Search results for: CFD numerical simulations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4670

Search results for: CFD numerical simulations

4400 Numerical and Analytical Approach for Film Condensation on Different Forms of Surfaces

Authors: A. Kazemi Jouybari, A. Mirabdolah Lavasani

Abstract:

This paper seeks to the solution of condensation around of a flat plate, circular and elliptical tube in way of numerical and analytical methods. Also, it calculates the entropy production rates. The first, problem was solved by using mesh dynamic and rational assumptions, next it was compared with the numerical solution that the result had acceptable errors. An additional supporting relation was applied based on a characteristic of condensation phenomenon for condensing elements. As it has been shown here, due to higher rates of heat transfer for elliptical tubes, they have more entropy production rates, in comparison to circular ones. Findings showed that two methods were efficient. Furthermore, analytical methods can be used to optimize the problem and reduce the entropy production rate.

Keywords: condensation, numerical solution, analytical solution, entropy rate

Procedia PDF Downloads 182
4399 Numerical Solution of 1-D Shallow Water Equations at Junction for Sub-Critical and Super-Critical Flow

Authors: Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi

Abstract:

In this paper, we solve 1-D shallow water equation for sub-critical and super-critical water flow at junction. The water flow at junction has been studied for the last 50 years from the physical-hydraulic point of views and for numerical computations need more attention. For numerical simulation, we need to establish an inner boundary condition at the junction to avoid an oscillation which rise from the waves interactions at the junction. Indeed, we introduce a new boundary condition at the junction based on the mass conservation, total head, and the admissible wave relations between the flow parameters in the three branches to predict the water depths and discharges at the junction. These boundary conditions are valid for sub-critical flow and super-critical flow.

Keywords: numerical simulation, junction flow, sub-critical flow, super-critical flow

Procedia PDF Downloads 473
4398 The Influence of Fiber Volume Fraction on Thermal Conductivity of Pultruded Profile

Authors: V. Lukášová, P. Peukert, V. Votrubec

Abstract:

Thermal conductivity in the x, y and z-directions was measured on a pultruded profile that was manufactured by the technology of pulling from glass fibers and a polyester matrix. The results of measurements of thermal conductivity showed considerable variability in different directions. The caused variability in thermal conductivity was expected due fraction variations. The cross-section of the pultruded profile was scanned. An image analysis illustrated an uneven distribution of the fibers and the matrix in the cross-section. The distribution of these inequalities was processed into a Voronoi diagram in the observed area of the pultruded profile cross-section. In order to verify whether the variation of the fiber volume fraction in the pultruded profile can affect its thermal conductivity, the numerical simulations in the ANSYS Fluent were performed. The simulation was based on the geometry reconstructed from image analysis. The aim is to quantify thermal conductivity numerically. Above all, images with different volume fractions were chosen. The results of the measured thermal conductivity were compared with the calculated thermal conductivity. The evaluated data proved a strong correlation between volume fraction and thermal conductivity of the pultruded profile. Based on presented results, a modification of production technology may be proposed.

Keywords: pultrusion profile, volume fraction, thermal conductivity, numerical simulation

Procedia PDF Downloads 310
4397 Numerical Simulation of a Combined Impact of Cooling and Ventilation on the Indoor Environmental Quality

Authors: Matjaz Prek

Abstract:

Impact of three different combinations of cooling and ventilation systems on the indoor environmental quality (IEQ) has been studied. Comparison of chilled ceiling cooling in combination with displacement ventilation, cooling with fan coil unit and cooling with flat wall displacement outlets was performed. All three combinations were evaluated from the standpoint of whole-body and local thermal comfort criteria as well as from the standpoint of ventilation effectiveness. The comparison was made on the basis of numerical simulation with DesignBuilder and Fluent. Numerical simulations were carried out in two steps. Firstly the DesignBuilder software environment was used to model the buildings thermal performance and evaluation of the interaction between the environment and the building. Heat gains of the building and of the individual space, as well as the heat loss on the boundary surfaces in the room, were calculated. In the second step Fluent software environment was used to simulate the response of the indoor environment, evaluating the interaction between building and human, using the simulation results obtained in the first step. Among the systems presented, the ceiling cooling system in combination with displacement ventilation was found to be the most suitable as it offers a high level of thermal comfort with adequate ventilation efficiency. Fan coil cooling has proved inadequate from the standpoint of thermal comfort whereas flat wall displacement outlets were inadequate from the standpoint of ventilation effectiveness. The study showed the need in evaluating indoor environment not solely from the energy use point of view, but from the point of view of indoor environmental quality as well.

