Search results for: Kernel density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3670

Search results for: Kernel density

3670 On the Cluster of the Families of Hybrid Polynomial Kernels in Kernel Density Estimation

Authors: Benson Ade Eniola Afere

Abstract:

Over the years, kernel density estimation has been extensively studied within the context of nonparametric density estimation. The fundamental components of kernel density estimation are the kernel function and the bandwidth. While the mathematical exploration of the kernel component has been relatively limited, its selection and development remain crucial. The Mean Integrated Squared Error (MISE), serving as a measure of discrepancy, provides a robust framework for assessing the effectiveness of any kernel function. A kernel function with a lower MISE is generally considered to perform better than one with a higher MISE. Hence, the primary aim of this article is to create kernels that exhibit significantly reduced MISE when compared to existing classical kernels. Consequently, this article introduces a cluster of hybrid polynomial kernel families. The construction of these proposed kernel functions is carried out heuristically by combining two kernels from the classical polynomial kernel family using probability axioms. We delve into the analysis of error propagation within these kernels. To assess their performance, simulation experiments, and real-life datasets are employed. The obtained results demonstrate that the proposed hybrid kernels surpass their classical kernel counterparts in terms of performance.

Keywords: classical polynomial kernels, cluster of families, global error, hybrid Kernels, Kernel density estimation, Monte Carlo simulation

Procedia PDF Downloads 93
3669 The Reach of Shopping Center Layout Form on Subway Based on Kernel Density Estimate

Authors: Wen Liu

Abstract:

With the rapid progress of modern cities, the railway construction must be developing quickly in China. As a typical high-density country, shopping center on the subway should be one important factor during the process of urban development. The paper discusses the influence of the layout of shopping center on the subway, and put it in the time and space’s axis of Shanghai urban development. We use the digital technology to establish the database of relevant information. And then get the change role about shopping center on subway in Shanghaiby the Kernel density estimate. The result shows the development of shopping center on subway has a relationship with local economic strength, population size, policy support, and city construction. And the suburbanization trend of shopping center would be increasingly significant. By this case research, we could see the Kernel density estimate is an efficient analysis method on the spatial layout. It could reveal the characters of layout form of shopping center on subway in essence. And it can also be applied to the other research of space form.

Keywords: Shanghai, shopping center on the subway, layout form, Kernel density estimate

Procedia PDF Downloads 315
3668 Extraction and Characterization of Kernel Oil of Acrocomia Totai

Authors: Gredson Keif Souza, Nehemias Curvelo Pereira

Abstract:

Kernel oil from Macaúba is an important source of essential fatty acids. Thus, a new knowledge of the oil of this species could be used in new applications, such as pharmaceutical drugs based in the manufacture of cosmetics, and in various industrial processes. The aim of this study was to characterize the kernel oil of macaúba (Acrocomia Totai) at different times of their maturation. The physico-chemical characteristics were determined in accordance with the official analytical methods of oils and fats. It was determined the content of water and lipids in kernel, saponification value, acid value, water content in the oil, viscosity, density, composition in fatty acids by gas chromatography and molar mass. The results submitted to Tukey test for significant value to 5%. Found for the unripe fruits values superior to unsaturated fatty acids.

Keywords: extraction, characterization, kernel oil, acrocomia totai

Procedia PDF Downloads 356
3667 Density-based Denoising of Point Cloud

Authors: Faisal Zaman, Ya Ping Wong, Boon Yian Ng

Abstract:

Point cloud source data for surface reconstruction is usually contaminated with noise and outliers. To overcome this, we present a novel approach using modified kernel density estimation (KDE) technique with bilateral filtering to remove noisy points and outliers. First we present a method for estimating optimal bandwidth of multivariate KDE using particle swarm optimization technique which ensures the robust performance of density estimation. Then we use mean-shift algorithm to find the local maxima of the density estimation which gives the centroid of the clusters. Then we compute the distance of a certain point from the centroid. Points belong to outliers then removed by automatic thresholding scheme which yields an accurate and economical point surface. The experimental results show that our approach comparably robust and efficient.

