiography. In a prevailing scheme, circularly polarized on-resonance laser beam is adapted for both pumping and probing the atomic polarization. And the magnetic-field-sensitive signal is extracted by transmission laser intensity enhancement as a result of atomic polarization increase on zero field level crossing resonance. The scheme is very suitable for integration, however, the laser amplitude modulation (AM) noise and laser frequency modulation to amplitude modulation (FM-AM) noise is superimposed on the photon shot noise reducing the signal to noise ratio (SNR). To suppress AM and FM-AM noise the paper puts forward a novel scheme which adopts circularly polarized on-resonance light pumping and linearly polarized frequency-detuning laser probing. The transmission beam is divided into transmission and reflection beams by a polarization analyzer, the angle between the analyzer's transmission polarization axis and frequency-detuning laser polarization direction is set to 45°. The magnetic-field-sensitive signal is extracted by polarization rotation enhancement of frequency-detuning laser which induces two beams intensity difference increase as the atomic polarization increases. Therefore, AM and FM-AM noise in two beams are common-mode and can be almost entirely canceled by differential detection. We have carried out an experiment to study our scheme. The experiment reveals that the noise in the differential signal is obviously smaller than that in each beam. The scheme is promising to be applied for developing more sensitive chip-scale magnetometer.

Keywords: atomic magnetometer, chip scale, differential detection, spin-exchange relaxation free

Procedia PDF Downloads 144
925 A Study on Improvement of the Electromagnetic Vibration of a Polygon Mirror Scanner Motor

Authors: Yongmin You

Abstract:

Electric machines for office automation device such as printer and scanner have been required the low noise and vibration performance. Many researches about the low noise and vibration of polygon mirror scanner motor have been also progressed. The noise and vibration of polygon mirror scanner motor can be classified by aerodynamic, structural and electromagnetic. Electromagnetic noise and vibration can be occurred by high cogging torque and nonsinusoidal back EMF. To improve the cogging torque and back EMF characteristic, we apply unequal air-gap. To analyze characteristic of a polygon mirror scanner motor, two dimensional finite element method is used. To minimize the cogging torque of a polygon mirror motor, Kriging based on latin hypercube sampling (LHS) is utilized. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 23.4 % while maintaining the back EMF and average torque. To verify the optimal design results, the experiment was performed. We measured the vibration in motors at 23,600 rpm which is the rated velocity. The radial and axial gravitational acceleration of the optimal model were declined more than seven times and three times, respectively. From these results, a shape optimized unequal polygon mirror scanner motor has shown the usefulness of an improvement in the torque ripple and electromagnetic vibration characteristic.

Keywords: polygon mirror scanner motor, optimal design, finite element method, vibration

Procedia PDF Downloads 312
924 Desing of Woven Fabric with Increased Sound Transmission Loss Property

Authors: U. Gunal, H. I. Turgut, H. Gurler, S. Kaya

Abstract:

There are many ever-increasing and newly emerging problems with rapid population growth in the world. With the increase in people's quality of life in our daily life, acoustic comfort has become an important feature in the textile industry. In order to meet all these expectations in people's comfort areas and survive in challenging competitive conditions in the market without compromising the customer product quality expectations of textile manufacturers, it has become a necessity to bring functionality to the products. It is inevitable to research and develop materials and processes that will bring these functionalities to textile products. The noise we encounter almost everywhere in our daily life, in the street, at home and work, is one of the problems which textile industry is working on. It brings with it many health problems, both mentally and physically. Therefore, noise control studies become more of an issue. Besides, materials used in noise control are not sufficient to reduce the effect of the noise level. The fabrics used in acoustic studies in the textile industry do not show sufficient performance according to their weight and high cost. Thus, acoustic textile products can not be used in daily life. In the thesis study, the attributions used in the noise control and building acoustics studies in the literature were analyzed, and the product with the highest damping value that a textile material will have was designed, manufactured, and tested. Optimum values were obtained by using different material samples that may affect the performance of the acoustic material. Acoustic measurement methods should be applied to verify the acoustic performances shown by the parameters and the designed three-dimensional structure at different values. In the measurements made in the study, the device designed for determining the acoustic performance of the material for both the impedance tube according to the relevant standards and the different noise types in the study was used. In addition, sound records of noise types encountered in daily life are taken and applied to the acoustic absorbent fabric with the aid of the device, and the feasibility of the results and the commercial ability of the product are examined. MATLAB numerical computing programming language and libraries were used in the frequency and sound power analyses made in the study.

