Search results for: Shao Chong Zhou
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 417

Search results for: Shao Chong Zhou

177 A Comparative Analysis of the Performances of Four Different In-Ground Lagoons Anaerobic Digesters in the Treatment of Palm Oil Mill Effluent (POME)

Authors: Mohd Amran, Chan Yi Jing, Chong Chien Hwa

Abstract:

Production of biogas from POME requires anaerobic digestion (AD), thus, anaerobic digester performance in biogas plants is crucial. As POME from different sources have varying characteristics due to different process flows in mills, there is no ideal treatment parameters for POME. Hence, different treatment plants alter different parameters in anaerobic digestion to achieve desired biogas production levels and to meet POME waste discharge limits. The objective of this study is to evaluate the performance of mesophilic anaerobic digestion in four different biogas plants in Malaysia. Aspects of POME pre-treatment efficiency, analysis of treated POME and AD’s bottom sludge characteristics, including several parameters like chemical oxygen demand (COD), biological oxygen demand (BOD), total solid (TS) removal in the effluent, pH and temperature changes, total biogas produced, the composition of biogas including methane (CH₄), carbon dioxide (CO₂), hydrogen sulfide (H₂S) and oxygen (O₂) were investigated. The effect of organic loading rate (OLR) and hydraulic retention time (HRT) on anaerobic digester performance is also evaluated. In pre-treatment, it is observed that BGP B has the lowest average outlet temperature of 40.41°C. All BGP shows a high-temperature fluctuation (36 to 49 0C) and good pH readings (minimum 6.7), leaving the pre-treatment facility before entering the AD.COD removal of POME is considered good, with an average of 78% and maximum removal of 85%. BGP C has the lowest average COD and TS content in treated POME, 13,313 mg/L, and 12,048 mg/L, respectively. However, it is observed that the treated POME leaving all ADs, still contains high-quality organic substances (COD between 12,000 to 19,000 mg/L) that might be able to digest further to produce more biogas. The biogas produced in all four BGPs varies due to different COD loads. BGP B has the highest amount of biogas produced, 378,874.7 Nm³/month, while BGP D has the lowest biogas production of 272,378.5 Nm³/month. Furthermore, the composition of biogas produced in all plants is well within literature values (CH4 between 55 to 65% and CO₂ between 32 to 36%).

Keywords: palm oil mill effluent, in-ground lagoon anaerobic digester, anaerobic digestion, biogas

Procedia PDF Downloads 62
176 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems

Authors: Jianhua Zhou, Yuwen Zhang

Abstract:

A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.

Keywords: conduction, inverse problems, conjugated gradient method, laser

Procedia PDF Downloads 338
175 Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC

Authors: Yu-Zhou Zheng, Wen-Wei Wang

Abstract:

In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results.

Keywords: basalt fiber-reinforced polymer (BFRP) grid, ECC, RC beams, strengthening

Procedia PDF Downloads 303
174 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations

Authors: Xiao Zhou, Jianlin Cheng

Abstract:

A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.

Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining

Procedia PDF Downloads 423
173 Study on the Influence of Different Lengths of Tunnel High Temperature Zones on Train Aerodynamic Resistance

Authors: Chong Hu, Tiantian Wang, Zhe Li, Ourui Huang, Yichen Pan

Abstract:

When the train is running in a high geothermal tunnel, changes in the temperature field will cause disturbances in the propagation and superposition of pressure waves in the tunnel, which in turn have an effect on the aerodynamic resistance of the train. The aim of this paper is to investigate the effect of the changes in the lengths of the high-temperature zone of the tunnel on the aerodynamic resistance of the train, clarifying the evolution mechanism of aerodynamic resistance of trains in tunnels with high ground temperatures. Firstly, moving model tests of trains passing through wall-heated tunnels were conducted to verify the reliability of the numerical method in this paper. Subsequently, based on the three-dimensional unsteady compressible RANS method and the standard k-ε two-equation turbulence model, the change laws of the average aerodynamic resistance under different high-temperature zone lengths were analyzed, and the influence of frictional resistance and pressure difference resistance on total resistance at different times was discussed. The results show that as the length of the high-temperature zone LH increases, the average aerodynamic resistance of a train running in a tunnel gradually decreases; when LH = 330 m, the aerodynamic resistance can be reduced by 5.7%. At the moment of maximum resistance, the total resistance, differential pressure resistance, and friction resistance all decrease gradually with the increase of LH and then remain basically unchanged. At the moment of the minimum value of resistance, with the increase of LH, the total resistance first increases and then slowly decreases; the differential pressure resistance first increases and then remains unchanged, while the friction resistance first remains unchanged and then gradually decreases, and the ratio of the differential pressure resistance to the total resistance gradually increases with the increase of LH. The results of this paper can provide guidance for scholars who need to investigate the mechanism of aerodynamic resistance change of trains in high geothermal environments, as well as provide a new way of thinking for resistance reduction in non-high geothermal tunnels.