Keywords: point preprocessing, outlier removal, surface reconstruction, kernel density estimation

Procedia PDF Downloads 344
3666 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali

Abstract:

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS

Procedia PDF Downloads 399
3665 Classification of Barley Varieties by Artificial Neural Networks

Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran

Abstract:

In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.

Keywords: physical properties, artificial neural networks, barley, classification

Procedia PDF Downloads 178
3664 A Formal Verification Approach for Linux Kernel Designing

Authors: Zi Wang, Xinlei He, Jianghua Lv, Yuqing Lan

Abstract:

Kernel though widely used, is complicated. Errors caused by some bugs are often costly. Statically, more than half of the mistakes occur in the design phase. Thus, we introduce a modeling method, KMVM (Linux Kernel Modeling and verification Method), based on type theory for proper designation and correct exploitation of the Kernel. In the model, the Kernel is separated into six levels: subsystem, dentry, file, struct, func, and base. Each level is treated as a type. The types are specified in the structure and relationship. At the same time, we use a demanding path to express the function to be implemented. The correctness of the design is verified by recursively checking the type relationship and type existence. The method has been applied to verify the OPEN business of VFS (virtual file system) in Linux Kernel. Also, we have designed and developed a set of security communication mechanisms in the Kernel with verification.

Keywords: formal approach, type theory, Linux Kernel, software program

Procedia PDF Downloads 137
3663 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems

Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini

Abstract:

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.

Keywords: quantum, machine learning, kernel, non-markovianity

Procedia PDF Downloads 180
3662 An Approach to Apply Kernel Density Estimation Tool for Crash Prone Location Identification

Authors: Kazi Md. Shifun Newaz, S. Miaji, Shahnewaz Hazanat-E-Rabbi

Abstract:

In this study, the kernel density estimation tool has been used to identify most crash prone locations in a national highway of Bangladesh. Like other developing countries, in Bangladesh road traffic crashes (RTC) have now become a great social alarm and the situation is deteriorating day by day. Today’s black spot identification process is not based on modern technical tools and most of the cases provide wrong output. In this situation, characteristic analysis and black spot identification by spatial analysis would be an effective and low cost approach in ensuring road safety. The methodology of this study incorporates a framework on the basis of spatial-temporal study to identify most RTC occurrence locations. In this study, a very important and economic corridor like Dhaka to Sylhet highway has been chosen to apply the method. This research proposes that KDE method for identification of Hazardous Road Location (HRL) could be used for all other National highways in Bangladesh and also for other developing countries. Some recommendations have been suggested for policy maker to reduce RTC in Dhaka-Sylhet especially in black spots.

Keywords: hazardous road location (HRL), crash, GIS, kernel density

Procedia PDF Downloads 314
3661 Estimating Destinations of Bus Passengers Using Smart Card Data

Authors: Hasik Lee, Seung-Young Kho

Abstract:

Nowadays, automatic fare collection (AFC) system is widely used in many countries. However, smart card data from many of cities does not contain alighting information which is necessary to build OD matrices. Therefore, in order to utilize smart card data, destinations of passengers should be estimated. In this paper, kernel density estimation was used to forecast probabilities of alighting stations of bus passengers and applied to smart card data in Seoul, Korea which contains boarding and alighting information. This method was also validated with actual data. In some cases, stochastic method was more accurate than deterministic method. Therefore, it is sufficiently accurate to be used to build OD matrices.