Keywords: acoustic, egg crate, fabric, textile

Procedia PDF Downloads 80
923 Methodology of Preliminary Design and Performance of a Axial-Flow Fan through CFD

Authors: Ramiro Gustavo Ramirez Camacho, Waldir De Oliveira, Eraldo Cruz Dos Santos, Edna Raimunda Da Silva, Tania Marie Arispe Angulo, Carlos Eduardo Alves Da Costa, Tânia Cristina Alves Dos Reis

Abstract:

It presents a preliminary design methodology of an axial fan based on the lift wing theory and the potential vortex hypothesis. The literature considers a study of acoustic and engineering expertise to model a fan with low noise. Axial fans with inadequate intake geometry, often suffer poor condition of the flow at the entrance, varying from velocity profiles spatially asymmetric to swirl floating with respect to time, this produces random forces acting on the blades. This produces broadband gust noise which in most cases triggers the tonal noise. The analysis of the axial flow fan will be conducted for the solution of the Navier-Stokes equations and models of turbulence in steady and transitory (RANS - URANS) 3-D, in order to find an efficient aerodynamic design, with low noise and suitable for industrial installation. Therefore, the process will require the use of computational optimization methods, aerodynamic design methodologies, and numerical methods as CFD- Computational Fluid Dynamics. The objective is the development of the methodology of the construction axial fan, provide of design the geometry of the blade, and evaluate aerodynamic performance

Keywords: Axial fan design, CFD, Preliminary Design, Optimization

Procedia PDF Downloads 354
922 Auditory Function in MP3 Users and Association with Hidden Hearing Loss

Authors: Nana Saralidze, Nino Sharashenidze, Zurab Kevanishvili

Abstract:

Hidden hearing loss may occur in humans exposed to prolonged high-level sound. It is the loss of ability to hear high-level background noise while having normal hearing in quiet. We compared the hearing of people who regularly listen 3 hours and more to personal music players and those who do not. Forty participants aged 18-30 years were divided into two groups: regular users of music players and people who had never used them. And the third group – elders aged 50-55 years, had 15 participants. Pure-tone audiometry (125-16000 Hz), auditory brainstem response (ABR) (70dB SPL), and ability to identify speech in noise (4-talker babble with a 65-dB signal-to-noise ratio at 80 dB) were measured in all participants. All participants had normal pure-tone audiometry (all thresholds < 25 dB HL). A significant difference between groups was observed in that regular users of personal audio systems correctly identified 53% of words, whereas the non-users identified 74% and the elder group – 63%. This contributes evidence supporting the presence of a hidden hearing loss in humans and demonstrates that speech-in-noise audiometry is an effective method and can be considered as the GOLD standard for detecting hidden hearing loss.

Keywords: mp3 player, hidden hearing loss, speech audiometry, pure tone audiometry

Procedia PDF Downloads 38
921 The Effect of Exposure to High Noise Level on the Performance and Rate of Error in Manual Activities

Authors: Zahra Zamanian, Alireza Zamanian, Jafar Hasanzadeh

Abstract:

Background: Unwanted sound, as one of the most important physical factors in the majority of production units, imposes a great number of problems on the industrial workers. Sound is one of the environmental factors which can cause physical as well as psychological damages and also affects the individuals’ performance and productivity. Therefore, the present study aimed to determine the effect of noise exposure on human performance. Methods: The present study assessed the effect of noise on the performance of 50 students of Shiraz University of Medical Sciences (25 males and 25 females) at the sound pressures of 70, 90, and 110 dB by using two factors of physical features and the creation of different conditions of sound pressure source as well as applying Two-Arm coordination Test. Results: The results of the present study revealed no significant difference between male and female subjects as well as different conditions of creating sound pressure regarding the length of performance (p> 0.05). In addition, as the sound pressure increased, the length of performance increased, as well. According to the results, no significant difference was found between the performance at 70 and 90 dB. On the other hand, the performance at 110 dB was significantly different from the performance at 70 and 90 dB (p<0.05 and p<0.001). Conclusion: In general, as the sound pressure increases, the performance decreases which results in a considerable increase in the individuals’ rate of error.