Keywords: cooling, ventilation, thermal comfort, ventilation effectiveness, indoor environmental quality, IEQ, computational fluid dynamics

Procedia PDF Downloads 156
4396 Geographic Information System for District Level Energy Performance Simulations

Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck

Abstract:

The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.

Keywords: CityGML, EnergyADE, energy performance simulation, GIS

Procedia PDF Downloads 139
4395 Numerical Assessment of Fire Characteristics with Bodies Engulfed in Hydrocarbon Pool Fire

Authors: Siva Kumar Bathina, Sudheer Siddapureddy

Abstract:

Fires accident becomes even worse when the hazardous equipment like reactors or radioactive waste packages are engulfed in fire. In this work, large-eddy numerical fire simulations are performed using fire dynamic simulator to predict the thermal behavior of such bodies engulfed in hydrocarbon pool fires. A radiatively dominated 0.3 m circular burner with n-heptane as the fuel is considered in this work. The fire numerical simulation results without anybody inside the fire are validated with the reported experimental data. The comparison is in good agreement for different flame properties like predicted mass burning rate, flame height, time-averaged center-line temperature, time-averaged center-line velocity, puffing frequency, the irradiance at the surroundings, and the radiative heat feedback to the pool surface. Cask of different sizes is simulated with SS304L material. The results are independent of the material of the cask simulated as the adiabatic surface temperature concept is employed in this study. It is observed that the mass burning rate increases with the blockage ratio (3% ≤ B ≤ 32%). However, the change in this increment is reduced at higher blockage ratios (B > 14%). This is because the radiative heat feedback to the fuel surface is not only from the flame but also from the cask volume. As B increases, the volume of the cask increases and thereby increases the radiative contribution to the fuel surface. The radiative heat feedback in the case of the cask engulfed in the fire is increased by 2.5% to 31% compared to the fire without cask.

Keywords: adiabatic surface temperature, fire accidents, fire dynamic simulator, radiative heat feedback

Procedia PDF Downloads 104
4394 Water Diffusivity in Amorphous Epoxy Resins: An Autonomous Basin Climbing-Based Simulation Method

Authors: Betim Bahtiri, B. Arash, R. Rolfes

Abstract:

Epoxy-based materials are frequently exposed to high-humidity environments in many engineering applications. As a result, their material properties would be degraded by water absorption. A full characterization of the material properties under hygrothermal conditions requires time- and cost-consuming experimental tests. To gain insights into the physics of diffusion mechanisms, atomistic simulations have been shown to be effective tools. Concerning the diffusion of water in polymers, spatial trajectories of water molecules are obtained from molecular dynamics (MD) simulations allowing the interpretation of diffusion pathways at the nanoscale in a polymer network. Conventional MD simulations of water diffusion in amorphous polymers lead to discrepancies at low temperatures due to the short timescales of the simulations. In the proposed model, this issue is solved by using a combined scheme of autonomous basin climbing (ABC) with kinetic Monte Carlo and reactive MD simulations to investigate the diffusivity of water molecules in epoxy resins across a wide range of temperatures. It is shown that the proposed simulation framework estimates kinetic properties of water diffusion in epoxy resins that are consistent with experimental observations and provide a predictive tool for investigating the diffusion of small molecules in other amorphous polymers.

