Search results for: Fractional Quantum Mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1139

Search results for: Fractional Quantum Mechanics

869 Computational Quantum Mechanics Study of Oxygen as Substitutional Atom in Diamond

Authors: K. M. Etmimi, A. A. Sghayer, A. M. Gsiea, A. M. Abutruma

Abstract:

Relatively few chemical species can be incorporated into diamond during CVD growth, and until recently the uptake of oxygen was thought to be low perhaps as a consequence of a short surface residence time. Within the literature, there is speculation regarding spectroscopic evidence for O in diamond, but no direct evidence. For example, the N3 and OK1 EPR centres have been tentatively assigned models made up from complexes of substitutional N and substitutional oxygen. In this study, we report density-functional calculations regarding the stability, electronic structures, geometry and hyperfine interaction of substitutional oxygen in diamond and show that the C2v, S=1 configuration very slightly lower in energy than the other configurations (C3v, Td, and C2v with S=0). The electronic structure of O in diamond generally gives rise to two defect-related energy states in the band gap one a non-degenerate a1 state lying near the middle of the energy gap and the other a threefold-degenerate t2 state located close to the conduction band edges. The anti-bonding a1 and t2 states will be occupied by one to three electrons for O+, O and O− respectively.

Keywords: DFT, oxygen, diamond, hyperfine

Procedia PDF Downloads 338
868 Identity-Based Encryption: A Comparison of Leading Classical and Post-Quantum Implementations in an Enterprise Setting

Authors: Emily Stamm, Neil Smyth, Elizabeth O'Sullivan

Abstract:

In Identity-Based Encryption (IBE), an identity, such as a username, email address, or domain name, acts as the public key. IBE consolidates the PKI by eliminating the repetitive process of requesting public keys for each message encryption. Two of the most popular schemes are Sakai-Kasahara (SAKKE), which is based on elliptic curve pairings, and the Ducas, Lyubashevsky, and Prest lattice scheme (DLP- Lattice), which is based on quantum-secure lattice cryptography. In or- der to embed the schemes in a standard enterprise setting, both schemes are implemented as shared system libraries and integrated into a REST service that functions at the enterprise level. The performance of both schemes as libraries and services is compared, and the practicalities of implementation and application are discussed. Our performance results indicate that although SAKKE has the smaller key and ciphertext sizes, DLP-Lattice is significantly faster overall and we recommend it for most enterprise use cases.

Keywords: identity-based encryption, post-quantum cryptography, lattice-based cryptography, IBE

Procedia PDF Downloads 93
867 Electrical Properties of CVD-Graphene on SiC

Authors: Bilal Jabakhanji, Dimitris Kazazis, Adrien Michon, Christophe Consejo, Wilfried Desrat, Benoit Jouault

Abstract:

In this paper, we investigate the electrical properties of graphene grown by Chemical Vapor Deposition (CVD) on the Si face of SiC substrates. Depending on the growth condition, hole or electron doping can be achieved, down to a few 1011cm−2. The high homogeneity of the graphene and the low intrinsic carrier concentration, allow the remarkable observation of the Half Integer Quantum Hall Effect, typical of graphene, at the centimeter scale.

Keywords: graphene, quantum hall effect, chemical vapor, deposition, silicon carbide

Procedia PDF Downloads 634
866 Optimization of the Numerical Fracture Mechanics

Authors: H. Hentati, R. Abdelmoula, Li Jia, A. Maalej

Abstract:

In this work, we present numerical simulations of the quasi-static crack propagation based on the variation approach. We perform numerical simulations of a piece of brittle material without initial crack. An alternate minimization algorithm is used. Based on these numerical results, we determine the influence of numerical parameters on the location of crack. We show the importance of trying to optimize the time of numerical computation and we present the first attempt to develop a simple numerical method to optimize this time.