Keywords: high-speed trains, aerodynamic resistance, high-ground temperature, tunnel

Procedia PDF Downloads 35
172 Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface

Authors: Jipeng Yan, Xingchen Yang, Xiaowei Zhou, Mengxing Tang, Honghai Liu

Abstract:

Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices.

Keywords: shear elastic modulus, skeletal muscle, ultrasound, wearable human-machine interface

Procedia PDF Downloads 116
171 Dynamic Contrast-Enhanced Breast MRI Examinations: Clinical Use and Technical Challenges

Authors: Janet Wing-Chong Wai, Alex Chiu-Wing Lee, Hailey Hoi-Ching Tsang, Jeffrey Chiu, Kwok-Wing Tang

Abstract:

Background: Mammography has limited sensitivity and specificity though it is the primary imaging technique for detection of early breast cancer. Ultrasound imaging and contrast-enhanced MRI are useful adjunct tools to mammography. The advantage of breast MRI is high sensitivity for invasive breast cancer. Therefore, indications for and use of breast magnetic resonance imaging have increased over the past decade. Objectives: 1. Cases demonstration on different indications for breast MR imaging. 2. To review of the common artifacts and pitfalls in breast MR imaging. Materials and Methods: This is a retrospective study including all patients underwent dynamic contrast-enhanced breast MRI examination in our centre, performed from Jan 2011 to Dec 2017. The clinical data and radiological images were retrieved from the EPR (electronic patient record), RIS (Radiology Information System) and PACS (Picture Archiving and Communication System). Results and Discussion: Cases including (1) Screening of the contralateral breast in patient with a new breast malignancy (2) Breast augmentation with free injection of unknown foreign materials (3) Finding of axillary adenopathy with an unknown site of primary malignancy (4) Neo-adjuvant chemotherapy: before, during, and after chemotherapy to evaluate treatment response and extent of residual disease prior to operation. Relevant images will be included and illustrated in the presentation. As with other types of MR imaging, there are different artifacts and pitfalls that can potentially limit interpretation of the images. Because of the coils and software specific to breast MR imaging, there are some other technical considerations that are unique to MR imaging of breast regions. Case demonstration images will be available in presentation. Conclusion: Breast MR imaging is a highly sensitive and reasonably specific method for the detection of breast cancer. Adherent to appropriate clinical indications and technical optimization are crucial for achieving satisfactory images for interpretation.

Keywords: MRI, breast, clinical, cancer

Procedia PDF Downloads 208
170 The Role of Organizational Identity in Disaster Response, Recovery and Prevention: A Case Study of an Italian Multi-Utility Company

Authors: Shanshan Zhou, Massimo Battaglia

Abstract:

Identity plays a critical role when an organization faces disasters. Individuals reflect on their working identities and identify themselves with the group and the organization, which facilitate collective sensemaking under crisis situations and enable coordinated actions to respond to and recover from disasters. In addition, an organization’s identity links it to its regional community, which fosters the mobilization of resources and contributes to rapid recovery. However, identity is also problematic for disaster prevention because of its persistence. An organization’s ego-defenses system prohibits the rethink of its identity and a rigid identity obstructs disaster prevention. This research aims to tackle the ‘problem’ of identity by study in-depth a case of an Italian multi–utility which experienced the 2012 Northern Italy earthquakes. Collecting data from 11 interviews with top managers and key players in the local community and archived materials, we find that the earthquakes triggered the rethink of the organization’s identity, which got reinforced afterward. This research highlighted the importance of identity in disaster response and recovery. More importantly, it explored the solution of overcoming the barrier of ego-defense that is to transform the organization into a learning organization which constantly rethinks its identity.