Keywords: epoxy resins, water diffusion, autonomous basin climbing, kinetic Monte Carlo, reactive molecular dynamics

Procedia PDF Downloads 37
4393 Coupling Heat Transfer by Natural Convection and Thermal Radiation in a Storage Tank of LNG

Authors: R. Hariti, M. Saighi, H. Saidani-Scott

Abstract:

A numerical simulation of natural convection double diffusion, coupled with thermal radiation in unsteady laminar regime in a storage tank is carried out. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The radiative transfer equation is solved using the discrete coordinate method. This numerical simulation is used to determine the temperature profiles, stream function, velocity vectors and variation of the heat flux density for unsteady laminar natural convection. Furthermore, the influence of thermal radiation on the heat transfer has been investigated and the results obtained were compared to those found in the literature. Good agreement between the results obtained by the numerical method and those taken on site for the temperature values.

Keywords: tank, storage, liquefied natural gas, natural convection, thermal radiation, numerical simulation

Procedia PDF Downloads 509
4392 Effect of Hydroxyl Functionalization on the Mechanical and Fracture Behaviour of Monolayer Graphene

Authors: Akarsh Verma, Avinash Parashar

Abstract:

The aim of this article is to study the effects of hydroxyl functional group on the mechanical strength and fracture toughness of graphene. This functional group forms the backbone of intrinsic atomic structure of graphene oxide (GO). Molecular dynamics-based simulations were performed in conjunction with reactive force field (ReaxFF) parameters to capture the mode-I fracture toughness of hydroxyl functionalised graphene. Moreover, these simulations helped in concluding that spatial distribution and concentration of hydroxyl functional group significantly affects the fracture morphology of graphene nanosheet. In contrast to literature investigations, atomistic simulations predicted a transition in the failure morphology of hydroxyl functionalised graphene from brittle to ductile as a function of its spatial distribution on graphene sheet.

Keywords: graphene, graphene oxide, ReaxFF, molecular dynamics

Procedia PDF Downloads 147
4391 A Novel Antenna Design for Telemedicine Applications

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

To develop a reliable and cost effective communication platform for the telemedicine applications, novel antenna design has been presented using bacterial foraging optimization (BFO) technique. The proposed antenna geometry is achieved by etching a modified Koch curve fractal shape at the edges and a square shape slot at the center of the radiating element of a patch antenna. It has been found that the new antenna has achieved 43.79% size reduction and better resonating characteristic than the original patch. Representative results for both simulations and numerical validations are reported in order to assess the effectiveness of the developed methodology.

Keywords: BFO, electrical permittivity, fractals, Koch curve

Procedia PDF Downloads 480
4390 Numerical Analysis of Real-Scale Polymer Electrolyte Fuel Cells with Cathode Metal Foam Design

Authors: Jaeseung Lee, Muhammad Faizan Chinannai, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

In this paper, we numerically investigated the effect of metal foams on a real scale 242.57cm2 (19.1 cm × 12.7 cm) polymer electrolyte membrane fuel cell (PEFCs) using a three-dimensional two-phase PEFC model to substantiate design approach for PEFCs using metal foam as the flow distributor. The simulations were conducted under the practical low humidity hydrogen, and air gases conditions in order to observe the detailed operation result in the PEFCs using the serpentine flow channel in the anode and metal foam design in the cathode. The three-dimensional contours of flow distribution in the channel, current density distribution in the membrane and hydrogen and oxygen concentration distribution are provided. The simulation results revealed that the use of highly porous and permeable metal foam can be beneficial to achieve a more uniform current density distribution and better hydration in the membrane under low inlet humidity conditions. This study offers basic directions to design channel for optimal water management of PEFCs.