Keywords: physical factors, two-arm coordination test, Shiraz University of Medical Sciences, noise

Procedia PDF Downloads 269
920 Small Target Recognition Based on Trajectory Information

Authors: Saad Alkentar, Abdulkareem Assalem

Abstract:

Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).

Keywords: small targets, drones, trajectory information, TBD, multivariate time series

Procedia PDF Downloads 17
919 Mitigation of Offshore Piling Noise Effects on Marine Mammals

Authors: Waled A. Dawoud, Abdelazim M. Negm, Nasser M. Saleh

Abstract:

Offshore piling generates underwater sound at level high enough to cause physical damage or hearing impairment to the marine mammals. Several methods can be used to mitigate the effect of underwater noise from offshore pile driving on marine mammals which can be divided into three main approaches. The first approach is to keep the mammal out of the high-risk area by using aversive sound waves produced by acoustic mitigation devices such as playing-back of mammal's natural predator vocalization, alarm or distress sounds, and anthropogenic sound. The second approach is to reduce the amount of underwater noise from pile driving using noise mitigation techniques such as bubble curtains, isolation casing, and hydro-sound dampers. The third approach is to eliminate the overlap of underwater waves by using prolonged construction process. To investigate the effectiveness of different noise mitigation methods; a pile driven with 235 kJ rated energy diesel hammer near Jeddah Coast, Kingdom of Saudi Arabia was used. Using empirical sound exposure model based on Red Sea characteristics and limits of National Oceanic and Atmospheric Administration; it was found that the aversive sound waves should extend to 1.8 km around the pile location. Bubble curtains can reduce the behavioral disturbance area up to 28%; temporary threshold shift up to 36%; permanent threshold shift up to 50%; and physical injury up to 70%. Isolation casing can reduce the behavioral disturbance range up to 12%; temporary threshold shift up to 21%; permanent threshold shift up to 29%; and physical injury up to 46%. Hydro-sound dampers efficiency depends mainly on the used technology and it can reduce the behavioral disturbance range from 10% to 33%; temporary threshold shift from 18% to 25%; permanent threshold shift from 32% to 50%; and physical injury from 46% to 60%. To prolong the construction process, it was found that the single pile construction, use of soft start, and keep time between two successive hammer strikes more than 3 seconds are the most effective techniques.

Keywords: offshore pile driving, sound propagation models, noise effects on marine mammals, Underwater noise mitigation

Procedia PDF Downloads 504
918 Bit Error Rate (BER) Performance of Coherent Homodyne BPSK-OCDMA Network for Multimedia Applications

Authors: Morsy Ahmed Morsy Ismail

Abstract:

In this paper, the structure of a coherent homodyne receiver for the Binary Phase Shift Keying (BPSK) Optical Code Division Multiple Access (OCDMA) network is introduced based on the Multi-Length Weighted Modified Prime Code (ML-WMPC) for multimedia applications. The Bit Error Rate (BER) of this homodyne detection is evaluated as a function of the number of active users and the signal to noise ratio for different code lengths according to the multimedia application such as audio, voice, and video. Besides, the Mach-Zehnder interferometer is used as an external phase modulator in homodyne detection. Furthermore, the Multiple Access Interference (MAI) and the receiver noise in a shot-noise limited regime are taken into consideration in the BER calculations.