Keywords: community identity, disaster, identity, organizational learning

Procedia PDF Downloads 696
169 Comparison of the Oxidative Stability of Chinese Vegetable Oils during Repeated Deep-Frying of French Fries

Authors: TranThi Ly, Ligang Yang, Hechun Liu, Dengfeng Xu, Haiteng Zhou, Shaokang Wang, Shiqing Chen, Guiju Sun

Abstract:

This study aims to evaluate the oxidative stability of Chinese vegetable oils during repeated deep-frying. For frying media, palm oil (PO), sunflower oil (SFO), soybean oil (SBO), and canola oil (CO) were used. French fries were fried in oils heated to 180 ± 50℃. The temperature was kept constant during the eight h of the frying process. The oil quality was measured according to the fatty acid (FA) content, trans fatty acid (TFA) compounds, and chemical properties such as peroxide value (PV), acid value (AV), anisidine value (AnV), and malondialdehyde (MDA). Additionally, the sensory characteristics such as color, flavor, greasiness, crispiness, and overall acceptability of the French fries were assessed. Results showed that the PV, AV, AnV, MDA, and TFA content of SFO, CO, and SBO significantly increased in conjunction with prolonged frying time. During the deep-frying process, the SBO showed the lowest oxidative stability at all indices, while PO retained oxidative stability and generated the lowest level of TFA. The French fries fried in PO also offered better sensory properties than the other oils. Therefore, results regarding oxidative stability and sensory attributes suggested that among the examined vegetable oils, PO appeared to be the best oil for frying food products.

Keywords: vegetable oils, French fries, oxidative stability, sensory properties, frying oil

Procedia PDF Downloads 74
168 Research on Emotional Healing Street Furniture under the Background of Urban Micro-Renewal

Authors: Tanhao Gao, Hongtao Zhou

Abstract:

With the COVID-19 pandemic spreading worldwide, people are facing more significant mental pressure. The government and social groups are sparing no effort to find ways to heal people's emotions and return to normal life. Therefore, research on emotional healing has urgency and practical significance. From the perspective of urban planning, street furniture has the potential to become "emotional healing touchpoints." This study first analyzed the suitable places for adding emotional healing street furniture in the background of urban micro-renewal and combined the fifteen-minute living circle, the leftover space, and urban acupuncture theories, then used the 5W analysis method to show the main characteristics of emotionally healing street furniture. Finally, the research discovers four design strategies, which can be summarized as: A. Exploring the renewal potential of the leftover space; B. Integrating with local culture and the surrounding environment; C. Discovering quick and straightforward ways of interaction; D. Finding a delicate balance between artistry and functionality. Then, the author takes one emotional healing street furniture located on Chifeng Road as an example to show the design strategies vividly.

Keywords: emotional healing, street furniture, urban micro-renewal, urban acupuncture

Procedia PDF Downloads 165
167 Interactive Winding Geometry Design of Power Transformers

Authors: Paffrath Meinhard, Zhou Yayun, Guo Yiqing, Ertl Harald

Abstract:

Winding geometry design is an important part of power transformer electrical design. Conventionally, the winding geometry is designed manually, which is a time-consuming job because it involves many iteration steps in order to meet all cost, manufacturing and electrical requirements. Here a method is presented which automatically generates the winding geometry for given user parameters and allows the user to interactively set and change parameters. To achieve this goal, the winding problem is transferred to a mixed integer nonlinear optimization problem. The relevant geometrical design parameters are defined as optimization variables. The cost and other requirements are modeled as constraints. For the solution, a stochastic ant colony optimization algorithm is applied. It is well-known, that an optimizer can get stuck in a local minimum. For the winding problem, we present efficient strategies to come out of local minima, furthermore a reduced variable search range helps to accelerate the solution process. Numerical examples show that the optimization result is delivered within seconds such that the user can interactively change the variable search area and constraints to improve the design.

Keywords: ant colony optimization, mixed integer nonlinear programming, power transformer, winding design

Procedia PDF Downloads 352
166 Efficiency of Background Chlorine Residuals against Accidental Microbial Episode in Proto-Type Distribution Network (Rig) Using Central Composite Design (CCD)

Authors: Sajida Rasheed, Imran Hashmi, Luiza Campos, Qizhi Zhou, Kim Keu

Abstract:

A quadratic model (p ˂ 0.0001) was developed by using central composite design of 50 experimental runs (42 non-center + 8 center points) to assess efficiency of background chlorine residuals in combating accidental microbial episode in a prototype distribution network (DN) (rig). A known amount of background chlorine residuals were maintained in DN and a required number of bacteria, Escherichia coli K-12 strain were introduced by an injection port in the pipe loop system. Samples were taken at various time intervals at different pipe lengths. Spread plate count was performed to count bacterial number. The model developed was significant. With microbial concentration and time (p ˂ 0.0001), pipe length (p ˂ 0.022), background chlorine residuals (p ˂ 0.07) and time^2 (p ˂ 0.09) as significant factors. The ramp function of variables shows that at the microbial count of 10^6, at 0.76 L/min, and pipe length of 133 meters, a background residual chlorine 0.16 mg/L was enough for complete inactivation of microbial episode in approximately 18 minutes.