Keywords: fracture mechanics, optimization, variation approach, mechanic

Procedia PDF Downloads 576
865 Spin-Dipole Excitations Produced On-Demand in the Fermi Sea

Authors: Mykhailo Moskalets, Pablo Burset, Benjamin Roussel, Christian Flindt

Abstract:

The single-particle injection from the Andreev level and how such injection is simulated using a voltage pulse are discussed. Recently, high-speed quantum-coherent electron sources injecting one- to few-particle excitations into the Fermi sea have been experimentally realized. The main obstacle to using these excitations as flying qubits for quantum-information processing purposes is decoherence due to the long-range Coulomb interaction. An obvious way to get around this difficulty is to employ electrically neutral excitations. Here it is discussed how such excitations can be generated on-demand using the same injection principles as in existing electron sources. Namely, with the help of a voltage pulse of a certain shape applied to the Fermi sea or using a driven quantum dot with superconducting correlations. The advantage of the latter approach is the possibility of varying the electron-hole content in the excitation and the possibility of creating a charge-neutral but spin-dipole excitation.

Keywords: Andreev level, on-demand, single-electron, spin-dipole

Procedia PDF Downloads 55
864 Graphical Theoretical Construction of Discrete time Share Price Paths from Matroid

Authors: Min Wang, Sergey Utev

Abstract:

The lessons from the 2007-09 global financial crisis have driven scientific research, which considers the design of new methodologies and financial models in the global market. The quantum mechanics approach was introduced in the unpredictable stock market modeling. One famous quantum tool is Feynman path integral method, which was used to model insurance risk by Tamturk and Utev and adapted to formalize the path-dependent option pricing by Hao and Utev. The research is based on the path-dependent calculation method, which is motivated by the Feynman path integral method. The path calculation can be studied in two ways, one way is to label, and the other is computational. Labeling is a part of the representation of objects, and generating functions can provide many different ways of representing share price paths. In this paper, the recent works on graphical theoretical construction of individual share price path via matroid is presented. Firstly, a study is done on the knowledge of matroid, relationship between lattice path matroid and Tutte polynomials and ways to connect points in the lattice path matroid and Tutte polynomials is suggested. Secondly, It is found that a general binary tree can be validly constructed from a connected lattice path matroid rather than general lattice path matroid. Lastly, it is suggested that there is a way to represent share price paths via a general binary tree, and an algorithm is developed to construct share price paths from general binary trees. A relationship is also provided between lattice integer points and Tutte polynomials of a transversal matroid. Use this way of connection together with the algorithm, a share price path can be constructed from a given connected lattice path matroid.

Keywords: combinatorial construction, graphical representation, matroid, path calculation, share price, Tutte polynomial

Procedia PDF Downloads 107
863 Preparation and Characterization of Electrospun CdTe Quantum Dots / Nylon-6 Nanofiber Mat

Authors: Negar Mesgara, Laleh Maleknia

Abstract:

In this paper, electrospun CdTe quantum dot / nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by FE-SEM, XRD and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The phenomenon of ‘on ‘ and ‘off ‘ luminescence intermittency (blinking) of CdTe QDs in nylon-6 was investigated by single-molecule optical microscopy, and we identified that the intermittencies of single QDs were correlated with the interaction of water molecules absorbed on the QD surface. The ‘off’ times, the interval between adjacent ‘on’ states, remained essentially unaffected with an increase in excitation intensity. In the case of ‘on’ time distribution, power law behavior with an exponential cutoff tail is observed at longer time scales. These observations indicate that the luminescence blinking statistics of water-soluble single CdTe QDs is significantly dependent on the aqueous environment, which is interpreted in terms of passivation of the surface trap states of QDs.

Keywords: electrospinning, CdTe quantum dots, Nylon-6, Nanocomposite

Procedia PDF Downloads 396
862 Prediction of Crack Propagation in Bonded Joints Using Fracture Mechanics

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

In this work, Fracture Mechanics is used to predict crack propagation in the adhesive jointing aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases.

