Search results for: Projection distance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2206

Search results for: Projection distance

1996 Functional Vision of Older People with Cognitive Impairment Living in Galician Nursing Homes

Authors: C. Vázquez, L. M. Gigirey, C. P. del Oro, S. Seoane

Abstract:

Poor vision is common among older people, and several studies show connections between visual impairment and cognitive function. 15 older adult live in Galician Government nursing homes, and cognitive decline is one of the main reasons of admission. Objectives: (1) To evaluate functional far and near vision of older people with cognitive impairment. (2) To determine connections between visual and cognitive state of “our” residents. Methodology: A total of 364 older adults (aged 65 years or more) underwent a visual and cognitive screening. We tested presenting visual acuity (binocular visual acuity with habitual correction if warn) for distance and near vision (E-Snellen, usual working distance for near vision). Binocular presenting visual acuity less than 0.3 was used as cut point for diagnosis of visual impairment. Exclusion criteria included immobilized residents unable to reach the USC Dual Sensory Loss Unit for visual screening. To screen cognition we employed the mini-mental examination test (Spanish version). Analysis of categorical variables was performed using chi-square tests. We utilized Pearson and Spearman correlation tests and the variance analysis to determine differences between groups of interest (SPSS 19.0 version). Results: the percentage of residents with cognitive decline reaches 32.2% Prevalence of visual impairment for distance and near vision increases among those subjects with cognitive impairment respect those with normal cognition. Shift correlation exists between distance visual acuity and mini-mental test (age and sex controlled), and moderate association was found in case of near vision (p<0.01). Conclusion: First results shows that people with cognitive impairment have poor functional distance and near vision than those with normal cognition. Next step will be to analyse the individual contribution of distance and near vision loss on cognition.

Keywords: visual impairment, cognition, aging, nursing homes

Procedia PDF Downloads 402
1995 Web Proxy Detection via Bipartite Graphs and One-Mode Projections

Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo

Abstract:

With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.

Keywords: bipartite graph, one-mode projection, clustering, web proxy detection

Procedia PDF Downloads 220
1994 Assessment of E-learning Facilities and Information Need by Open and Distance Learning Students in Jalingo, Nigeria

Authors: R. M. Bashir, Sabo Elizabeth

Abstract:

Electronic learning is an increasingly popular learning approach in higher educational institutions due to vast growth of internet technology. An investigation on the assessment of e-learning facilities and information need by open and distance learning students in Jalingo, Nigeria was conducted. Structured questionnaires were administered to 70 students of the university. Information sourced from the respondents covered demographic, economic and institutional variables. Data collected for demographic variables were computed as frequency count and percentages. Information on assessment of e-learning facilities and information need among open and distance learning students was computed on a three or four point Likert Rating Scale. Findings indicated that there are more men compared to women, a large proportion of the respondents are married and there are more matured students. A high proportion of the students obtained qualifications higher than the secondary school certificate. The proportion of computer literate students was higher compared with those students that owned a computer. Inadequate e-books and reference materials, internet gadgets and inadequate books (hard copies) and reference material are factors that limit utilization of e-learning facilities. Inadequate computer facilities caused delay in examination schedule at the study center. Open and distance learning students required to a high extent information on university timetable and schedule of activities, books (hard and e-books) and reference materials and contact with course coordinators via internet for better learning and academic performance.

Keywords: open and distance learning, information required, electronic books, internet gadgets, Likert scale test

Procedia PDF Downloads 258
1993 An Experimental Investigation of the Cognitive Noise Influence on the Bistable Visual Perception

Authors: Alexander E. Hramov, Vadim V. Grubov, Alexey A. Koronovskii, Maria K. Kurovskaуa, Anastasija E. Runnova

Abstract:

The perception of visual signals in the brain was among the first issues discussed in terms of multistability which has been introduced to provide mechanisms for information processing in biological neural systems. In this work the influence of the cognitive noise on the visual perception of multistable pictures has been investigated. The study includes an experiment with the bistable Necker cube illusion and the theoretical background explaining the obtained experimental results. In our experiments Necker cubes with different wireframe contrast were demonstrated repeatedly to different people and the probability of the choice of one of the cubes projection was calculated for each picture. The Necker cube was placed at the middle of a computer screen as black lines on a white background. The contrast of the three middle lines centered in the left middle corner was used as one of the control parameter. Between two successive demonstrations of Necker cubes another picture was shown to distract attention and to make a perception of next Necker cube more independent from the previous one. Eleven subjects, male and female, of the ages 20 through 45 were studied. The choice of the Necker cube projection was detected with the Electroencephalograph-recorder Encephalan-EEGR-19/26, Medicom MTD. To treat the experimental results we carried out theoretical consideration using the simplest double-well potential model with the presence of noise that led to the Fokker-Planck equation for the probability density of the stochastic process. At the first time an analytical solution for the probability of the selection of one of the Necker cube projection for different values of wireframe contrast have been obtained. Furthermore, having used the results of the experimental measurements with the help of the method of least squares we have calculated the value of the parameter corresponding to the cognitive noise of the person being studied. The range of cognitive noise parameter values for studied subjects turned to be [0.08; 0.55]. It should be noted, that experimental results have a good reproducibility, the same person being studied repeatedly another day produces very similar data with very close levels of cognitive noise. We found an excellent agreement between analytically deduced probability and the results obtained in the experiment. A good qualitative agreement between theoretical and experimental results indicates that even such a simple model allows simulating brain cognitive dynamics and estimating important cognitive characteristic of the brain, such as brain noise.