Keywords: central composite design (CCD), distribution network, Escherichia coli, residual chlorine

Procedia PDF Downloads 435
165 Human Papillomavirus Type 16 E4 Gene Variation as Risk Factor for Cervical Cancer

Authors: Yudi Zhao, Ziyun Zhou, Yueting Yao, Shuying Dai, Zhiling Yan, Longyu Yang, Chuanyin Li, Li Shi, Yufeng Yao

Abstract:

HPV16 E4 gene plays an important role in viral genome amplification and release. Therefore, a variation of the E4 gene nucleic acid sequence may affect the carcinogenicity of HPV16. In order to understand the relationship between the variation of HPV16 E4 gene and cervical cancer, this study was to amplify and sequence the DNA sequences of E4 genes in 118 HPV16-positive cervical cancer patients and 151 HPV16-positive asymptomatic individuals. After obtaining E4 gene sequences, the phylogenetic trees were constructed by the Neighbor-joining method for gene variation analysis. The results showed that: 1) The distribution of HPV16 variants between the case group and the control group differed greatly (P = 0.015),and the Asian-American(AA)variant was likely to relate to the occurrence of cervical cancer. 2) DNA sequence analysis showed that there were significant differences in the distribution of 8 variants between the case group and the control group (P < 0.05). And 3) In European (EUR) variant, two variations, C3384T (L18L) and A3449G (P39P), were associated with the initiation and development of cervical cancer. The results suggested that the variation of HPV16 E4 gene may be a contributor affecting the occurrence as well as the development of cervical cancer, and different HPV16 variants may have different carcinogenic capability.

Keywords: cervical cancer, HPV16, E4 gene, variations

Procedia PDF Downloads 141
164 Effective Infection Control Measures to Prevent Transmission of Multi-Drug Resistant Organisms from Burn Transfer Cases in a Regional Burn Centre

Authors: Si Jack Chong, Chew Theng Yap, Wan Loong James Mok

Abstract:

Introduction: Regional burn centres face the spectra of introduced multi-drug resistant organisms (MDRO) from transfer patients resident in MDRO endemic countries. MDRO can cause severe nosocomial infection, which in massive burn patients, will lead to greater morbidity and mortality and strain the institution financially. We aim to highlight 4 key measures that have effectively prevented transmission of imported MDRO. Methods: A case of Candida auris (C. auris) from a massive burn patient transferred from an MDRO endemic country is used to illustrate the measures. C. auris is a globally emerging multi-drug resistant fungal pathogen causing nosocomial transmission. Results: Infection control measures used to mitigate the risk of outbreak from transfer cases are: (1) Multidisciplinary team approach involving Infection Control and Infectious Disease specialists early to ensure appropriate antibiotics use and implementation of barrier measures, (2) aseptic procedures for dressing change with strict isolation and donning of personal protective equipment in the ward, (3) early screening of massive burn patient from MDRO endemic region, (4) hydrogen peroxide vaporization terminal cleaning for operating theatres and rooms. Conclusion: The prevalence of air travel and international transfer to regional burn centres will need effective infection control measures to reduce the risk of transmission from imported massive burn patients. In our centre, we have effectively implemented 4 measures which have reduced the risks of local contamination. We share a recent case report to illustrate successful management of a potential MDRO outbreak resulting from transfer of massive burn patient resident in an MDRO endemic area.