Keywords: fracture, adhesive joint, debonding, APDL, LEFM

Procedia PDF Downloads 388
861 Probing Neuron Mechanics with a Micropipette Force Sensor

Authors: Madeleine Anthonisen, M. Hussain Sangji, G. Monserratt Lopez-Ayon, Margaret Magdesian, Peter Grutter

Abstract:

Advances in micromanipulation techniques and real-time particle tracking with nanometer resolution have enabled biological force measurements at scales relevant to neuron mechanics. An approach to precisely control and maneuver neurite-tethered polystyrene beads is presented. Analogous to an Atomic Force Microscope (AFM), this multi-purpose platform is a force sensor with imaging acquisition and manipulation capabilities. A mechanical probe composed of a micropipette with its tip fixed to a functionalized bead is used to incite the formation of a neurite in a sample of rat hippocampal neurons while simultaneously measuring the tension in said neurite as the sample is pulled away from the beaded tip. With optical imaging methods, a force resolution of 12 pN is achieved. Moreover, the advantages of this technique over alternatives such as AFM, namely ease of manipulation which ultimately allows higher throughput investigation of the mechanical properties of neurons, is demonstrated.

Keywords: axonal growth, axonal guidance, force probe, pipette micromanipulation, neurite tension, neuron mechanics

Procedia PDF Downloads 329
860 Relativistic Energy Analysis for Some q Deformed Shape Invariant Potentials in D Dimensions Using SUSYQM Approach

Authors: A. Suparmi, C. Cari, M. Yunianto, B. N. Pratiwi

Abstract:

D-dimensional Dirac equations of q-deformed shape invariant potentials were solved using supersymmetric quantum mechanics (SUSY QM) in the case of exact spin symmetry. The D dimensional radial Dirac equation for shape invariant potential reduces to one-dimensional Schrodinger type equation by an appropriate variable and parameter change. The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial D dimensional Dirac equation that have reduced to one dimensional Schrodinger type equation. The SUSY operator was used to generate the D dimensional relativistic radial wave functions, the relativistic energy equation reduced to the non-relativistic energy in the non-relativistic limit.

Keywords: D-dimensional dirac equation, non-central potential, SUSY QM, radial wave function

Procedia PDF Downloads 322
859 Spherical Nonlinear Wave Propagation in Relativistic Quantum Plasma

Authors: Alireza Abdikian

Abstract:

By assuming a quantum relativistic degenerate electron-positron (e-p) plasma media, the nonlinear acoustic solitary propagation in the presence of the stationary ions for neutralizing the plasma background of bounded cylindrical geometry was investigated. By using the standard reductive perturbation technique with cooperation the quantum hydrodynamics model for the e-p fluid, the spherical Kadomtsev-Petviashvili equation was derived for small but finite amplitude waves and was given the solitary wave solution for the parameters relevant for dense astrophysical objects such as white dwarf stars. By using a suitable coordinate transformation and using improved F-expansion technique, the SKP equation can be solved analytically. The numerical results reveal that the relativistic effects lead to propagate the electrostatic bell shape structures and by increasing the relativistic effects, the amplitude and the width of the e-p acoustic solitary wave will decrease.

Keywords: Electron-positron plasma, Acoustic solitary wave, Relativistic plasmas, the spherical Kadomtsev-Petviashvili equation

Procedia PDF Downloads 115
858 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies

Authors: Mehrnaz Mostafavi

Abstract:

Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.

Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs

Procedia PDF Downloads 42
857 Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs.

Keywords: silicon quantum dots, silver nanoparticles (AgNPs), luminescence, plasmon

Procedia PDF Downloads 341
856 A Look at the Quantum Theory of Atoms in Molecules from the Discrete Morse Theory

Authors: Dairo Jose Hernandez Paez

Abstract:

The quantum theory of atoms in molecules (QTAIM) allows us to obtain topological information on electronic density in quantum mechanical systems. The QTAIM starts by considering the electron density as a continuous mathematical object. On the other hand, the discretization of electron density is also a mathematical object, which, from discrete mathematics, would allow a new approach to its topological study. From this point of view, it is necessary to develop a series of steps that provide the theoretical support that guarantees its application. Some of the steps that we consider most important are mentioned below: (1) obtain good representations of the electron density through computational calculations, (2) design a methodology for the discretization of electron density, and construct the simplicial complex. (3) Make an analysis of the discrete vector field associating the simplicial complex. (4) Finally, in this research, we propose to use the discrete Morse theory as a mathematical tool to carry out studies of electron density topology.