Keywords: OCDMA networks, bit error rate, multiple access interference, binary phase-shift keying, multimedia

Procedia PDF Downloads 141
917 Using Squeezed Vacuum States to Enhance the Sensitivity of Ground Based Gravitational Wave Interferometers beyond the Standard Quantum Limit

Authors: Giacomo Ciani

Abstract:

This paper reviews the impact of quantum noise on modern gravitational wave interferometers and explains how squeezed vacuum states are used to push the noise below the standard quantum limit. With the first detection of gravitational waves from a pair of colliding black holes in September 2015 and subsequent detections including that of gravitational waves from a pair of colliding neutron stars, the ground-based interferometric gravitational wave observatories LIGO and VIRGO have opened the era of gravitational-wave and multi-messenger astronomy. Improving the sensitivity of the detectors is of paramount importance to increase the number and quality of the detections, fully exploiting this new information channel about the universe. Although still in the commissioning phase and not at nominal sensitivity, these interferometers are designed to be ultimately limited by a combination of shot noise and quantum radiation pressure noise, which define an envelope known as the standard quantum limit. Despite the name, this limit can be beaten with the use of advanced quantum measurement techniques, with the use of squeezed vacuum states being currently the most mature and promising. Different strategies for implementation of the technology in the large-scale detectors, in both their frequency-independent and frequency-dependent variations, are presented, together with an analysis of the main technological issues and expected sensitivity gain.

Keywords: gravitational waves, interferometers, squeezed vacuum, standard quantum limit

Procedia PDF Downloads 126
916 Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation

Authors: Jesus Ruano, Asensi Oliva

Abstract:

The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities.

Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, jet noise

Procedia PDF Downloads 274
915 Signal Integrity Performance Analysis in Capacitive and Inductively Coupled Very Large Scale Integration Interconnect Models

Authors: Mudavath Raju, Bhaskar Gugulothu, B. Rajendra Naik

Abstract:

The rapid advances in Very Large Scale Integration (VLSI) technology has resulted in the reduction of minimum feature size to sub-quarter microns and switching time in tens of picoseconds or even less. As a result, the degradation of high-speed digital circuits due to signal integrity issues such as coupling effects, clock feedthrough, crosstalk noise and delay uncertainty noise. Crosstalk noise in VLSI interconnects is a major concern and reduction in VLSI interconnect has become more important for high-speed digital circuits. It is the most effectively considered in Deep Sub Micron (DSM) and Ultra Deep Sub Micron (UDSM) technology. Increasing spacing in-between aggressor and victim line is one of the technique to reduce the crosstalk. Guard trace or shield insertion in-between aggressor and victim is also one of the prominent options for the minimization of crosstalk. In this paper, far end crosstalk noise is estimated with mutual inductance and capacitance RLC interconnect model. Also investigated the extent of crosstalk in capacitive and inductively coupled interconnects to minimizes the same through shield insertion technique.

Keywords: VLSI, interconnects, signal integrity, crosstalk, shield insertion, guard trace, deep sub micron

Procedia PDF Downloads 146
914 An Experimental Investigation of the Cognitive Noise Influence on the Bistable Visual Perception

Authors: Alexander E. Hramov, Vadim V. Grubov, Alexey A. Koronovskii, Maria K. Kurovskaуa, Anastasija E. Runnova

Abstract:

The perception of visual signals in the brain was among the first issues discussed in terms of multistability which has been introduced to provide mechanisms for information processing in biological neural systems. In this work the influence of the cognitive noise on the visual perception of multistable pictures has been investigated. The study includes an experiment with the bistable Necker cube illusion and the theoretical background explaining the obtained experimental results. In our experiments Necker cubes with different wireframe contrast were demonstrated repeatedly to different people and the probability of the choice of one of the cubes projection was calculated for each picture. The Necker cube was placed at the middle of a computer screen as black lines on a white background. The contrast of the three middle lines centered in the left middle corner was used as one of the control parameter. Between two successive demonstrations of Necker cubes another picture was shown to distract attention and to make a perception of next Necker cube more independent from the previous one. Eleven subjects, male and female, of the ages 20 through 45 were studied. The choice of the Necker cube projection was detected with the Electroencephalograph-recorder Encephalan-EEGR-19/26, Medicom MTD. To treat the experimental results we carried out theoretical consideration using the simplest double-well potential model with the presence of noise that led to the Fokker-Planck equation for the probability density of the stochastic process. At the first time an analytical solution for the probability of the selection of one of the Necker cube projection for different values of wireframe contrast have been obtained. Furthermore, having used the results of the experimental measurements with the help of the method of least squares we have calculated the value of the parameter corresponding to the cognitive noise of the person being studied. The range of cognitive noise parameter values for studied subjects turned to be [0.08; 0.55]. It should be noted, that experimental results have a good reproducibility, the same person being studied repeatedly another day produces very similar data with very close levels of cognitive noise. We found an excellent agreement between analytically deduced probability and the results obtained in the experiment. A good qualitative agreement between theoretical and experimental results indicates that even such a simple model allows simulating brain cognitive dynamics and estimating important cognitive characteristic of the brain, such as brain noise.