Keywords: bistability, brain, noise, perception, stochastic processes

Procedia PDF Downloads 421
1992 A Study of Non-Coplanar Imaging Technique in INER Prototype Tomosynthesis System

Authors: Chia-Yu Lin, Yu-Hsiang Shen, Cing-Ciao Ke, Chia-Hao Chang, Fan-Pin Tseng, Yu-Ching Ni, Sheng-Pin Tseng

Abstract:

Tomosynthesis is an imaging system that generates a 3D image by scanning in a limited angular range. It could provide more depth information than traditional 2D X-ray single projection. Radiation dose in tomosynthesis is less than computed tomography (CT). Because of limited angular range scanning, there are many properties depending on scanning direction. Therefore, non-coplanar imaging technique was developed to improve image quality in traditional tomosynthesis. The purpose of this study was to establish the non-coplanar imaging technique of tomosynthesis system and evaluate this technique by the reconstructed image. INER prototype tomosynthesis system contains an X-ray tube, a flat panel detector, and a motion machine. This system could move X-ray tube in multiple directions during the acquisition. In this study, we investigated three different imaging techniques that were 2D X-ray single projection, traditional tomosynthesis, and non-coplanar tomosynthesis. An anthropopathic chest phantom was used to evaluate the image quality. It contained three different size lesions (3 mm, 5 mm and, 8 mm diameter). The traditional tomosynthesis acquired 61 projections over a 30 degrees angular range in one scanning direction. The non-coplanar tomosynthesis acquired 62 projections over 30 degrees angular range in two scanning directions. A 3D image was reconstructed by iterative image reconstruction algorithm (ML-EM). Our qualitative method was to evaluate artifacts in tomosynthesis reconstructed image. The quantitative method was used to calculate a peak-to-valley ratio (PVR) that means the intensity ratio of the lesion to the background. We used PVRs to evaluate the contrast of lesions. The qualitative results showed that in the reconstructed image of non-coplanar scanning, anatomic structures of chest and lesions could be identified clearly and no significant artifacts of scanning direction dependent could be discovered. In 2D X-ray single projection, anatomic structures overlapped and lesions could not be discovered. In traditional tomosynthesis image, anatomic structures and lesions could be identified clearly, but there were many artifacts of scanning direction dependent. The quantitative results of PVRs show that there were no significant differences between non-coplanar tomosynthesis and traditional tomosynthesis. The PVRs of the non-coplanar technique were slightly higher than traditional technique in 5 mm and 8 mm lesions. In non-coplanar tomosynthesis, artifacts of scanning direction dependent could be reduced and PVRs of lesions were not decreased. The reconstructed image was more isotropic uniformity in non-coplanar tomosynthesis than in traditional tomosynthesis. In the future, scan strategy and scan time will be the challenges of non-coplanar imaging technique.

Keywords: image reconstruction, non-coplanar imaging technique, tomosynthesis, X-ray imaging

Procedia PDF Downloads 338
1991 Effect of Blast Loads on the Seismically Designed Reinforced Concrete Buildings

Authors: Jhuma Debnath, Hrishikesh Sharma

Abstract:

The work done here in this paper is dedicated to studying the effect of high blast explosives over the seismically designed buildings. Buildings are seismically designed in SAP 2000 software to simulate seismic designs of buildings using response spectrum method. Later these buildings have been studied applying blast loads with the same amount of the blast explosives. This involved varying the standoff distances of the buildings from the blast explosion. The study found out that, for a seismically designed building, the minimum standoff distance is to be at least 120m from the place of explosion for an average blast explosive weight of 20kg TNT. This has shown that the building does not fail due to this huge explosive weight of TNT but resists immediate collapse of the building. The results also show that the adverse effect of the column failure due to blasting is reduced to 73.75% from 22.5% due to the increase of the standoff distance from the blast loads. The maximum affected locations due to the blast loads are also detected in this study.