Keywords: discrete mathematics, Discrete Morse theory, electronic density, computational calculations

Procedia PDF Downloads 73
855 Real Time Ultrasoft Transverse Photons Self Energy at Next To-Leading Order in Hot Scalar Quantum Electrodynamics

Authors: Karima Bouakaz, Amel Youcefi, Abdessamad Abada

Abstract:

We determine a compact analytic expression for the complete next-to-leading contribution to the retarded transverse photons self-energy in the context of hard-thermal-loop summed perturbation of massless quantum electrodynamics (QED) at high temperature to calculate the next-to-leading order dispersion relations for slow-moving transverse photons at high temperature scalar quantum electrodynamics (Scalar QED), using the real time formalism (RTF) in physical representation. We derive the analytic expressions of hard thermal loop (HTL) contributions to propagators and vertices to determine the expressions of the effective propagators and vertices in RTF that contribute to the complete next-to leading order contribution of retarded transverse photons self-energy.

Keywords: hard thermal loop, hot scalar QED, NLO computations, soft transverse photons

Procedia PDF Downloads 47
854 Capacitance Models of AlGaN/GaN High Electron Mobility Transistors

Authors: A. Douara, N. Kermas, B. Djellouli

Abstract:

In this study, we report calculations of gate capacitance of AlGaN/GaN HEMTs with nextnano device simulation software. We have used a physical gate capacitance model for III-V FETs that incorporates quantum capacitance and centroid capacitance in the channel. These simulations explore various device structures with different values of barrier thickness and channel thickness. A detailed understanding of the impact of gate capacitance in HEMTs will allow us to determine their role in future 10 nm physical gate length node.

Keywords: gate capacitance, AlGaN/GaN, HEMTs, quantum capacitance, centroid capacitance

Procedia PDF Downloads 372
853 Concept of the Active Flipped Learning in Engineering Mechanics

Authors: Lin Li, Farshad Amini

Abstract:

The flipped classroom has been introduced to promote collaborative learning and higher-order learning objectives. In contrast to the traditional classroom, the flipped classroom has students watch prerecorded lecture videos before coming to class and then “class becomes the place to work through problems, advance concepts, and engage in collaborative learning”. In this paper, the active flipped learning combines flipped classroom with active learning that is to establish an active flipped learning (AFL) model, aiming to promote active learning, stress deep learning, encourage student engagement and highlight data-driven personalized learning. Because students have watched the lecture prior to class, contact hours can be devoted to problem-solving and gain a deeper understanding of the subject matter. The instructor is able to provide students with a wide range of learner-centered opportunities in class for greater mentoring and collaboration, increasing the possibility to engage students. Currently, little is known about the extent to which AFL improves engineering students’ performance. This paper presents the preliminary study on the core course of sophomore students in Engineering Mechanics. A series of survey and interviews have been conducted to compare students’ learning engagement, empowerment, self-efficacy, and satisfaction with the AFL. It was found that the AFL model taking advantage of advanced technology is a convenient and professional avenue for engineering students to strengthen their academic confidence and self-efficacy in the Engineering Mechanics by actively participating in learning and fostering their deep understanding of engineering statics and dynamics

Keywords: active learning, engineering mechanics, flipped classroom, performance

Procedia PDF Downloads 260
852 Forensic Applications of Quantum Dots

Authors: Samaneh Nabavi, Hadi Shirzad, Somayeh Khanjani, Shirin Jalili

Abstract:

Quantum dots (QDs) are semiconductor nanocrystals that exhibit intrinsic optical and electrical properties that are size dependent due to the quantum confinement effect. Quantum confinement is brought about by the fact that in bulk semiconductor material the electronic structure consists of continuous bands, and that as the size of the semiconductor material decreases its radius becomes less than the Bohr exciton radius (the distance between the electron and electron-hole) and discrete energy levels result. As a result QDs have a broad absorption range and a narrow emission which correlates to the band gap energy (E), and hence QD size. QDs can thus be tuned to give the desired wavelength of fluorescence emission.Due to their unique properties, QDs have attracted considerable attention in different scientific areas. Also, they have been considered for forensic applications in recent years. The ability of QDs to fluoresce up to 20 times brighter than available fluorescent dyes makes them an attractive nanomaterial for enhancing the visualization of latent fingermarks, or poorly developed fingermarks. Furthermore, the potential applications of QDs in the detection of nitroaromatic explosives, such as TNT, based on directive fluorescence quenching of QDs, electron transfer quenching process or fluorescence resonance energy transfer have been paid to attention. DNA analysis is associated tightly with forensic applications in molecular diagnostics. The amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. Accordingly, highly sensitive detection of human genomic DNA is an essential issue for forensic study. QDs have also a variety of advantages as an emission probe in forensic DNA quantification.

Keywords: forensic science, quantum dots, DNA typing, explosive sensor, fingermark analysis

Procedia PDF Downloads 817
851 MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation

Authors: Quan Li, Dongcai Shen, Zhengting Xiao, Xin Liu Mingrui Wu, Licheng Liu, Qin Li, Xianguo Li, Wentai Wang

Abstract:

Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ².

Keywords: electrocatalytic N₂ oxidation, nitrate production, CeO₂, MXene quantum dots, double-shelled hollow spheres

Procedia PDF Downloads 18
850 Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics

Authors: H. Loumi-Fergane, A. Belaidi

Abstract:

The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincaré-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used.  In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in qi, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system.

Keywords: conservation laws, field theories, multisymplectic geometry, relativistic mechanics

Procedia PDF Downloads 180
849 Chaos in a Stadium-Shaped 2-D Quantum Dot

Authors: Roger Yu

Abstract:

A numerical scheme has been developed to solve wave equations for chaotic systems such as stadium-shaped cavity. The same numerical method can also be used for finding wave properties of rectangle cavities with randomly placed obstacles. About 30k eigenvalues have been obtained accurately on a normal circumstance. For comparison, we also initiated an experimental study which determines both eigenfrequencies and eigenfunctions of a stadium-shaped cavity using pulse and normal mode analyzing techniques. The acoustic cavity was made adjustable so that the transition from nonchaotic (circle) to chaotic (stadium) waves can be investigated.

Keywords: quantum dot, chaos, numerical method, eigenvalues

Procedia PDF Downloads 89
848 A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films

Authors: Amir Shariffar, Haider Salman, Tanveer Siddique, Omar Manasreh

Abstract:

According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor.

Keywords: memristor, quantum dot, resistive switching, thin film

Procedia PDF Downloads 98
847 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems

Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu

Abstract:

The modeling lung respiratory system which has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the lung pulmonary system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically-relevant three dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue which produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue visco-elasticity and tidal breathing period.

Keywords: lung deformation and mechanics; Tissue mechanics; Viscoelasticity; Fluid-structure interactions; ANSYS

Procedia PDF Downloads 291
846 Development, Optimization, and Validation of a Synchronous Fluorescence Spectroscopic Method with Multivariate Calibration for the Determination of Amlodipine and Olmesartan Implementing: Experimental Design

Authors: Noha Ibrahim, Eman S. Elzanfaly, Said A. Hassan, Ahmed E. El Gendy

Abstract:

Objectives: The purpose of the study is to develop a sensitive synchronous spectrofluorimetric method with multivariate calibration after studying and optimizing the different variables affecting the native fluorescence intensity of amlodipine and olmesartan implementing an experimental design approach. Method: In the first step, the fractional factorial design used to screen independent factors affecting the intensity of both drugs. The objective of the second step was to optimize the method performance using a Central Composite Face-centred (CCF) design. The optimal experimental conditions obtained from this study were; a temperature of (15°C ± 0.5), the solvent of 0.05N HCl and methanol with a ratio of (90:10, v/v respectively), Δλ of 42 and the addition of 1.48 % surfactant providing a sensitive measurement of amlodipine and olmesartan. The resolution of the binary mixture with a multivariate calibration method has been accomplished mainly by using partial least squares (PLS) model. Results: The recovery percentage for amlodipine besylate and atorvastatin calcium in tablets dosage form were found to be (102 ± 0.24, 99.56 ± 0.10, for amlodipine and Olmesartan, respectively). Conclusion: Method is valid according to some International Conference on Harmonization (ICH) guidelines, providing to be linear over a range of 200-300, 500-1500 ng mL⁻¹ for amlodipine and Olmesartan. The methods were successful to estimate amlodipine besylate and olmesartan in bulk powder and pharmaceutical preparation.

Keywords: amlodipine, central composite face-centred design, experimental design, fractional factorial design, multivariate calibration, olmesartan

Procedia PDF Downloads 121
845 Numerical Simulation of the Fractional Flow Reserve in the Coronary Artery with Serial Stenoses of Varying Configuration

Authors: Mariia Timofeeva, Andrew Ooi, Eric K. W. Poon, Peter Barlis

Abstract:

Atherosclerotic plaque build-up, commonly known as stenosis, limits blood flow and hence oxygen and nutrient supplies to the heart muscle. Thus, assessment of its severity is of great interest to health professionals. Numerical simulation of the fractional flow reserve (FFR) has proved to be well correlated with invasively measured FFR used for physiological assessment of the severity of coronary stenosis in arteries. Atherosclerosis may impact the diseased artery in several locations causing serial stenoses, which is a complicated subset of coronary artery disease that requires careful treatment planning. However, hemodynamic of the serial sequential stenoses in coronary arteries has not been extensively studied. The hemodynamics of the serial stenoses is complex because the stenoses in the series interact and affect the flow through each other. To address this, serial stenoses in a 3.4 mm left anterior descending (LAD) artery are examined in this study. Two diameter stenoses (DS) are considered, 30 and 50 percent of the reference diameter. Serial stenoses configurations are divided into three groups based on the order of the stenoses in the series, spacing between them, and deviation of the stenoses’ symmetry (eccentricity). A patient-specific pulsatile waveform is used in the simulations. Blood flow within the stenotic artery is assumed to be laminar, Newtonian, and incompressible. Results for the FFR are reported. Based on the simulation results, it can be deduced that the larger drop in pressure (smaller value of the FFR) is expected when the percentage of the second stenosis in the series is bigger. Varying the distance between the stenoses affects the location of the maximum drop in the pressure, while the minimal FFR in the artery remains unchanged. Eccentric serial stenoses are characterized by a noticeably larger decrease in pressure through the stenoses and by the development of the chaotic flow downstream of the stenoses. The largest drop in the pressure (about 4% difference compared to the axisymmetric case) is obtained for the serial stenoses, where both the stenoses are highly eccentric with the centerlines deflected to the different sides of the LAD. In conclusion, varying configuration of the sequential serial stenoses results in a different distribution of FFR through the LAD. Results presented in this study provide insight into the clinical assessment of the severity of the coronary serial stenoses, which is proved to depend on the relative position of the stenoses and the deviation of the stenoses’ symmetry.

Keywords: computational fluid dynamics, coronary artery, fractional flow reserve, serial stenoses

Procedia PDF Downloads 162
844 Study of Quantum Lasers of Random Trimer Barrier AlxGa1-xAs Superlattices

Authors: Bentata Samir, Bendahma Fatima

Abstract:

We have numerically studied the random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) in intentional correlated disorder. We have specially investigated the effect of aluminum concentration on the laser wavelength. We discuss the impact of the aluminum concentration associated with the structure profile on the laser wavelengths.