Keywords: bistability, brain, noise, perception, stochastic processes

Procedia PDF Downloads 421
913 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue

Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni

Abstract:

Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.

Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM

Procedia PDF Downloads 296
912 A Low-Power, Low-Noise and High-Gain 58~66 GHz CMOS Receiver Front-End for Short-Range High-Speed Wireless Communications

Authors: Yo-Sheng Lin, Jen-How Lee, Chien-Chin Wang

Abstract:

A 60-GHz receiver front-end using standard 90-nm CMOS technology is reported. The receiver front-end comprises a wideband low-noise amplifier (LNA), and a double-balanced Gilbert cell mixer with a current-reused RF single-to-differential (STD) converter, an LO Marchand balun and a baseband amplifier. The receiver front-end consumes 34.4 mW and achieves LO-RF isolation of 60.7 dB, LO-IF isolation of 45.3 dB and RF-IF isolation of 41.9 dB at RF of 60 GHz and LO of 59.9 GHz. At IF of 0.1 GHz, the receiver front-end achieves maximum conversion gain (CG) of 26.1 dB at RF of 64 GHz and CG of 25.2 dB at RF of 60 GHz. The corresponding 3-dB bandwidth of RF is 7.3 GHz (58.4 GHz to 65.7 GHz). The measured minimum noise figure was 5.6 dB at 64 GHz, one of the best results ever reported for a 60 GHz CMOS receiver front-end. In addition, the measured input 1-dB compression point and input third-order inter-modulation point are -33.1 dBm and -23.3 dBm, respectively, at 60 GHz. These results demonstrate the proposed receiver front-end architecture is very promising for 60 GHz direct-conversion transceiver applications.

Keywords: CMOS, 60 GHz, direct-conversion transceiver, LNA, down-conversion mixer, marchand balun, current-reused

Procedia PDF Downloads 422
911 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 38
910 Analysis of the Acoustic Performance of Vertical Internal Seals with Pet Wool as NBR 15.575-4NO Green Towers Building-DF

Authors: Lucas Aerre, Wallesson Faria, Roberto Pimentel, Juliana Santos

Abstract:

An extremely disturbing and irritating element in the lives of people and organizations is the noise, the consequences that can bring us has a lot of connection with human health as well as financial and economic aspects. In order to improve the efficiency of buildings in Brazil in general, a performance standard was created, NBR 15.575 in which all buildings are seen in a more systemic and peculiar way, while following the requirements of the standard. The acoustic performance present in these buildings is one such requirement. Based on this, the present work was elaborated with the objective of evaluating through acoustic measurements the acoustic performance of vertical internal fences that are under the incidence of aerial noise of a building in the city of Brasilia-DF. A short theoretical basis is made and soon after the procedures of measurement are described through the control method established by the standard, and its results are evaluated according to the parameters of the same. The measurement performed between rooms of the same unit, presented a standardized sound pressure level difference (D nT, w) equal to 40 dB, thus being classified within the minimum performance required by the standard in question.