Keywords: destination estimation, Kernel density estimation, smart card data, validation

Procedia PDF Downloads 352
3660 Nonparametric Copula Approximations

Authors: Serge Provost, Yishan Zang

Abstract:

Copulas are currently utilized in finance, reliability theory, machine learning, signal processing, geodesy, hydrology and biostatistics, among several other fields of scientific investigation. It follows from Sklar's theorem that the joint distribution function of a multidimensional random vector can be expressed in terms of its associated copula and marginals. Since marginal distributions can easily be determined by making use of a variety of techniques, we address the problem of securing the distribution of the copula. This will be done by using several approaches. For example, we will obtain bivariate least-squares approximations of the empirical copulas, modify the kernel density estimation technique and propose a criterion for selecting appropriate bandwidths, differentiate linearized empirical copulas, secure Bernstein polynomial approximations of suitable degrees, and apply a corollary to Sklar's result. Illustrative examples involving actual observations will be presented. The proposed methodologies will as well be applied to a sample generated from a known copula distribution in order to validate their effectiveness.

Keywords: copulas, Bernstein polynomial approximation, least-squares polynomial approximation, kernel density estimation, density approximation

Procedia PDF Downloads 73
3659 Kinetics, Equilibrium and Thermodynamic Studies on Adsorption of Reactive Blue 29 from Aqueous Solution Using Activated Tamarind Kernel Powder

Authors: E. D. Paul, A. D. Adams, O. Sunmonu, U. S. Ishiaku

Abstract:

Activated tamarind kernel powder (ATKP) was prepared from tamarind fruit (Tamarindus indica), and utilized for the removal of Reactive Blue 29 (RB29) from its aqueous solution. The powder was activated using 4N nitric acid (HNO₃). The adsorbent was characterised using infrared spectroscopy, bulk density, ash content, pH, moisture content and dry matter content measurements. The effect of various parameters which include; temperature, pH, adsorbent dosage, ion concentration, and contact time were studied. Four different equilibrium isotherm models were tested on the experimental data, but the Temkin isotherm model was best-fitted into the experimental data. The pseudo-first order and pseudo-second-order kinetic models were also fitted into the graphs, but pseudo-second order was best fitted to the experimental data. The thermodynamic parameters showed that the adsorption of Reactive Blue 29 onto activated tamarind kernel powder is a physical process, feasible and spontaneous, exothermic in nature and there is decreased randomness at the solid/solution interphase during the adsorption process. Therefore, activated tamarind kernel powder has proven to be a very good adsorbent for the removal of Reactive Blue 29 dyes from industrial waste water.

Keywords: tamarind kernel powder, reactive blue 29, isotherms, kinetics

Procedia PDF Downloads 247
3658 Transition Dynamic Analysis of the Urban Disparity in Iran “Case Study: Iran Provinces Center”

Authors: Marzieh Ahmadi, Ruhullah Alikhan Gorgani

Abstract:

The usual methods of measuring regional inequalities can not reflect the internal changes of the country in terms of their displacement in different development groups, and the indicators of inequalities are not effective in demonstrating the dynamics of the distribution of inequality. For this purpose, this paper examines the dynamics of the urban inertial transport in the country during the period of 2006-2016 using the CIRD multidimensional index and stochastic kernel density method. it firstly selects 25 indicators in five dimensions including macroeconomic conditions, science and innovation, environmental sustainability, human capital and public facilities, and two-stage Principal Component Analysis methodology are developed to create a composite index of inequality. Then, in the second stage, using a nonparametric analytical approach to internal distribution dynamics and a stochastic kernel density method, the convergence hypothesis of the CIRD index of the Iranian provinces center is tested, and then, based on the ergodic density, long-run equilibrium is shown. Also, at this stage, for the purpose of adopting accurate regional policies, the distribution dynamics and process of convergence or divergence of the Iranian provinces for each of the five. According to the results of the first Stage, in 2006 & 2016, the highest level of development is related to Tehran and zahedan is at the lowest level of development. The results show that the central cities of the country are at the highest level of development due to the effects of Tehran's knowledge spillover and the country's lower cities are at the lowest level of development. The main reason for this may be the lack of access to markets in the border provinces. Based on the results of the second stage, which examines the dynamics of regional inequality transmission in the country during 2006-2016, the first year (2006) is not multifaceted and according to the kernel density graph, the CIRD index of about 70% of the cities. The value is between -1.1 and -0.1. The rest of the sequence on the right is distributed at a level higher than -0.1. In the kernel distribution, a convergence process is observed and the graph points to a single peak. Tends to be a small peak at about 3 but the main peak at about-0.6. According to the chart in the final year (2016), the multidimensional pattern remains and there is no mobility in the lower level groups, but at the higher level, the CIRD index accounts for about 45% of the provinces at about -0.4 Take it. That this year clearly faces the twin density pattern, which indicates that the cities tend to be closely related to each other in terms of development, so that the cities are low in terms of development. Also, according to the distribution dynamics results, the provinces of Iran follow the single-density density pattern in 2006 and the double-peak density pattern in 2016 at low and moderate inequality index levels and also in the development index. The country diverges during the years 2006 to 2016.

