Search results for: Saied Haghanifar
15 Influence of Radio Frequency Identification Technology at Cost of Supply Chain as a Driver for the Generation of Competitive Advantage
Authors: Mona Baniahmadi, Saied Haghanifar
Abstract:
Radio Frequency Identification (RFID) is regarded as a promising technology for the optimization of supply chain processes since it improves manufacturing and retail operations from forecasting demand for planning, managing inventory, and distribution. This study precisely aims at learning to know the RFID technology and at explaining how it can concretely be used for supply chain management and how it can help improving it in the case of Hejrat Company which is located in Iran and works on the distribution of medical drugs and cosmetics. This study uses some statistical analysis to calculate the expected benefits of an integrated RFID system on supply chain obtained through competitive advantages increases with decreasing cost factor. The study investigates how the cost of storage process, labor cost, the cost of missing goods, inventory management optimization, on-time delivery, order cost, lost sales and supply process optimization affect the performance of the integrated RFID supply chain regarding cost factors and provides a competitive advantage.Keywords: cost, competitive advantage, radio frequency identification, supply chain
Procedia PDF Downloads 27714 Cotton Transplantation as a Practice to Escape Infection with Some Soil-Borne Pathogens
Authors: E. M. H. Maggie, M. N. A. Nazmey, M. A. Abdel-Sattar, S. A. Saied
Abstract:
A successful trial of transplanting cotton is reported. Seeds grown in trays for 4-5 weeks in an easily prepared supporting medium such as peat moss or similar plant waste are tried. Careful transplanting of seedlings, with root system as intact as possible, is being made in the permanent field. The practice reduced damping-off incidence rate and allowed full winter crop revenues. Further work is needed to evaluate certain parameters such as growth curve, flowering curve, and yield at economic bases.Keywords: cotton, transplanting cotton, damping-off diseases, environment sciences
Procedia PDF Downloads 36813 Influence of the Substitution of C for Mg and Ni on the Microstructure and Hydrogen Storage Characteristics of Mg2Ni Alloys
Authors: Sajad Haghanifar, Seyed-Farshid Kashani Bozorg
Abstract:
Nano-crystalline Mg2Ni-based powder was produced by mechanical alloying technique using binary and ternary powder mixtures with stoichiometric compositions of Mg2Ni, Mg1.9C0.1Ni and Mg2C0.1Ni0.9. The structures and morphologies of the milled products were studied by XRD, SEM and HRTEM. Their electrochemical hydrogen storage characteristics were investigated in 6 M KOH solution. X-Ray diffraction, scanning and transmission electron microscopy of the milled products showed the formation of Mg2Ni-based nano-crystallites after 5, 15 and 30 h of milling using the initial powder mixtures of Mg1.9C0.1Ni, Mg2Ni and Mg2C0.1Ni0.9, respectively. It was found that partial substitution of C for Mg has beneficial effect on the formation kinetic of nano-crystalline Mg2Ni. Contrary to this, partial substitution of C for Ni was resulted in retardation of formation kinetic of nano-crystalline Mg2Ni. In addition, the negative electrode made from Mg1.9C0.1Ni ternary milled product after 30 hour of milling exhibited the highest initial discharge capacity and longest discharge life. Thus, partial substitution of C for Mg is beneficial to electrode properties of the Mg2Ni-based crystallites. The relation between the discharge capacity and cycling number of mechanically alloyed products was proposed on the basis of the fact that the degradation of discharge capacity was mainly caused by the oxidation of magnesium and nickel. The experimental data fitted the deduced equation well.Keywords: Mg2Ni, hydrogen absorbing materials, electrochemical properties, nano-crystalline, amorphous, mechanical alloying, carbon
Procedia PDF Downloads 43412 Characterization and Properties of Novel Flame Retardants Based on s-Triazine
Authors: Sameh M. Osman, El-Refaie Kenawy, Zeid A. Al-Othman, Mohamed H. El-Newehy, El-Saied A. Aly, Sherine N. Khattab, Ayman El-Faham
Abstract:
Recently, there has been a huge interest in using cyanuric chloride in a wide range of functional group transformations, as Cyanuric chloride has temperature-dependent differential reactivity for displacement of chlorides with various nucleophiles In the present work, some copolymers based on s-triazine Unit were prepared by microwave-assisted synthesis. For comparison study, the copolymers were synthesized by the conventional method. Synthesized Copolymers were characterized by MP, IR, TGA, DSC and GPC. The result indicated that copolymers are thermally stable and in good in composition and yield. Further studies that involve the test for selected removal of transition elements such as Cu (II), Zn (II) and Mn (II). Moreover, the effects of the polymeric triazine derivatives containing different functional groups which expected to have a good thermal stability and char formation ability on thermal degradation and flame retardancy.Keywords: flame retardants, heavy metals, microwave-assisted synthesis, s-triazine
Procedia PDF Downloads 36311 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix
Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari
Abstract:
This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.Keywords: artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix
Procedia PDF Downloads 14310 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul
Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini
Abstract:
The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.Keywords: decision tree, breast cancer, probability, data mining