Keywords: blast loads, seismically designed buildings, standoff distance, reinforced concrete buildings

Procedia PDF Downloads 206
1990 Performance Analysis of Different PSK Scheme on Receiver Sensitivity and Round Trip Distance for Chipless RFID System for UWB with Rayleigh Fading Channels in Outdoor NLOS Environment

Authors: Khalid Mahmud

Abstract:

In this paper, an analytic approach is presented to evaluate the Bit Error Rate (BER) and round trip distance for a UWB chipless RFID system using diversity technique at the reader receiver using different modulation technique. The analysis is carried out with multiresonator based chipless RFID tags using frequency range from 3 GHz − 6 GHz and bandwidth of 500 M Hz in outdoor non-line-of-sight (NLOS) environment. SISO configuration is used to communicate from the reader to the tag and SIMO configuration is used do vice versa. Maximal Ratio Combining (MRC) technique is used in the reader. MPSK, DQPSK, DBPSK, BPSK, QPSK and DMPSK modulation techniques are considered with coherent demodulation to evaluate the BER performance. From the numerical analysis of the results, it is found that at a given BER maximum possible round trip distance can be achieved using DMPSK modulation technique. In addition, it has been proved that, while using DMPSK modulation technique, the application of diversity has very little effect on the overall improvement in reader receiver sensitivity and achievable distance. Finally the method not only proves to be a very good way for tag detection in case of a chipless RFID system but also gives a clear insight regarding the interrelationship between BER, read range, reader received power, number of receiving antenna in outdoor NLOS environment.

Keywords: EGC, MRC, BER, read range, diversity

Procedia PDF Downloads 327
1989 Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods

Authors: Auday Al-Mayyahi, Phil Birch, William Wang

Abstract:

A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm.

Keywords: autonomous ground vehicle, navigation, obstacle avoidance, vision system, single camera, image processing, ultrasonic sensor

Procedia PDF Downloads 276
1988 Comparative Study of Skeletonization and Radial Distance Methods for Automated Finger Enumeration

Authors: Mohammad Hossain Mohammadi, Saif Al Ameri, Sana Ziaei, Jinane Mounsef

Abstract:

Automated enumeration of the number of hand fingers is widely used in several motion gaming and distance control applications, and is discussed in several published papers as a starting block for hand recognition systems. The automated finger enumeration technique should not only be accurate, but also must have a fast response for a moving-picture input. The high performance of video in motion games or distance control will inhibit the program’s overall speed, for image processing software such as Matlab need to produce results at high computation speeds. Since an automated finger enumeration with minimum error and processing time is desired, a comparative study between two finger enumeration techniques is presented and analyzed in this paper. In the pre-processing stage, various image processing functions were applied on a real-time video input to obtain the final cleaned auto-cropped image of the hand to be used for the two techniques. The first technique uses the known morphological tool of skeletonization to count the number of skeleton’s endpoints for fingers. The second technique uses a radial distance method to enumerate the number of fingers in order to obtain a one dimensional hand representation. For both discussed methods, the different steps of the algorithms are explained. Then, a comparative study analyzes the accuracy and speed of both techniques. Through experimental testing in different background conditions, it was observed that the radial distance method was more accurate and responsive to a real-time video input compared to the skeletonization method. All test results were generated in Matlab and were based on displaying a human hand for three different orientations on top of a plain color background. Finally, the limitations surrounding the enumeration techniques are presented.

Keywords: comparative study, hand recognition, fingertip detection, skeletonization, radial distance, Matlab

Procedia PDF Downloads 353
1987 Future Projection of Glacial Lake Outburst Floods Hazard: A Hydrodynamic Study of the Highest Lake in the Dhauliganga Basin, Uttarakhand

Authors: Ashim Sattar, Ajanta Goswami, Anil V. Kulkarni

Abstract:

Glacial lake outburst floods (GLOF) highly contributes to mountain hazards in the Himalaya. Over the past decade, high altitude lakes in the Himalaya has been showing notable growth in their size and number. The key reason is rapid retreat of its glacier front. Hydrodynamic modeling GLOF using shallow water equations (SWE) would result in understanding its impact in the downstream region. The present study incorporates remote sensing based ice thickness modeling to determine the future extent of the Dhauliganga Lake to map the over deepening extent around the highest lake in the Dhauliganga basin. The maximum future volume of the lake calculated using area-volume scaling is used to model a GLOF event. The GLOF hydrograph is routed along the channel using one dimensional and two dimensional model to understand the flood wave propagation till it reaches the 1st hydropower station located 72 km downstream of the lake. The present extent of the lake calculated using SENTINEL 2 images is 0.13 km². The maximum future extent of the lake, mapped by investigating the glacier bed has a calculated scaled volume of 3.48 x 106 m³. The GLOF modeling releasing the future volume of the lake resulted in a breach hydrograph with a peak flood of 4995 m³/s at just downstream of the lake. Hydraulic routing