Keywords: Urban Disparity, CIRD Index, Convergence, Distribution Dynamics, Random Kernel Density

Procedia PDF Downloads 124
3657 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads

Authors: Seyed Sadegh Naseralavi

Abstract:

This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.

Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation

Procedia PDF Downloads 283
3656 A Theorem Related to Sample Moments and Two Types of Moment-Based Density Estimates

Authors: Serge B. Provost

Abstract:

Numerous statistical inference and modeling methodologies are based on sample moments rather than the actual observations. A result justifying the validity of this approach is introduced. More specifically, it will be established that given the first n moments of a sample of size n, one can recover the original n sample points. This implies that a sample of size n and its first associated n moments contain precisely the same amount of information. However, it is efficient to make use of a limited number of initial moments as most of the relevant distributional information is included in them. Two types of density estimation techniques that rely on such moments will be discussed. The first one expresses a density estimate as the product of a suitable base density and a polynomial adjustment whose coefficients are determined by equating the moments of the density estimate to the sample moments. The second one assumes that the derivative of the logarithm of a density function can be represented as a rational function. This gives rise to a system of linear equations involving sample moments, the density estimate is then obtained by solving a differential equation. Unlike kernel density estimation, these methodologies are ideally suited to model ‘big data’ as they only require a limited number of moments, irrespective of the sample size. What is more, they produce simple closed form expressions that are amenable to algebraic manipulations. They also turn out to be more accurate as will be shown in several illustrative examples.

Keywords: density estimation, log-density, polynomial adjustments, sample moments

Procedia PDF Downloads 165
3655 The Linear Combination of Kernels in the Estimation of the Cumulative Distribution Functions

Authors: Abdel-Razzaq Mugdadi, Ruqayyah Sani

Abstract:

The Kernel Distribution Function Estimator (KDFE) method is the most popular method for nonparametric estimation of the cumulative distribution function. The kernel and the bandwidth are the most important components of this estimator. In this investigation, we replace the kernel in the KDFE with a linear combination of kernels to obtain a new estimator based on the linear combination of kernels, the mean integrated squared error (MISE), asymptotic mean integrated squared error (AMISE) and the asymptotically optimal bandwidth for the new estimator are derived. We propose a new data-based method to select the bandwidth for the new estimator. The new technique is based on the Plug-in technique in density estimation. We evaluate the new estimator and the new technique using simulations and real-life data.

Keywords: estimation, bandwidth, mean square error, cumulative distribution function

Procedia PDF Downloads 581
3654 On the Fourth-Order Hybrid Beta Polynomial Kernels in Kernel Density Estimation

Authors: Benson Ade Eniola Afere

Abstract:

This paper introduces a family of fourth-order hybrid beta polynomial kernels developed for statistical analysis. The assessment of these kernels' performance centers on two critical metrics: asymptotic mean integrated squared error (AMISE) and kernel efficiency. Through the utilization of both simulated and real-world datasets, a comprehensive evaluation was conducted, facilitating a thorough comparison with conventional fourth-order polynomial kernels. The evaluation procedure encompassed the computation of AMISE and efficiency values for both the proposed hybrid kernels and the established classical kernels. The consistently observed trend was the superior performance of the hybrid kernels when compared to their classical counterparts. This trend persisted across diverse datasets, underscoring the resilience and efficacy of the hybrid approach. By leveraging these performance metrics and conducting evaluations on both simulated and real-world data, this study furnishes compelling evidence in favour of the superiority of the proposed hybrid beta polynomial kernels. The discernible enhancement in performance, as indicated by lower AMISE values and higher efficiency scores, strongly suggests that the proposed kernels offer heightened suitability for statistical analysis tasks when compared to traditional kernels.

Keywords: AMISE, efficiency, fourth-order Kernels, hybrid Kernels, Kernel density estimation

Procedia PDF Downloads 70
3653 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process

Authors: Kai Chen, Shuguang Cui, Feng Yin

Abstract:

Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.

Keywords: Gaussian process, spectral mixture, non-stationary, convolution

Procedia PDF Downloads 196
3652 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects

Authors: Behnam Tavakkol

Abstract:

Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.

Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data

Procedia PDF Downloads 215
3651 Developing High-Definition Flood Inundation Maps (HD-Fims) Using Raster Adjustment with Scenario Profiles (RASPTM)

Authors: Robert Jacobsen

Abstract:

Flood inundation maps (FIMs) are an essential tool in communicating flood threat scenarios to the public as well as in floodplain governance. With an increasing demand for online raster FIMs, the FIM State-of-the-Practice (SOP) is rapidly advancing to meet the dual requirements for high-resolution and high-accuracy—or High-Definition. Importantly, today’s technology also enables the resolution of problems of local—neighborhood-scale—bias errors that often occur in FIMs, even with the use of SOP two-dimensional flood modeling. To facilitate the development of HD-FIMs, a new GIS method--Raster Adjustment with Scenario Profiles, RASPTM—is described for adjusting kernel raster FIMs to match refined scenario profiles. With RASPTM, flood professionals can prepare HD-FIMs for a wide range of scenarios with available kernel rasters, including kernel rasters prepared from vector FIMs. The paper provides detailed procedures for RASPTM, along with an example of applying RASPTM to prepare an HD-FIM for the August 2016 Flood in Louisiana using both an SOP kernel raster and a kernel raster derived from an older vector-based flood insurance rate map. The accuracy of the HD-FIMs achieved with the application of RASPTM to the two kernel rasters is evaluated.

Keywords: hydrology, mapping, high-definition, inundation

Procedia PDF Downloads 77
3650 Improvement in Plasticity Index and Group Index of Black Cotton Soil Using Palm Kernel Shell Ash

Authors: Patel Darshan Shaileshkumar, M. G. Vanza

Abstract:

Black cotton soil is problematic soil for any construction work. Black cotton soil contains montmorillonite in its structure. Due to this mineral, black cotton soil will attain maximum swelling and shrinkage. Due to these volume changes, it is necessary to stabilize black cotton soil before the construction of the road. For soil stabilization use of pozzolanic waste is found to be a good solution by some researchers. The palm kernel shell ash (PKSA) is a pozzolanic material that can be used for soil stabilization. Basically, PKSA is a waste material, and it is available at a cheap cost. Palm kernel shell is a waste material generated in palm oil mills. Then palm kernel shell is used in industries instead of coal for power generation. After the burning of a palm kernel shell, ash is formed; the ash is called palm kernel shell ash (PKSA). The PKSA contains a free lime content that will react chemically with the silicate and aluminate of black cotton soil and forms a C-S-H and C-A-H gel which will bines soil particles together and reduce the plasticity of the soil. In this study, the PKSA is added to the soil. It was found that with the addition of PKSA content in the soil, the liquid limit of the soil is decreased, the plastic limit of the soil is increased, and the plasticity of the soil is decreased. The group index value of the soil is evaluated, and it was found that with the addition of PKSA GI value of the soil is decreased, which indicates the strength of the soil is improved.