Keywords: airborne noise, performance standard, soundproofing, vertical seal

Procedia PDF Downloads 269
909 Phantom and Clinical Evaluation of Block Sequential Regularized Expectation Maximization Reconstruction Algorithm in Ga-PSMA PET/CT Studies Using Various Relative Difference Penalties and Acquisition Durations

Authors: Fatemeh Sadeghi, Peyman Sheikhzadeh

Abstract:

Introduction: Block Sequential Regularized Expectation Maximization (BSREM) reconstruction algorithm was recently developed to suppress excessive noise by applying a relative difference penalty. The aim of this study was to investigate the effect of various strengths of noise penalization factor in the BSREM algorithm under different acquisition duration and lesion sizes in order to determine an optimum penalty factor by considering both quantitative and qualitative image evaluation parameters in clinical uses. Materials and Methods: The NEMA IQ phantom and 15 clinical whole-body patients with prostate cancer were evaluated. Phantom and patients were injected withGallium-68 Prostate-Specific Membrane Antigen(68 Ga-PSMA)and scanned on a non-time-of-flight Discovery IQ Positron Emission Tomography/Computed Tomography(PET/CT) scanner with BGO crystals. The data were reconstructed using BSREM with a β-value of 100-500 at an interval of 100. These reconstructions were compared to OSEM as a widely used reconstruction algorithm. Following the standard NEMA measurement procedure, background variability (BV), recovery coefficient (RC), contrast recovery (CR) and residual lung error (LE) from phantom data and signal-to-noise ratio (SNR), signal-to-background ratio (SBR) and tumor SUV from clinical data were measured. Qualitative features of clinical images visually were ranked by one nuclear medicine expert. Results: The β-value acts as a noise suppression factor, so BSREM showed a decreasing image noise with an increasing β-value. BSREM, with a β-value of 400 at a decreased acquisition duration (2 min/ bp), made an approximately equal noise level with OSEM at an increased acquisition duration (5 min/ bp). For the β-value of 400 at 2 min/bp duration, SNR increased by 43.7%, and LE decreased by 62%, compared with OSEM at a 5 min/bp duration. In both phantom and clinical data, an increase in the β-value is translated into a decrease in SUV. The lowest level of SUV and noise were reached with the highest β-value (β=500), resulting in the highest SNR and lowest SBR due to the greater noise reduction than SUV reduction at the highest β-value. In compression of BSREM with different β-values, the relative difference in the quantitative parameters was generally larger for smaller lesions. As the β-value decreased from 500 to 100, the increase in CR was 160.2% for the smallest sphere (10mm) and 12.6% for the largest sphere (37mm), and the trend was similar for SNR (-58.4% and -20.5%, respectively). BSREM visually was ranked more than OSEM in all Qualitative features. Conclusions: The BSREM algorithm using more iteration numbers leads to more quantitative accuracy without excessive noise, which translates into higher overall image quality and lesion detectability. This improvement can be used to shorter acquisition time.

Keywords: BSREM reconstruction, PET/CT imaging, noise penalization, quantification accuracy

Procedia PDF Downloads 67
908 Analysis of Noise Environment and Acoustics Material in Residential Building

Authors: Heruanda Alviana Giska Barabah, Hilda Rasnia Hapsari

Abstract:

Acoustic phenomena create an acoustic interpretation condition that describes the characteristics of the environment. In urban areas, the tendency of heterogeneous and simultaneous human activity form a soundscape that is different from other regions, one of the characteristics of urban areas that developing the soundscape is the presence of vertical model houses or residential building. Activities both within the building and surrounding environment are able to make the soundscape with certain characteristics. The acoustics comfort of residential building becomes an important aspect, those demand lead the building features become more diverse. Initial steps in mapping acoustic conditions in a soundscape are important, this is the method to determine uncomfortable condition. Noise generated by road traffic, railway, and plane is an important consideration, especially for urban people, therefore the proper design of the building becomes very important as an effort to bring appropriate acoustics comfort. In this paper the authors developed noise mapping on the location of the residential building. Mapping done by taking some point referring to the noise source. The mapping result become the basis for modeling the acoustics wave interacted with the building model. Material selection is done based on literature study and modeling simulation using Insul by considering the absorption coefficient and Sound Transmission Class. The analysis of acoustics rays is ray tracing method using Comsol simulator software that can show the movement of acoustics rays and their interaction with a boundary. The result of this study can be used to consider boundary material in residential building as well as consideration for improving the acoustic quality in the acoustics zones that are formed.