Keywords: GLOF, glacial lake outburst floods, mountain hazard, Central Himalaya, future projection

Procedia PDF Downloads 135
1986 The Development of Crisis Distance Education at Kuwait University During the COVID-19 Pandemic

Authors: Waleed Alanzi

Abstract:

The purpose of this qualitative study was to add to the existing literature and provide a more detailed understanding of the individual experiences and perceptions of 15 Deans at the University of Kuwait regarding their first year of planning, developing, and implementing crisis distance education (CDE) in response to the COVID-19 epidemic. An interpretative phenomenological approach was applied, using the thematic analysis of interview transcripts to describe the challenging journeys taken by each of the Deans from the first-person point of view. There was objective evidence, manifested by four primary themes (“Obstacles to the implementation of CDE”; “Planning for CDE”; “Training for CDE,” and “Future Directions”) to conclude that the faculty members, technical staff, administrative staff, and students generally helped each other to overcome the obstacles associated with planning and implementing CDE. The idea that CDE may turn homes into schools and parents into teachers was supported. The planning and implementation of CDE were inevitably associated with a certain amount of confusion, as well as disruptions in the daily routines of staff and students, as well as significant changes in their responsibilities. There were contradictory ideas about the future directions of distance education after the pandemic. Previous qualitative research on the implementation of CDE at higher education institutions in the Arab world has focused mainly on the experiences and perceptions of students; however, little is known about the experiences and perceptions of the students at the University of Kuwait during the COVID19 pandemic, providing a rationale and direction for future research.

Keywords: distance learning, qualitative research, COVID-19 epidemic, Kuwait university

Procedia PDF Downloads 79
1985 Teaching for Knowledge Transfer: Best Practices from a Graduate-Level Educational Psychology Distance Learning Program

Authors: Bobby Hoffman

Abstract:

One measure of effective instruction is the ability to solve authentic, real-world problems by effectively transferring and applying classroom and textbook knowledge. While many students can productively earn high grades and learn course content, they are not always able to apply the knowledge they gain. As such, this quasi-experimental study compared the comprehensive exit exam results of learners across instructional modalities who completed a prominent graduate-level educational psychology program. ANCOVA revealed superior knowledge transfer for blended-learning students compared to those who completed distance education and significantly greater transfer of declarative, procedural, and self-regulatory knowledge by the blended-learning students. This paper briefly summarizes the study results while highlighting evidence-based programmatic and course level modifications that were implemented to specifically address the transfer of learning and practical application of educational psychology knowledge.

Keywords: assessment, distance learning, educational psychology, knowledge transfer

Procedia PDF Downloads 149
1984 Biogeography Based CO2 and Cost Optimization of RC Cantilever Retaining Walls

Authors: Ibrahim Aydogdu, Alper Akin

Abstract:

In this study, the development of minimizing the cost and the CO2 emission of the RC retaining wall design has been performed by Biogeography Based Optimization (BBO) algorithm. This has been achieved by developing computer programs utilizing BBO algorithm which minimize the cost and the CO2 emission of the RC retaining walls. Objective functions of the optimization problem are defined as the minimized cost, the CO2 emission and weighted aggregate of the cost and the CO2 functions of the RC retaining walls. In the formulation of the optimum design problem, the height and thickness of the stem, the length of the toe projection, the thickness of the stem at base level, the length and thickness of the base, the depth and thickness of the key, the distance from the toe to the key, the number and diameter of the reinforcement bars are treated as design variables. In the formulation of the optimization problem, flexural and shear strength constraints and minimum/maximum limitations for the reinforcement bar areas are derived from American Concrete Institute (ACI 318-14) design code. Moreover, the development length conditions for suitable detailing of reinforcement are treated as a constraint. The obtained optimum designs must satisfy the factor of safety for failure modes (overturning, sliding and bearing), strength, serviceability and other required limitations to attain practically acceptable shapes. To demonstrate the efficiency and robustness of the presented BBO algorithm, the optimum design example for retaining walls is presented and the results are compared to the previously obtained results available in the literature.

Keywords: bio geography, meta-heuristic search, optimization, retaining wall

Procedia PDF Downloads 375
1983 Goal Orientation, Learning Strategies and Academic Performance in Adult Distance Learning

Authors: Ying Zhou, Jian-Hua Wang

Abstract:

Based upon the self-determination theory and self-regulated learning theory, this study examined the predictiveness of goal orientation and self-regulated learning strategies on academic achievement of adult students in distance learning. The results show a positive relation between goal orientation and the use of self-regulated strategies, and academic achievements. A significant and positive indirect relation of mastery goal orientation through self-regulated learning strategies was also found. In addition, results pointed to a positive indirect impact of performance-approach goal orientation on academic achievement. The effort regulation strategy fully mediated this relation. The theoretical and instructional implications are discussed. Interventions can be made to motivate students’ mastery or performance approach goal orientation and help them manage their time or efforts.