Keywords: palm kernel shell ash, black cotton soil, liquid limit, group index, plastic limit, plasticity index

Procedia PDF Downloads 110
3649 Home Range and Spatial Interaction Modelling of Black Bears

Authors: Fekadu L. Bayisa, Elvan Ceyhan, Todd D. Steury

Abstract:

Interaction between individuals within the same species is an important component of population dynamics. An interaction can be either static (based on spatial overlap) or dynamic (based on movement interactions). Using GPS collar data, we can quantify both static and dynamic interactions between black bears. The goal of this work is to determine the level of black bear interactions using the 95% and 50% home ranges, as well as to model black bear spatial interactions, which could be attraction, avoidance/repulsion, or a lack of interaction at all, to gain new insights and improve our understanding of ecological processes. Recent methodological developments in home range estimation, inhomogeneous multitype/cross-type summary statistics, and envelope testing methods are explored to study the nature of black bear interactions. Our findings, in general, indicate that the black bears of one type in our data set tend to cluster around another type.

Keywords: autocorrelated kernel density estimator, cross-type summary function, inhomogeneous multitype Poisson process, kernel density estimator, minimum convex polygon, pointwise and global envelope tests

Procedia PDF Downloads 81
3648 Analysis of the Relationship between the Unitary Impulse Response for the nth-Volterra Kernel of a Duffing Oscillator System

Authors: Guillermo Manuel Flores Figueroa, Juan Alejandro Vazquez Feijoo, Jose Navarro Antonio

Abstract:

A continuous nonlinear system response may be obtained by an infinite sum of the so-called Volterra operators. Each operator is obtained from multidimensional convolution of nth-order between the nth-order Volterra kernel and the system input. These operators can also be obtained from the Associated Linear Equations (ALEs) that are linear models of subsystems which inputs and outputs are of the same nth-order. Each ALEs produces a particular nth-Volterra operator. As linear models a unitary impulse response can be obtained from them. This work shows the relationship between this unitary impulse responses and the corresponding order Volterra kernel.

Keywords: Volterra series, frequency response functions FRF, associated linear equations ALEs, unitary response function, Voterra kernel

Procedia PDF Downloads 669
3647 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data

Authors: Tiee-Jian Wu, Chih-Yuan Hsu

Abstract:

Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.

Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method

Procedia PDF Downloads 285
3646 Improving the Quality and Nutrient Content of Palm Kernel Cake through Fermentation with Bacillus subtilis

Authors: Mirnawati, Gita Ciptaan, Ferawati

Abstract:

Background and Objective: Palm kernel cake (PKC) is a waste of the palm oil industry. Indonesia, as the largest palm oil producer in the world, produced 45-46% palm kernel cake. Palm kernel cake can potentially be used as animal ration but its utilization for poultry is limited. Thus, fermentation process was done in order to increase the utilization PKC in poultry ration. An experiment was conducted to study the effect between Inoculum Doses with Bacillus subtilis and fermentation time to improve the quality and nutrient content of fermented Palm Kernel Cake. Material and Methods: 1) Palm kernel cake derived from Palm Kernel Processing Manufacture of Andalas Agro Industry in Pasaman, West Sumatra. 2) Bacillus subtilis obtained from The Research Center of Applied Chemistry LIPI, Bogor. 3) Preparations nutrient agar medium (NA) produced by Difoo - Becton Dickinson. 4) Rice bran 5) Aquades and mineral standard. The experiment used completely randomize design (CRD) with 3 x 3 factorial and 3 replications. The first factors were three doses of inoculum Bacillus subtilis: (3%), (5%), and (7%). The second factor was fermentation time: (1) 2 day, (2) 4 day, and (3) 6 day. The parameters were crude protein, crude fiber, nitrogen retention, and crude fiber digestibility of fermented palm kernel cake (FPKC). Results: The result of the study showed that there was significant interaction (P<0.01) between factor A and factor B and each factor A and B also showed significant effect (P<0.01) on crude protein, crude fiber, nitrogen retention, and crude fiber digestibility. Conclusion: From this study, it can be concluded that fermented PKC with 7% doses of Bacillus subtilis and 6 days fermentation time provides the best result as seen from 24.65% crude protein, 17.35% crude fiber, 68.47% nitrogen retention, 53.25% crude fiber digestibility of fermented palm kernel cake (FPKC).