Keywords: burns, burn unit, cross infection, infection control

Procedia PDF Downloads 123
163 Exploring the Mechanisms of Quality Assurance in the Chinese Translation Industry

Authors: Youru Zhou

Abstract:

This paper seeks to unveil the quality assurance practices in the Chinese translation industry. Since China’s reform and opening up, the Chinese language service industry has enjoyed impressively rapid growth. However, while still in its early stage of professionalization, the Chinese translation industry is also facing many challenges, such as the lack of clear admission requirements, a powerful regulation authority and a great number of qualified professionals. ‘How quality is assured’ means a great deal to translation in China at this stage. In order to examine the mechanisms in which quality is assured, this paper studied four international and national standards that have gained widespread adoption by Chinese translation companies and examined the content that is relevant to translation quality assurance. Case studies with six selected Chinese translation companies of different sizes were conducted to confirm and exemplify the descriptions on the standards. It has been found that quality in the industry is a relative concept which is mainly determined by the demand of clients. Furthermore, the procedures of translation can vary from task to task dependent on the agreement made between the service provider and clients. Finally, there are companies relying on expert-oriented mechanisms to assure the quality of translation, while other companies and standards insist on process-oriented ones.

Keywords: case study, Chinese translation industry, professional practice, translation quality assurance, translation standards

Procedia PDF Downloads 113
162 A Portable Miniature Syringe Needle Remover And Receptacle For Drug Injection Users

Authors: Fanjun Zhou

Abstract:

In today's drug-ridden society, drug injection is gradually becoming more popular and has hidden danger to IDUs (injection drug users) such as infectious diseases. According to reports, 67% of IDUs reported improper disposal at some point over the prior 30 days, leading to a proliferation of injection needles on the streets. In recent years, the number of cases of children or ordinary people unintentionally picking up needles have increased. Various needle remover inventions have begun to surface, but the existing ones are either expensive, unportable, or risky for IDUs. In order to effectively alleviate the proliferation of drug injection needles and improve the invention of needle removers, a miniature portable needle remover and receptacle is invented. The device for capturing and storing syringe needles contains an upper lid portion mounted tightly onto the lower box portion through an interlock system on the opposing sides of the device with a breaking-twisting mechanism to remove the needle. The invention is intended to be affordable to the general public, safe enough for IDUs to use, reliable enough not to harm others, and effective in breaking needles from the syringe. This report is conducted in the hope of spreading awareness of the dangers of drug injection and to provide a way to mitigate this drug rampant situation.

Keywords: needle remover, drug injection, injection drug users, portable, receptacle

Procedia PDF Downloads 64
161 CTHTC: A Convolution-Backed Transformer Architecture for Temporal Knowledge Graph Embedding with Periodicity Recognition

Authors: Xinyuan Chen, Mohd Nizam Husen, Zhongmei Zhou, Gongde Guo, Wei Gao

Abstract:

Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention for its enormous value; however, existing models lack capabilities to capture both local interactions and global dependencies simultaneously with evolutionary dynamics, while the latest achievements in convolutions and Transformers haven't been employed in this area. What’s more, periodic patterns in TKGs haven’t been fully explored either. To this end, a multi-stage hybrid architecture with convolution-backed Transformers is introduced in TKGC tasks for the first time combining the Hawkes process to model evolving event sequences in a continuous-time domain. In addition, the seasonal-trend decomposition is adopted to identify periodic patterns. Experiments on six public datasets are conducted to verify model effectiveness against state-of-the-art (SOTA) methods. An extensive ablation study is carried out accordingly to evaluate architecture variants as well as the contributions of independent components in addition, paving the way for further potential exploitation. Besides complexity analysis, input sensitivity and safety challenges are also thoroughly discussed for comprehensiveness with novel methods.

Keywords: temporal knowledge graph completion, convolution, transformer, Hawkes process, periodicity

Procedia PDF Downloads 48
160 A Conceptual Framework for Assessing the Development of Health Information Systems Enterprise Architecture Interoperability

Authors: Prosper Tafadzwa Denhere, Ephias Ruhode, Munyaradzi Zhou

Abstract:

Health Information Systems (HISs) interoperability is emerging to be the future of modern healthcare systems Enterprise Architecture (EA), where healthcare entities are seamlessly interconnected to share healthcare data. The reality that the healthcare industry has been characterised by an influx of fragmented stand-alone e-Health systems, which present challenges of healthcare information sharing across platforms, desires much attention for systems integration efforts. The lack of an EA conceptual framework resultantly crates the need for investigating an ideal solution to the objective of Health Information Systems interoperability development assessment. The study takes a qualitative exploratory approach through a design science research context. The research aims to study the various themes withdrawn from the literature that can help in the assessment of interoperable HISs development through a literature study. Themes derived from the study include HIS needs, HIS readiness, HIS constraints, and HIS technology integration elements and standards tied to the EA development architectural layers of The Open Group Architecture Framework (TOGAF) as an EA development methodology. Eventually, the themes were conceptualised into a framework reviewed by two experts. The essence of the study was to provide a framework within which interoperable EA of HISs should be developed.