Keywords: goal orientation, self-regulated strategies, achievement, adult distance students

Procedia PDF Downloads 244
1982 Determining the Distance Consumers Are Willing to Travel to a Store: A Structural Equation Model Approach

Authors: Fuseina Mahama, Lieselot Vanhaverbeke

Abstract:

This research investigates the impact of patronage determinants on the distance consumers are willing to travel to patronize a tire shop. Although store patronage has been acknowledged as an important domain and has received substantial research interest, most of the studies so far conducted focus on grocery retail, leaving other categories of goods widely unexplored. In this study, we focus on car tires and provide a new perspective to the specific factors that influence tire shop patronage. An online survey of consumers’ tyre purchasing behaviour was conducted among private car owners in Belgium. A sample of 864 respondents was used in the study, with almost four out of five of them being male. 84% of the respondents had purchased a car tyre in the last 24 months and on average travelled 22.4kms to patronise a tyre shop. We tested the direct and mediated effects of store choice determinants on distance consumers are willing to travel. All hypotheses were tested using Structural Equation Modelling (SEM). Our findings show that with an increase in the consumer’s age the distance they were willing to travel to a tire shop decreased. Similarly, consumers who deemed proximity an important determinant of a tire shop our findings confirmed a negative effect on willingness to travel. On the other hand, the determinants price, personal contact and professionalism all had a positive effect on distance. This means that consumers actively sought out tire shops with these characteristics and were willing to travel longer distances in order to visit them. The indirect effects of the determinants flexible opening hours, family recommendation, dealer reputation, receiving auto service at home and availability of preferred brand on distance are mediated by dealer trust. Gender had a minimal effect on distance, with females exhibiting a stronger relation in terms of dealer trust as compared to males. Overall, we found that market relevant factors were better predictors of distance; and proximity, dealer trust and professionalism have the most profound effects on distance that consumers are willing to travel. This is related to the fact that the nature of shopping goods (among which are car tires) typically reinforces consumers to be more engaged in the shopping process, therefore factors that have to do with the store (e.g. location) and shopping process play a key role in store choice decision. These findings are very specific to shopping goods and cannot be generalized to other categories of goods. For marketers and retailers these findings can have direct implications on their location strategies. The factors found to be relevant to tire shop patronage will be used in our next study to calibrate a location model to be utilised to identify the optimum location for siting new tyre shop outlets and service centres.

Keywords: dealer trust, distance to store, tire store patronage, willingness to travel

Procedia PDF Downloads 212
1981 Design and Implementation of Neural Network Based Controller for Self-Driven Vehicle

Authors: Hassam Muazzam

Abstract:

This paper devises an autonomous self-driven vehicle that is capable of taking a disabled person to his/her desired location using three different power sources (gasoline, solar, electric) without any control from the user, avoiding the obstacles in the way. The GPS co-ordinates of the desired location are sent to the main processing board via a GSM module. After the GPS co-ordinates are sent, the path to be followed by the vehicle is devised by Pythagoras theorem. The distance and angle between the present location and the desired location is calculated and then the vehicle starts moving in the desired direction. Meanwhile real-time data from ultrasonic sensors is fed to the board for obstacle avoidance mechanism. Ultrasonic sensors are used to quantify the distance of the vehicle from the object. The distance and position of the object is then used to make decisions regarding the direction of vehicle in order to avoid the obstacles using artificial neural network which is implemented using ATmega1280. Also the vehicle provides the feedback location at remote location.

Keywords: autonomous self-driven vehicle, obstacle avoidance, desired location, pythagoras theorem, neural network, remote location

Procedia PDF Downloads 380
1980 Imaging of Underground Targets with an Improved Back-Projection Algorithm

Authors: Alireza Akbari, Gelareh Babaee Khou

Abstract:

Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.

Keywords: algorithm, back-projection, GPR, remote sensing

Procedia PDF Downloads 419
1979 Comparison Between Two Techniques (Extended Source to Surface Distance & Field Alignment) Of Craniospinal Irradiation (CSI) In the Eclipse Treatment Planning System

Authors: Naima Jannat, Ariful Islam, Sharafat Hossain

Abstract:

Due to the involvement of the large target volume, Craniospinal Irradiation makes it challenging to achieve a uniform dose, and it requires different isocenters. This isocentric junction needs to shift after every five fractions to overcome the possibility of hot and cold spots. This study aims to evaluate the Planning Target Volume coverage & sparing Organ at Risk between two techniques and shows that the Field Alignment Technique does not need replanning and resetting. Planning method for Craniospinal Irradiation by Eclipse treatment planning system Field Alignment and Extended Source to Surface Distance technique was developed where 36 Gy in 20 Fraction at the rate of 1.8 Gy was prescribed. The patient was immobilized in the prone position. In the Field Alignment technique, the plan consists of half beam blocked parallel opposed cranium and a single posterior cervicospine field was developed by sharing the same isocenter, which obviates divergence matching. Further, a single field was created to treat the remaining lumbosacral spine. Matching between the inferior diverging edge of the cervicospine field and the superior diverging edge of a lumbosacral field, the field alignment option was used, which automatically matches the field edge divergence as per the field alignment rule in Eclipse Treatment Planning System where the couch was set to 2700. In the Extended Source to Surface Distance technique, two parallel opposed fields were created for the cranium, and a single posterior cervicospine field was created where the Source to Surface Distance was from 120-140 cm. Dose Volume Histograms were obtained for each organ contoured and for each technique used. In all, the patient’s maximum dose to Planning Target Volume is higher for the Extended Source to Surface Distance technique to Field Alignment technique. The dose to all surrounding structures was increased with the use of a single Extended Source to Surface Distance when compared to the Field Alignment technique. The average mean dose to Eye, Brain Steam, Kidney, Oesophagus, Heart, Liver, Lung, and Ovaries were respectively (58% & 60 %), (103% & 98%), (13% & 15%), (10% & 63%), (12% & 16%), (33% & 30%), (14% & 18%), (69% & 61%) for Field Alignment and Extended Source to Surface Distance technique. However, the clinical target volume at the spine junction site received a less homogeneous dose with the Field Alignment technique as compared to Extended Source to Surface Distance. We conclude that, although the use of a single field Extended Source to Surface Distance delivered a more homogenous, but its maximum dose is higher than the Field Alignment technique. Also, a huge advantage of the Field Alignment technique for Craniospinal Irradiation is that it doesn’t need replanning and resetting up of patients after every five fractions and 95% prescribed dose was received by more than 95% of the Planning Target Volume in all the plane with the acceptable hot spot.

Keywords: craniospinalirradiation, cranium, cervicospine, immobilize, lumbosacral spine

Procedia PDF Downloads 73
1978 Climate Change in Awash River Basin of Ethiopia: A Projection Study Using Global and Regional Climate Model Simulations

Authors: Mahtsente Tadese, Lalit Kumar, Richard Koech

Abstract:

The aim of this study was to project and analyze climate change in the Awash River Basin (ARB) using bias-corrected Global and Regional Climate Model simulations. The analysis included a baseline period from 1986-2005 and two future scenarios (the 2050s and 2070s) under two representative concentration pathways (RCP4.5 and RCP8.5). Bias correction methods were evaluated using graphical and statistical methods. Following the evaluation of bias correction methods, the Distribution Mapping (DM) and Power Transformation (PT) were used for temperature and precipitation projection, respectively. The 2050s and 2070s RCP4 simulations showed an increase in precipitation during half of the months with 32 and 10%, respectively. Moreover, the 2050s and 2070s RCP8.5 simulation indicated a decrease in precipitation with 18 and 26%, respectively. The 2050s and 2070s RCP8.5 simulation indicated a significant decrease in precipitation in four of the months (February/March to May) with the highest decreasing rate of 34.7%. The 2050s and 2070s RCP4.5 simulation showed an increase of 0.48-2.6 °C in maximum temperature. In the case of RCP8.5, the increase rate reached 3.4 °C and 4.1 °C in the 2050s and 2070s, respectively. The changes in precipitation and temperature might worsen the water stress, flood, and drought in ARB. Moreover, the critical focus should be given to mitigation strategies and management options to reduce the negative impact. The findings of this study provide valuable information on future precipitation and temperature change in ARB, which will help in the planning and design of sustainable mitigation approaches in the basin.

Keywords: variability, climate change, Awash River Basin, precipitation

Procedia PDF Downloads 149
1977 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis

Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong

Abstract:

A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.

Keywords: radar cross section, fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model

Procedia PDF Downloads 315
1976 Spatial Rank-Based High-Dimensional Monitoring through Random Projection

Authors: Chen Zhang, Nan Chen

Abstract:

High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.

Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection

Procedia PDF Downloads 274
1975 Evaluation of the End Effect Impact on the Torsion Test for Determining the Shear Modulus of a Timber Beam through a Photogrammetry Approach

Authors: Niaz Gharavi, Hexin Zhang, Yanjun Xie

Abstract:

The timber beam end effect in the torsion test is evaluated using binocular stereo vision system. It is recommended by BS EN 408:2010+A1:2012 to exclude a distance of two to three times of cross-sectional thickness (b) from ends to avoid the end effect; whereas, this study indicates that this distance is not sufficiently far enough to remove this effect in slender cross-sections. The shear modulus of six timber beams with different aspect ratios is determined at the various angles and cross-sections. The result of this experiment shows that the end affected span of each specimen varies depending on their aspect ratios. It is concluded that by increasing the aspect ratio this span will increase. However, by increasing the distance from the ends to the values greater than 6b, the shear modulus trend becomes constant and end effect will be negligible. Moreover, it is concluded that end affected span is preferred to be depth-dependent rather than thickness-dependant.