Keywords: residential building, noise, absorption coefficient, sound transmission class, ray tracing

Procedia PDF Downloads 226
907 Low-Noise Amplifier Design for Improvement of Communication Range for Wake-Up Receiver Based Wireless Sensor Network Application

Authors: Ilef Ketata, Mohamed Khalil Baazaoui, Robert Fromm, Ahmad Fakhfakh, Faouzi Derbel

Abstract:

The integration of wireless communication, e. g. in real-or quasi-real-time applications, is related to many challenges such as energy consumption, communication range, latency, quality of service, and reliability. To minimize the latency without increasing energy consumption, wake-up receiver (WuRx) nodes have been introduced in recent works. Low-noise amplifiers (LNAs) are introduced to improve the WuRx sensitivity but increase the supply current severely. Different WuRx approaches exist with always-on, power-gated, or duty-cycled receiver designs. This paper presents a comparative study for improving communication range and decreasing the energy consumption of wireless sensor nodes.

Keywords: wireless sensor network, wake-up receiver, duty-cycled, low-noise amplifier, envelope detector, range study

Procedia PDF Downloads 80
906 A Three-modal Authentication Method for Industrial Robots

Authors: Luo Jiaoyang, Yu Hongyang

Abstract:

In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%.

Keywords: multimodal, kinect, machine learning, distance image

Procedia PDF Downloads 50
905 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 487
904 A Statistical Energy Analysis Model of an Automobile for the Prediction of the Internal Sound Pressure Level

Authors: El Korchi Ayoub, Cherif Raef

Abstract:

Interior noise in vehicles is an essential factor affecting occupant comfort. Over recent decades, much work has been done to develop simulation tools for vehicle NVH. At the medium high-frequency range, the statistical energy analysis method (SEA) shows significant effectiveness in predicting noise and vibration responses of mechanical systems. In this paper, the evaluation of the sound pressure level (SPL) inside an automobile cabin has been performed numerically using the statistical energy analysis (SEA) method. A test car cabin was performed using a monopole source as a sound source. The decay rate method was employed to obtain the damping loss factor (DLF) of each subsystem of the developed SEA model. These parameters were then used to predict the sound pressure level in the interior cabin. The results show satisfactory agreement with the directly measured SPL. The developed SEA vehicle model can be used in early design phases and allows the engineer to identify sources contributing to the total noise and transmission paths.

Keywords: SEA, SPL, DLF, NVH

Procedia PDF Downloads 55
903 Development and Characterization of Synthetic Non-Woven for Sound Absorption

Authors: P. Sam Vimal Rajkumar, K. Priyanga

Abstract:

Acoustics is the scientific study of sound which includes the effect of reflection, refraction, absorption, diffraction and interference. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles of the medium are temporarily displaced in a direction parallel to energy transport and then return to their original position. The vibration in a medium produces alternating waves of relatively dense and sparse particles –compression and rarefaction respectively. The resultant variation to normal ambient pressure is translated by the ear and perceived as sound. Today much importance is given to the acoustical environment. The noise sources are increased day by day and annoying level is strongly violated in different locations by traffic, sound systems, and industries. There is simple evidence showing that the high noise levels cause sleep disturbance, hearing loss, decrease in productivity, learning disability, lower scholastic performance and increase in stress related hormones and blood pressure. Therefore, achieving a pleasing and noise free environment is one of the endeavours of many a research groups. This can be obtained by using various techniques. One such technique is by using suitable materials with good sound absorbing properties. The conventionally used materials that possess sound absorbing properties are rock wool or glass wool. In this work, an attempt is made to use synthetic material in both fibrous and sheet form and use it for manufacturing of non-woven for sound absorption.

Keywords: acoustics, fibre, non-woven, noise, sound absorption properties, sound absorption coefficient

Procedia PDF Downloads 270