Keywords: enterprise architecture, eHealth, health information systems, interoperability

Procedia PDF Downloads 70
159 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies

Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong

Abstract:

To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.

Keywords: neural network, travel characteristics analysis, transportation choice, travel sharing rate, traffic resource allocation

Procedia PDF Downloads 106
158 Effect of Lowering the Proportion of Chlorella vulgaris in Fish Feed on Tilapia's Immune System

Authors: Hamza A. Pantami, Khozizah Shaari, Intan S. Ismail, Chong C. Min

Abstract:

Introduction: Tilapia is the second-highest harvested freshwater fish species in Malaysia, available in almost all fish farms and markets. Unfortunately, tilapia culture in Malaysia is highly affected by Aeromonas hydrophila and Streptococcus agalactiae, which affect the production rate and consequently pose a direct negative economic impact. Reliance on drugs to control or reduce bacterial infections has been led to contamination of water bodies and development of drug resistance, as well as gave rise to toxicity issues in downstream fish products. Resorting to vaccines have helped curb the problem to a certain extent, but a more effective solution is still required. Using microalgae-based feed to enhance the fish immunity against bacterial infection offers a promising alternative. Objectives: This study aims to evaluate the efficacy of Chlorella vulgaris at lower percentage incorporation in feeds for an immune boost of tilapia in a shorter time. Methods: The study was in two phases. The safety concentration studies at 500 mg/kg-1 and the administration of cultured C. vulgaris biomass via incorporation into fish feed for five different groups in three weeks. Group 1 was the control (0% incorporation), whereas group 2, 3, 4 and 5 received 0.625%, 1.25%, 2.5% and 5% incorporation respectively. The parameters evaluated were the blood profile, serum lysozyme activity (SLA), serum bactericidal activity (SBA), phagocytosis activity (PA), respiratory burst activity (RBA), and lymphoproliferation activity (LPA). The data were analyzed via ANOVA using SPSS (version 16). Further testing was done using Tukey’s test. All tests were performed at the 95% confidence interval (p < 0.05). Results: There were no toxic signs in tilapia fish at 500 mg/kg-1. Treated groups showed significantly better immune parameters compared to the control group (p < 0.05). Conclusions: C. vulgaris crude biomass in a fish meal at a lower incorporation level of 5% can increase specific and non-specific immunity in tilapia fish in a shorter time duration.

Keywords: Chlorella vulgaris, hematology profile, immune boost, lymphoproliferation

Procedia PDF Downloads 79
157 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space

Authors: Chao He, Shunhua Zhou, Peijun Guo

Abstract:

The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.

Keywords: underground railway, twin tunnels, wave translation and transformation, transfer matrix method

Procedia PDF Downloads 86
156 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features

Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou

Abstract:

The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.

Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features

Procedia PDF Downloads 90
155 Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions

Authors: Alaa Y. Ali, Natalie P. Holmes, John Holdsworth, Warwick Belcher, Paul Dastoor, Xiaojing Zhou

Abstract:

Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (Tsource) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces.  Systematic variation of hydrogen gas (H2) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (Tgrowth) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H2 flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm-1 FWHM and a relative intensity ratio of the G to 2D bands (IG/I2D) of 0.21. This recipe fabricated a few layers of good quality graphene.

Keywords: graphene, chemical vapor deposition, carbon source, low temperature growth

Procedia PDF Downloads 136
154 Fasted and Postprandial Response of Serum Physiological Response, Hepatic Antioxidant Abilities and Hsp70 Expression in M. amblycephala Fed Different Dietary Carbohydrate

Authors: Chuanpeng Zhou

Abstract:

The effect of dietary carbohydrate (CHO) level on serum physiological response, hepatic antioxidant abilities and heat shock protein 70 (HSP70) expression of Wuchang bream (Megalobrama amblycephala) was studied. Two isonitrogenous (28.56% crude protein) and isolipidic (5.28% crude lipid) diets were formulated to contain 30% or 53% wheat starch. Diets were fed for 90 days to fish in triplicate tanks (28 fish per tank). At the end of feeding trial, significantly higher serum triglyceride level, insulin level, cortisol level, malondialdehyde (MDA) content were observed in fish fed the 53% CHO diet, while significantly lower serum total protein content, alkaline phosphatase (AKP) activity, superoxide dismutase (SOD) activity and total antioxidative capacity (T-AOC) were found in fish fed the 53% CHO diet compared with those fed the 30% diet. The relative level of hepatic heat shock protein 70 mRNA was significantly higher in the 53% CHO group than that in the 30% CHO at 6, 12, and 48 h after feeding. The results of this study indicated that ingestion of 53% dietary CHO impacted the nonspecific immune ability and caused metabolic stress of Megalobrama amblycephala.