Keywords: end clamp effect, full-size timber test, shear properties, torsion test, wood engineering

Procedia PDF Downloads 259
1974 BeamGA Median: A Hybrid Heuristic Search Approach

Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte

Abstract:

The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.

Keywords: median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance

Procedia PDF Downloads 240
1973 Model Averaging for Poisson Regression

Authors: Zhou Jianhong

Abstract:

Model averaging is a desirable approach to deal with model uncertainty, which, however, has rarely been explored for Poisson regression. In this paper, we propose a model averaging procedure based on an unbiased estimator of the expected Kullback-Leibler distance for the Poisson regression. Simulation study shows that the proposed model average estimator outperforms some other commonly used model selection and model average estimators in some situations. Our proposed methods are further applied to a real data example and the advantage of this method is demonstrated again.

Keywords: model averaging, poission regression, Kullback-Leibler distance, statistics

Procedia PDF Downloads 485
1972 Effects of Incident Angle and Distance on Visible Light Communication

Authors: Taegyoo Woo, Jong Kang Park, Jong Tae Kim

Abstract:

Visible Light Communication (VLC) provides wireless communication features in illumination systems. One of the key applications is to recognize the user location by indoor illuminators such as light emitting diodes. For localization of individual receivers in these systems, we usually assume that receivers and transmitters are placed in parallel. However, it is difficult to satisfy this assumption because the receivers move randomly in real case. It is necessary to analyze the case when transmitter is not placed perfectly parallel to receiver. It is also important to identify changes on optical gain by the tilted angles and distances of them against the illuminators. In this paper, we simulate optical gain for various cases where the tilt of the receiver and the distance change. Then, we identified changing patterns of optical gains according to tilted angles of a receiver and distance. These results can help many VLC applications understand the extent of the location errors with regard to optical gains of the receivers and identify the root cause.

Keywords: visible light communication, incident angle, optical gain, light emitting diode

Procedia PDF Downloads 304
1971 Numerical Analysis of Shallow Footing Rested on Geogrid Reinforced Sandy Soil

Authors: Seyed Abolhasan Naeini, Javad Shamsi Soosahab

Abstract:

The use of geosynthetic reinforcement within the footing soils is a very effective and useful method to avoid the construction of costly deep foundations. This study investigated the use of geosynthetics for soil improvement based on numerical modeling using FELA software. Pressure settlement behavior and bearing capacity ratio of foundation on geogrid reinforced sand is investigated and the effect of different parameters like as number of geogrid layers and vertical distance between elements in three different relative density soil is studied. The effects of geometrical parameters of reinforcement layers were studied for determining the optimal values to reach to maximum bearing capacity. The results indicated that the optimum range of the distance ratio between the reinforcement layers was achieved at 0.5 to 0.6 and after number of geogrid layers of 4, no significant effect on increasing the bearing capacity of footing on reinforced sandy with geogrid

Keywords: geogrid, reinforced sand, FELA software, distance ratio, number of geogrid layers

Procedia PDF Downloads 122
1970 Radiologic Assessment of Orbital Dimensions Among Omani Subjects: Computed Tomography Imaging-Based Study

Authors: Marwa Al-Subhi, Eiman Al-Ajmi, Mallak Al-Maamari, Humood Al-Dhuhli, Srinivasa Rao

Abstract:

The orbit and its contents are affected by various pathologies and craniofacial anomalies. Sound knowledge of the normal orbital dimensions is clinically essential for successful surgical outcomes and also in the field of forensic anthropology. Racial, ethnic, and regional variations in the orbital dimensions have been reported. This study sought to determine the orbital dimensions of Omani subjects who had been referred for computed tomography (CT) images at a tertiary care hospital. A total of 273 patients’ CT images were evaluated retrospectively by using an electronic medical records database. The orbital dimensions were recorded using both axial and sagittal planes of CT images. The mean orbital index (OI) was found to be 83.25±4.83 and the prevalent orbital type was categorized as mesoseme. The mean orbital index was 83.34±5.05 and 83.16±4.57 in males and females, respectively, with their difference being statistically not significant (p=0.76). A statistically significant association was observed between the right and left orbits with regard to horizontal distance (p<0.05) and vertical distance (p<0.01) of orbit and OI (p<0.05). No significant difference between the OI and age groups was observed in both males and females. The mean interorbital distance and interzygomatic distance were found to be 19.45±1.52 mm and 95.59±4.08 mm, respectively. Both of these parameters were significantly higher in males (p<0.05). Results of the present study provide reference values of orbital dimensions in Omani subjects. The prevalent orbital type of Omani subjects is mesoseme, which is a hallmark of the white race.