Procedia PDF Downloads 1409 Numerical Multi-Scale Modeling of Rubber Friction on Rough Pavements Using Finite Element Method
Authors: Ashkan Nazari, Saied Taheri
Abstract:
Knowledge of tire-pavement interaction plays a crucial role in designing safer and more reliable tires. Characterizing the tire-pavement frictional interaction leads to a better understanding of vehicle performance in braking and acceleration. In this work, we devise a multi-scale simulation approach to incorporate the effect of pavement surface asperities in different length-scales. We construct two- and three-dimensional Finite Element (FE) models to simulate the interaction between a rubber block and a rough pavement surface with asperities in different scales. To achieve this, the road profile is scanned via a laser profilometer and the obtained asperities are implemented in an FE software (ABAQUS) in micro and macro length-scales. The hysteresis friction, which is due to the dissipative nature of rubber, is the main component of the friction force and therefore is the subject of study in this work. Using different scales not only will assist in characterizing the pavement asperities with sufficient details but also, it is highly effective in preventing extreme local deformations and stress gradients which results in divergence in FE simulations. The simulation results will be validated with experimental results as well as the results reported in the literature.Keywords: friction, finite element, multi-scale modeling, rubber
Procedia PDF Downloads 1378 The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by miR-375 and Anti-miR-9
Authors: Arefeh Jafarian, Mohammad Taghikani, Saied Abroun, Amir Allahverdi, Masoud Soleimani
Abstract:
Introduction: The miRNAs have key roles in control of pancreatic islet development and insulin secretion. In this regards, current study investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. Findings: After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose as well as extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. In derived IPCs by miR-375 alone are capable to express insulin and other endocrine specific transcription factors, the cells lack the machinery to respond to glucose. The differentiated hMSCs by miR-375 and anti-miR-9 lentiviruses could secrete insulin and c-peptide in a glucose-regulated manner. Conclusion: It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus.Keywords: diabetes, differentiation, MSCs, insulin producing cells, miR-375, miR-9
Procedia PDF Downloads 3177 Ethanol Chlorobenzene Dosimetr Usage for Measuring Dose of the Intraoperative Linear Electron Accelerator System
Authors: Mojtaba Barzegar, Alireza Shirazi, Saied Rabi Mahdavi
Abstract:
Intraoperative radiation therapy (IORT) is an innovative treatment modality that the delivery of a large single dose of radiation to the tumor bed during the surgery. The radiotherapy success depends on the absorbed dose delivered to the tumor. The achievement better accuracy in patient treatment depends upon the measured dose by standard dosimeter such as ionization chamber, but because of the high density of electric charge/pulse produced by the accelerator in the ionization chamber volume, the standard correction factor for ion recombination Ksat calculated with the classic two-voltage method is overestimated so the use of dose/pulse independent dosimeters such as chemical Fricke and ethanol chlorobenzene (ECB) dosimeters have been suggested. Dose measurement is usually calculated and calibrated in the Zmax. Ksat calculated by comparison of ion chamber response and ECB dosimeter at each applicator degree, size, and dose. The relative output factors for IORT applicators have been calculated and compared with experimentally determined values and the results simulated by Monte Carlo software. The absorbed doses have been calculated and measured with statistical uncertainties less than 0.7% and 2.5% consecutively. The relative differences between calculated and measured OF’s were up to 2.5%, for major OF’s the agreement was better. In these conditions, together with the relative absorbed dose calculations, the OF’s could be considered as an indication that the IORT electron beams have been well simulated. These investigations demonstrate the utility of the full Monte Carlo simulation of accelerator head with ECB dosimeter allow us to obtain detailed information of clinical IORT beams.Keywords: intra operative radiotherapy, ethanol chlorobenzene, ksat, output factor, monte carlo simulation
Procedia PDF Downloads 4796 Belief-Based Games: An Appropriate Tool for Uncertain Strategic Situation
Authors: Saied Farham-Nia, Alireza Ghaffari-Hadigheh
Abstract:
Game theory is a mathematical tool to study the behaviors of a rational and strategic decision-makers, that analyze existing equilibrium in interest conflict situation and provides an appropriate mechanisms for cooperation between two or more player. Game theory is applicable for any strategic and interest conflict situation in politics, management and economics, sociology and etc. Real worlds’ decisions are usually made in the state of indeterminacy and the players often are lack of the information about the other players’ payoffs or even his own, which leads to the games in uncertain environments. When historical data for decision parameters distribution estimation is unavailable, we may have no choice but to use expertise belief degree, which represents the strength with that we believe the event will happen. To deal with belief degrees, we have use uncertainty theory which is introduced and developed by Liu based on normality, duality, subadditivity and product axioms to modeling personal belief degree. As we know, the personal belief degree heavily depends on the personal knowledge concerning the event and when personal knowledge changes, cause changes in the belief degree too. Uncertainty theory not only theoretically is self-consistent but also is the best among other theories for modeling belief degree on practical problem. In this attempt, we primarily reintroduced Expected Utility Function in uncertainty environment according to uncertainty theory axioms to extract payoffs. Then, we employed Nash Equilibrium to investigate the solutions. For more practical issues, Stackelberg leader-follower Game and Bertrand Game, as a benchmark models are discussed. Compared to existing articles in the similar topics, the game models and solution concepts introduced in this article can be a framework for problems in an uncertain competitive situation based on experienced expert’s belief degree.Keywords: game theory, uncertainty theory, belief degree, uncertain expected value, Nash equilibrium