Keywords: superlattices, transfer matrix method, transmission coefficient, quantum laser

Procedia PDF Downloads 453
843 Investigation of the Effects of Gamma Radiation on the Electrically Active Defects in InAs/InGaAs Quantum Dots Laser Structures Grown by Molecular Beam Epitaxy on GaAs Substrates Using Deep Level Transient Spectroscopy

Authors: M. Al Huwayz, A. Salhi, S. Alhassan, S. Alotaibi, A. Almalki, M.Almunyif, A. Alhassni, M. Henini

Abstract:

Recently, there has been much research carried out to investigate quantum dots (QDs) lasers with the aim to increase the gain of quantum well lasers. However, one of the difficulties with these structures is that electrically active defects can lead to serious issues in the performance of these devices. It is therefore essential to fully understand the types of defects introduced during the growth and/or the fabrication process. In this study, the effects of Gamma radiation on the electrically active defects in p-i-n InAs/InGaAsQDs laser structures grown by Molecular Beam Epitaxy (MBE) technique on GaAs substrates were investigated. Deep Level Transient Spectroscopy (DLTS), current-voltage (I-V), and capacitance-voltage (C-V) measurements were performed to explore these effects on the electrical properties of these QDs lasers. I-V measurements showed that as-grown sample had better electrical properties than the irradiated sample. However, DLTS and Laplace DLTS measurements at different reverse biases revealed that the defects in the-region of the p-i-n structures were decreased in the irradiated sample. In both samples, a trap with an activation energy of ~ 0.21 eV was assigned to the well-known defect M1 in GaAs layers

Keywords: quantum dots laser structures, gamma radiation, DLTS, defects, nAs/IngaAs

Procedia PDF Downloads 157
842 Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots

Authors: Hyunho Shin, Jaekwang Jung, Jeongho Park, Sungwon Hwang

Abstract:

For the application of graphene quantum dots (GQDs) to optoelectronic nanodevices, it is of critical importance to understand the mechanisms which result in novel phenomena of their light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Here, we present size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependencies. With varying the average size (da) of GQDs from 5 to 35 nm, the peak energy of the absorption spectra monotonically decreases, while that of the visible PL spectra unusually shows nonmonotonic behaviors having a minimum at diameter ∼17 nm. The PL behaviors can be attributed to the novel feature of GQDs, that is, the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at diameter ∼17 nm as the GQD size increases, as demonstrated by high resolution transmission electron microscopy. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of GQDs provides a device for practical realization of environmentally benign, high performance flexible devices in the future.

Keywords: graphene, quantum dot, size, photoluminescence

Procedia PDF Downloads 267
841 Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism

Authors: Somnath Bhattachryya, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin

Abstract:

In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology.

Keywords: quantu meditation, insight picture, quantum circuit, absolute time, teleportation

Procedia PDF Downloads 34
840 Axiomatic Systems as an Alternative to Teach Physics

Authors: Liliana M. Marinelli, Cristina T. Varanese

Abstract:

In the last few years, students from higher education have difficulties in grasping mathematical concepts which support physical matters, especially those in the first years of this education. Classical Physics teaching turns to be complex when students are not able to make use of mathematical tools which lead to the conceptual structure of Physics. When derivation and integration rules are not used or developed in parallel with other disciplines, the physical meaning that we attempt to convey turns to be complicated. Due to this fact, it could be of great use to see the Classical Mechanics from an axiomatic approach, where the correspondence rules give physical meaning, if we expect students to understand concepts clearly and accurately. Using the Minkowski point of view adapted to a two-dimensional space and time where vectors, matrices, and straight lines (worked from an affine space) give mathematical and physical rigorosity even when it is more abstract. An interesting option would be to develop the disciplinary contents from an axiomatic version which embraces the Classical Mechanics as a particular case of Relativistic Mechanics. The observation about the increase in the difficulties stated by students in the first years of education allows this idea to grow as a possible option to improve performance and understanding of the concepts of this subject.

Keywords: axioms, classical physics, physical concepts, relativity

Procedia PDF Downloads 273