Keywords: orbit, orbital index, mesoseme, ethnicity, variation

Procedia PDF Downloads 122
1969 Gender Differences in Walking Capacity and Cardiovascular Regulation in Patients with Peripheral Arterial Disease

Authors: Gabriel Cucato, Marilia Correia, Wagner Domingues, Aline Palmeira, Paulo Longano, Nelson Wolosker, Raphael Ritti-Dias

Abstract:

Women with peripheral arterial disease (PAD) present lower walking capacity in comparison with men. However, whether cardiovascular regulation is also different between genders is unknown. Thus, the aim of this study was to compare walking capacity and cardiovascular regulation between men and women with PAD. A total of 23 women (66±7 yrs) and 31 men (64±9 yrs) were recruited. Patients performed a 6-minute test and the onset claudication distance and total walking distance were measured. Additionally, cardiovascular regulation was assessed by arterial stiffness (pulse wave velocity and augmentation index) and heart rate variability (frequency domain). Independent T test or Mann-Whitney U test were performed. In comparison with men, women present lower onset claudication distance (108±66m vs. 143±50m; P=0.032) and total walking distance (286±83m vs. 361±91 m, P=0.007). Regarding cardiovascular regulation, there were no differences in heart rate variability SDNN (72±160ms vs. 32±22ms, P=0.587); RMSSD (75±209 vs. 25±22ms, P=0.726); pNN50 (11±17ms vs. 8±14ms, P=0.836) in women and men, respectively. Moreover, there were no difference in augmentation index (39±10% vs. 34±11%, P=0.103); pulse pressure (59±17mmHg vs. 56±19mmHg, P=0.593) and pulse wave velocity (8.6±2.6m\s vs. 9.0±2.7m/s, P=0.580). In conclusion, women have impaired walking capacity compared to men. However, sex differences were not observed on cardiovascular regulation in patients with PAD.

Keywords: exercise, intermittent claudication, cardiovascular load, arterial stiffness

Procedia PDF Downloads 365
1968 Optical Repeater Assisted Visible Light Device-to-Device Communications

Authors: Samrat Vikramaditya Tiwari, Atul Sewaiwar, Yeon-Ho Chung

Abstract:

Device-to-device (D2D) communication is considered a promising technique to provide wireless peer-to-peer communication services. Due to increasing demand on mobile services, available spectrum for radio frequency (RF) based communications becomes scarce. Recently, visible light communications (VLC) has evolved as a high speed wireless data transmission technology for indoor environments with abundant available bandwidth. In this paper, a novel VLC based D2D communication that provides wireless peer-to-peer communication is proposed. Potential low operating power devices for an efficient D2D communication over increasing distance of separation between devices is analyzed. Optical repeaters (OR) are also proposed to enhance the performance in an environment where direct D2D communications yield degraded performance. Simulation results show that VLC plays an important role in providing efficient D2D communication up to a distance of 1 m between devices. It is also found that the OR significantly improves the coverage distance up to 3.5 m.

Keywords: visible light communication, light emitting diode, device-to-device, optical repeater

Procedia PDF Downloads 454
1967 Utility of Range of Motion Measurements on Classification of Athletes

Authors: Dhiraj Dolai, Rupayan Bhattacharya

Abstract:

In this study, a comparison of Range Of Motion (ROM) of middle and long-distance runners and swimmers has been made. The mobility of the various joints is essential for the quick movement of any sportsman. Knowledge of a ROM helps in preventing injuries, in repeating the movement, and in generating speed and power. ROM varies among individuals, and it is influenced by factors such as gender, age, and whether the motion is performed actively or passively. ROM for running and swimming, both performed with due consideration on speed, plays an important role. The time of generation of speed and mobility of the particular joints are very important for both kinds of athletes. The difficulties that happen during running and swimming in the direction of motion is changed. In this study, data were collected for a total of 102 subjects divided into three groups: control group (22), middle and long-distance runners (40), and swimmers (40), and their ages are between 12 to 18 years. The swimmers have higher ROM in shoulder joint flexion, extension, abduction, and adduction movement. Middle and long-distance runners have significantly greater ROM from Control Group in the left shoulder joint flexion with a 5.82 mean difference. Swimmers have significantly higher ROM from the Control Group in the left shoulder joint flexion with 24.84 mean difference and swimmers have significantly higher ROM from the Middle and Long distance runners in left shoulder flexion with 19.02 mean difference. The picture will be clear after a more detailed investigation.

Keywords: range of motion, runners, swimmers, significance

Procedia PDF Downloads 97