Keywords: fermentation, Bacillus Subtilis, inoculum, palm kernel cake, quality, nutrient

Procedia PDF Downloads 215
3645 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis

Authors: Amir Hajian, Sepehr Damavandinejadmonfared

Abstract:

In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.

Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)

Procedia PDF Downloads 365
3644 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm

Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan

Abstract:

Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.

Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic

Procedia PDF Downloads 254
3643 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification

Authors: Hung-Sheng Lin, Cheng-Hsuan Li

Abstract:

Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.

Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction

Procedia PDF Downloads 344
3642 An Assessment of Health Hazards in Urban Communities: A Study of Spatial-Temporal Variations of Dengue Epidemic in Colombo, Sri Lanka

Authors: U. Thisara G. Perera, C. M. Kanchana N. K. Chandrasekara

Abstract:

Dengue is an epidemic which is spread by Aedes Egyptai and Aedes Albopictus mosquitoes. The cases of dengue show a dramatic growth rate of the epidemic in urban and semi urban areas spatially in tropical and sub-tropical regions of the world. Incidence of dengue has become a prominent reason for hospitalization and deaths in Asian countries, including Sri Lanka. During the last decade the dengue epidemic began to spread from urban to semi-urban and then to rural settings of the country. The highest number of dengue infected patients was recorded in Sri Lanka in the year 2016 and the highest number of patients was identified in Colombo district. Together with the commercial, industrial, and other supporting services, the district suffers from rapid urbanization and high population density. Thus, drainage and waste disposal patterns of the people in this area exert an additional pressure to the environment. The district is situated in the wet zone and thus low lying lands constitute the largest portion of the district. This situation additionally facilitates mosquito breeding sites. Therefore, the purpose of the present study was to assess the spatial and temporal distribution patterns of dengue epidemic in Kolonnawa MOH area (Medical Officer of Health) in the district of Colombo. The study was carried out using 615 recorded dengue cases in Kollonnawa MOH area during the south east monsoon season from May to September 2016. The Moran’s I and Kernel density estimation were used as analytical methods. The analysis of data was accomplished through the integrated use of ArcGIS 10.1 software packages along with Microsoft Excel analytical tool. Field observation was also carried out for verification purposes during the study period. Results of the Moran’s I index indicates that the spatial distribution of dengue cases showed a cluster distribution pattern across the area. Kernel density estimation emphasis that dengue cases are high where the population has gathered, especially in areas comprising housing schemes. Results of the Kernel Density estimation further discloses that hot spots of dengue epidemic are located in the western half of the Kolonnawa MOH area, which is close to the Colombo municipal boundary and there is a significant relationship with high population density and unplanned urban land use practices. Results of the field observation confirm that the drainage systems in these areas function poorly and careless waste disposal methods of the people further encourage mosquito breeding sites. This situation has evolved harmfully from a public health issue to a social problem, which ultimately impacts on the economy and social lives of the country.

Keywords: Dengue epidemic, health hazards, Kernel density, Moran’s I, Sri Lanka

Procedia PDF Downloads 300
3641 Water Footprint for the Palm Oil Industry in Malaysia

Authors: Vijaya Subramaniam, Loh Soh Kheang, Astimar Abdul Aziz

Abstract:

Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact.

Keywords: life cycle assessment, water footprint, crude palm oil, crude palm kernel oil, WAVE method

Procedia PDF Downloads 175