Keywords: Megalobrama amblycephala, carbohydrate, fasted and postprandial response, immunity, Hsp70

Procedia PDF Downloads 417
153 Lightweight Hardware Firewall for Embedded System Based on Bus Transactions

Authors: Ziyuan Wu, Yulong Jia, Xiang Zhang, Wanting Zhou, Lei Li

Abstract:

The Internet of Things (IoT) is a rapidly evolving field involving a large number of interconnected embedded devices. In the design of embedded System-on-Chip (SoC), the key issues are power consumption, performance, and security. However, the easy-to-implement software and untrustworthy third-party IP cores may threaten the safety of hardware assets. Considering that illegal access and malicious attacks against SoC resources pass through the bus that integrates IPs, we propose a Lightweight Hardware Firewall (LHF) to protect SoC, which monitors and disallows the offending bus transactions based on physical addresses. Furthermore, under the LHF architecture, this paper refines two types of firewalls: Destination Hardware Firewall (DHF) and Source Hardware Firewall (SHF). The former is oriented to fine-grained detection and configuration, whose core technology is based on the method of dynamic grading units. In addition, we design the SHF based on static entries to achieve lightweight. Finally, we evaluate the hardware consumption of the proposed method by both Field-Programmable Gate Array (FPGA) and IC. Compared with the exciting efforts, LHF introduces a bus latency of zero clock cycles for every read or write transaction implemented on Xilinx Kintex-7 FPGAs. Meanwhile, the DC synthesis results based on TSMC 90nm show that the area is reduced by about 25% compared with the previous method.

Keywords: IoT, security, SoC, bus architecture, lightweight hardware firewall, FPGA

Procedia PDF Downloads 25
152 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome

Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler

Abstract:

Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.

Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model

Procedia PDF Downloads 131
151 Configuration Design and Optimization of the Movable Leg-Foot Lunar Soft-Landing Device

Authors: Shan Jia, Jinbao Chen, Jinhua Zhou, Jiacheng Qian

Abstract:

Lunar exploration is a necessary foundation for deep-space exploration. For the functional limitations of the fixed landers which are widely used currently and are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability, a movable lunar soft-landing device based on cantilever type buffer mechanism and leg-foot type walking mechanism is presented. Firstly, a 20 DoFs quadruped configuration based on pushrod is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and can make the kinematics of the whole mechanism unchanged before and after buffering. Secondly, the multi-function main/auxiliary buffers based on crumple-energy absorption and screw-nut mechanism, as well as the telescopic device which could be used to protect the plantar force sensors during the buffer process are designed. Finally, the kinematic model of the whole mechanism is established, and the configuration optimization of the whole mechanism is completed based on the performance requirements of slope adaptation and obstacle crossing. This research can provide a technical solution integrating soft-landing, large-scale inspection and material-transfer for future lunar exploration and even mars exploration, and can also serve as the technical basis for developing the reusable landers.

Keywords: configuration design, lunar soft-landing device, movable, optimization

Procedia PDF Downloads 123
150 The Application of Collision Damage Analysis in Reconstruction of Sedan-Scooter Accidents

Authors: Chun-Liang Wu, Kai-Ping Shaw, Cheng-Ping Yu, Wu-Chien Chien, Hsiao-Ting Chen, Shao-Huang Wu

Abstract:

Objective: This study analyzed three criminal judicial cases. We applied the damage analysis of the two vehicles to verify other evidence, such as dashboard camera records of each accident, reconstruct the scenes, and pursue the truth. Methods: Evidence analysis, the method is to collect evidence and the reason for the results in judicial procedures, then analyze the involved damage evidence to verify other evidence. The collision damage analysis method is to inspect the damage to the vehicles and utilize the principles of tool mark analysis, Newtonian physics, and vehicle structure to understand the relevant factors when the vehicles collide. Results: Case 1: Sedan A turned right at the T junction and collided with Scooter B, which was going straight on the left road. The dashboard camera records showed that the left side of Sedan A’s front bumper collided with the body of Scooter B and rider B. After the analysis of the study, the truth was that the front of the left side of Sedan A impacted the right pedal of Scooter B and the right lower limb of rider B. Case 2: Sedan C collided with Scooter D on the left road at the crossroads. The dashboard camera record showed that the left side of the Sedan C’s front bumper collided with the body of Scooter D and rider D. After the analysis of the study, the truth was that the left side of the Sedan C impacted the left side of the car body and the front wheel of Scooter D and rider D. Case 3: Sedan E collided with Scooter F on the right road at the crossroads. The dashboard camera record showed that the right side of the Sedan E’s front bumper collided with the body of Scooter F and rider F. After the analysis of the study, the truth was that the right side of the front bumper and the right side of the Sedan F impacted the Scooter. Conclusion: The application of collision damage analysis in the reconstruction of a sedan-scooter collision could discover the truth and provide the basis for judicial justice. The cases and methods could be the reference for the road safety policy.

Keywords: evidence analysis, collision damage analysis, accident reconstruction, sedan-scooter collision, dashboard camera records

Procedia PDF Downloads 49
149 Motion Performance Analyses and Trajectory Planning of the Movable Leg-Foot Lander

Authors: Shan Jia, Jinbao Chen, Jinhua Zhou, Jiacheng Qian

Abstract:

In response to the functional limitations of the fixed landers, those are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability in deep space exploration currently, a movable lander based on the leg-foot walking mechanism is presented. Firstly, a quadruped landing mechanism based on pushrod-damping is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and the multi-function main/auxiliary buffers based on the crumple-energy absorption and screw-nut mechanism. Secondly, the workspace of the end of the leg-foot mechanism is solved by Monte Carlo method, and the key points on the desired trajectory of the end of the leg-foot mechanism are fitted by cubic spline curve. Finally, an optimal time-jerk trajectory based on weight coefficient is planned and analyzed by an adaptive genetic algorithm (AGA). The simulation results prove the rationality and stability of walking motion of the movable leg-foot lander in the star catalogue. In addition, this research can also provide a technical solution integrating of soft-landing, large-scale inspection and material transfer for future star catalogue exploration, and can even serve as the technical basis for developing the reusable landers.

Keywords: motion performance, trajectory planning, movable, leg-foot lander

Procedia PDF Downloads 112
148 A Study on The Relationship between Building Façade and Solar Energy Utilization Potential in Urban Residential Area in West China

Authors: T. Wen, Y. Liu, J. Wang, W. Zheng, T. Shao

Abstract:

Along with the increasing density of urban population, solar energy potential of building facade in high-density residential areas become a question that needs to be addressed. This paper studies how the solar energy utilization potential of building facades in different locations of a residential areas changes with different building layouts and orientations in Xining, a typical city in west China which possesses large solar radiation resource. Solar energy potential of three typical building layouts of residential areas, which are parallel determinant, gable misalignment, transverse misalignment, are discussed in detail. First of all, through the data collection and statistics of Xining new residential area, the most representative building parameters are extracted, including building layout, building height, building layers, and building shape. Secondly, according to the results of building parameters extraction, a general model is established and analyzed with rhinoceros 6.0 and its own plug-in grasshopper. Finally, results of the various simulations and data analyses are presented in a visualized way. The results show that there are great differences in the solar energy potential of building facades in different locations of residential areas under three typical building layouts. Generally speaking, the solar energy potential of the west peripheral location is the largest, followed by the East peripheral location, and the middle location is the smallest. When the deflection angle is the same, the solar energy potential shows the result that the West deflection is greater than the East deflection. In addition, the optimal building azimuth range under these three typical building layouts is obtained. Within this range, the solar energy potential of the residential area can always maintain a high level. Beyond this range, the solar energy potential drops sharply. Finally, it is found that when the solar energy potential is maximum, the deflection angle is not positive south, but 5 °or 15°south by west. The results of this study can provide decision analysis basis for residential design of Xining city to improve solar energy utilization potential and provide a reference for solar energy utilization design of urban residential buildings in other similar areas.

Keywords: building facade, solar energy potential, solar radiation, urban residential area, visualization, Xining city

Procedia PDF Downloads 148