Procedia PDF Downloads 4165 Dido: An Automatic Code Generation and Optimization Framework for Stencil Computations on Distributed Memory Architectures
Authors: Mariem Saied, Jens Gustedt, Gilles Muller
Abstract:
We present Dido, a source-to-source auto-generation and optimization framework for multi-dimensional stencil computations. It enables a large programmer community to easily and safely implement stencil codes on distributed-memory parallel architectures with Ordered Read-Write Locks (ORWL) as an execution and communication back-end. ORWL provides inter-task synchronization for data-oriented parallel and distributed computations. It has been proven to guarantee equity, liveness, and efficiency for a wide range of applications, particularly for iterative computations. Dido consists mainly of an implicitly parallel domain-specific language (DSL) implemented as a source-level transformer. It captures domain semantics at a high level of abstraction and generates parallel stencil code that leverages all ORWL features. The generated code is well-structured and lends itself to different possible optimizations. In this paper, we enhance Dido to handle both Jacobi and Gauss-Seidel grid traversals. We integrate temporal blocking to the Dido code generator in order to reduce the communication overhead and minimize data transfers. To increase data locality and improve intra-node data reuse, we coupled the code generation technique with the polyhedral parallelizer Pluto. The accuracy and portability of the generated code are guaranteed thanks to a parametrized solution. The combination of ORWL features, the code generation pattern and the suggested optimizations, make of Dido a powerful code generation framework for stencil computations in general, and for distributed-memory architectures in particular. We present a wide range of experiments over a number of stencil benchmarks.Keywords: stencil computations, ordered read-write locks, domain-specific language, polyhedral model, experiments
Procedia PDF Downloads 1294 Work-Related Risk Factors and Preventive Measures among Nurses and Dentists at Faculty of Oral and Dental Medicine
Authors: Marwa Mamdouh Shaban, Nagat Saied Habib, Shireen Ezz El-Din Taha, Eman Mahmoud Seif El-Naser
Abstract:
Background: Dental nurses and dentists were constantly exposed to a number of specific work related health risk factors which develop and intensify with years. Awareness regarding these work-related health risk factors and implementation of preventive health care measures could provide a safe work environment for all dental nurses and dentists. Aim of the study: to assess the work-related health risk factors among dental nurses and dentists and preventive health care measures applied among dental nurses and dentists. Research design: A descriptive design was utilized. Sample: Convenience sample of 50 dental nurses and 150 dentists were included in the current study. Setting: This study was conducted at the dental clinics at faculty of oral and dental medicine, Al-Kasr Al Ainy Hospital. Tools of data collection: Three tools were developed, tested for clarity, and feasibility: a-Socio-demographic data sheet, b-Work-related health risk factors questionnaire, and c-structured observational checklist. Results: The most common work risk factors prevailing among dental nurses were emotional exhaustion (82%), low back pain (76%) and latex allergy (62%) and the most common work risk factors prevailing among dentists were percutaneous exposure incident (100%), emotional exhaustion (100%) and low back pain (93.3%). Also, statistically significant negative correlation (r=-0.274, at p = 0.045) between the incidence of chemical health risk factors and application of chemical preventive measures among dental nurses. A statistically significant negative correlation (r=-0.177, at p = 0.030) between the incidences of mechanical health risk factors among dentists and application of mechanical preventive measures. Conclusion: The studied dental nurses and dentists exposed to many work related health risk factors as latex allergy, percutaneous exposure incidents, low back pain and emotional exhaustion related to inappropriate application of preventive health care measures. Recommendation: Raise awareness of dental nurses and dentists about work-related health risk factors, design and implement health education program for preventive health care measures.Keywords: work-related risk factors, preventive measures, nurses, dentists
Procedia PDF Downloads 4023 A Comparative Study of the Impact of Membership in International Climate Change Treaties and the Environmental Kuznets Curve (EKC) in Line with Sustainable Development Theories
Authors: Mojtaba Taheri, Saied Reza Ameli
Abstract:
In this research, we have calculated the effect of membership in international climate change treaties for 20 developed countries based on the human development index (HDI) and compared this effect with the process of pollutant reduction in the Environmental Kuznets Curve (EKC) theory. For this purpose, the data related to The real GDP per capita with 2010 constant prices is selected from the World Development Indicators (WDI) database. Ecological Footprint (ECOFP) is the amount of biologically productive land needed to meet human needs and absorb carbon dioxide emissions. It is measured in global hectares (gha), and the data retrieved from the Global Ecological Footprint (2021) database will be used, and we will proceed by examining step by step and performing several series of targeted statistical regressions. We will examine the effects of different control variables, including Energy Consumption Structure (ECS) will be counted as the share of fossil fuel consumption in total energy consumption and will be extracted from The United States Energy Information Administration (EIA) (2021) database. Energy Production (EP) refers to the total production of primary energy by all energy-producing enterprises in one country at a specific time. It is a comprehensive indicator that shows the capacity of energy production in the country, and the data for its 2021 version, like the Energy Consumption Structure, is obtained from (EIA). Financial development (FND) is defined as the ratio of private credit to GDP, and to some extent based on the stock market value, also as a ratio to GDP, and is taken from the (WDI) 2021 version. Trade Openness (TRD) is the sum of exports and imports of goods and services measured as a share of GDP, and we use the (WDI) data (2021) version. Urbanization (URB) is defined as the share of the urban population in the total population, and for this data, we used the (WDI) data source (2021) version. The descriptive statistics of all the investigated variables are presented in the results section. Related to the theories of sustainable development, Environmental Kuznets Curve (EKC) is more significant in the period of study. In this research, we use more than fourteen targeted statistical regressions to purify the net effects of each of the approaches and examine the results.Keywords: climate change, globalization, environmental economics, sustainable development, international climate treaty
Procedia PDF Downloads 722 Imputation of Incomplete Large-Scale Monitoring Count Data via Penalized Estimation
Authors: Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohamed A. El Agbani, Asmâa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Nafouel Hamouda, Wed a.L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos Du Rau
Abstract:
In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and con- servation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method al- lows parameterization of (a) space and time factors, (b) the main effects of predic- tor covariates, as well as (c) space–time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package ‘lori’ (https://CRAN.R-project.org/package=lori) and recommend its use for large- scale count data, particularly in citizen science monitoring programmes.Keywords: biodiversity monitoring, high-dimensional statistics, incomplete count data, missing data imputation, waterbird trends in North-Africa
Procedia PDF Downloads 1581 Structural Equation Modeling Approach: Modeling the Impact of Social Marketing Programs on Combating Female Genital Mutilation in the Sudanese Society
Authors: Nada Abdelsadig Moahamed Saied
Abstract:
Female Genital Mutilation (FGM) and other similar traditional cultural practices pose a significant problem for Sudanese society. Such actions are severe and seriously detrimental to people's health since they are based on false social perceptions. To address these problems, numerous institutions and organizations were compelled to act rapidly. Female circumcision, or FGM, is one of the riskiest practices. It is referred to as the excision of the genitalia. Any surgeries involving the total or partial removal of the external female genitalia for non-medical reasons fall under this category. The results of FGM can vary depending on the kind and degree of the operation. These can be categorized as short-term, mid-term, or long-term issues. Infections, including the Human, blood, discomfort, and difficulty urinating are the immediate effects. FGM is defined by the World Health Organization (WHO) as practices that purposefully damage or modify female genital organs for non-medical purposes. It often takes place between the ages of one and fifteen. The girl's right to decide on important choices affecting her sexual and reproductive health is violated because the act is usually performed without her consent and frequently against her will. UNICEF, the United Nations International Children's Emergency Fund, aggressively combats the issue of FGM in Sudan. Numerous programs were started by NGOs to stop the practice. To our knowledge, no scientific study has been conducted to evaluate the effects of such social marketing techniques on simulating and comprehending society’s feelings surrounding FGM. This study proposes the development of a structural equation model aiming to determine the impact of awareness programs on people’s intentions to adopt the behavior of abandoning FGM based on theoretical models of behavior change. The model incorporates all the relevant factors that contribute to FGM and possible strategic actions to tackle this problem. The theoretical backdrop for FGM is presented in the next section, which also explains the practice's history, justifications, and potential treatments. The methodology section that follows describes the structural equation model. The proposed model, which compiles all the pertinent elements into a single image, is presented in the fourth part. Finally, conclusions are reached, and suggestions for further research are made.Keywords: social marketing, policy-making, behavioral change, female genital mutilation, culture
Procedia PDF Downloads 76