Keywords: polymer electrolyte fuel cells, metal foam, real-scale, numerical model

Procedia PDF Downloads 209
4389 Wall Heat Flux Mapping in Liquid Rocket Combustion Chamber with Different Jet Impingement Angles

Authors: O. S. Pradeep, S. Vigneshwaran, K. Praveen Kumar, K. Jeyendran, V. R. Sanal Kumar

Abstract:

The influence of injector attitude on wall heat flux plays an important role in predicting the start-up transient and also determining the combustion chamber wall durability of liquid rockets. In this paper comprehensive numerical studies have been carried out on an idealized liquid rocket combustion chamber to examine the transient wall heat flux during its start-up transient at different injector attitude. Numerical simulations have been carried out with the help of a validated 2d axisymmetric, double precision, pressure-based, transient, species transport, SST k-omega model with laminar finite rate model for governing turbulent-chemistry interaction for four cases with different jet intersection angles, viz., 0o, 30o, 45o, and 60o. We concluded that the jets intersection angle is having a bearing on the time and location of the maximum wall-heat flux zone of the liquid rocket combustion chamber during the start-up transient. We also concluded that the wall heat flux mapping in liquid rocket combustion chamber during the start-up transient is a meaningful objective for the chamber wall material selection and the lucrative design optimization of the combustion chamber for improving the payload capability of the rocket.  

Keywords: combustion chamber, injector, liquid rocket, rocket engine wall heat flux

Procedia PDF Downloads 455
4388 Aerodynamic Design Optimization of Ferrari F430 Flying Car with Enhanced Takeoff Performance

Authors: E. Manikandan, C. Chilambarasan, M. Sulthan Ariff Rahman, S. Kanagaraj, Abhimanyu Pugazhandhi, V. R. Sanal Kumar

Abstract:

The designer of any flying car has the major concern on the creation of upward force with low takeoff velocity, with minimum drag, coupled with better stability and control warranting its overall high performance both in road and air. In this paper, 3D numerical simulations of external flow of a Ferrari F430 fitted with different NACA series rectangular wings have been carried out for finding the best aerodynamic design option in road and air. The principle that allows a car to rise off the ground by creating lift using deployable wings with desirable lifting characteristics is the main theme of our paper. Additionally, the car body is streamlined in accordance with the speed range. Further, the rounded and tapered shape of the top of the car is designed to slice through the air and minimize the wind resistance. The 3D SST k-ω turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies, we have conjectured that Ferrari F430 can be converted into a lucrative flying car with best fit NACA wing through a proper aerodynamic design optimization.

Keywords: aerodynamics of flying car, air taxi, Ferrari F430, roadable airplane

Procedia PDF Downloads 181
4387 Geomechanical Numerical Modeling of Well Wall in Drilling with Finite Difference Method

Authors: Marzieh Zarei

Abstract:

Well instability is one of the most fundamental challenges faced by the oil and gas industry. Well wall stability analysis is a gap to be filled in the oil industry. The collection of static data such as well logging leads to the construction of a geomechanical numerical model, which will help in assessing the probable risks in future drilling. In this paper, geomechanical model was designed, and mechanical properties of the rock was determined at all points of the model. It was found the safe mud window was determined and the minimum and maximum mud pressures were determined in the ranges of 70-60 MPa and 110-100 MPa, respectively.

Keywords: geomechanics, numerical model, well stability, in-situ stress, underbalanced drilling

Procedia PDF Downloads 94
4386 Numerical Study of Trailing Edge Serrations on a Wells Turbine

Authors: Abdullah S. AlKhalifa, Mohammad Nasim Uddin, Michael Atkinson

Abstract:

The primary objective of this investigation is to explore the aerodynamic impact of adding trailing edge serrations to a Wells turbine. The baseline turbine consists of eight blades with NACA 0015 airfoils. The blade chord length was 0.125 m, and the span was 0.100 m. Two modified NACA 0015 serrated configurations were studied: 1) full-span and 2) partial span serrations covering the trailing edge from hub to tip. Numerical simulations were carried out by solving the three-dimensional, incompressible steady-state Reynolds Averaged Navier-Stokes (RANS) equations using the k-ω SST turbulence model in ANSYS™ (CFX). The aerodynamic performance of the modified Wells turbine to the baseline was made by comparing non-dimensional parameters of torque coefficient, pressure drop coefficient, and turbine efficiency. A comparison of the surface limiting streamlines was performed to analyze the flow topology of the turbine blades. The trailing edge serrations generated a substantial change in surface pressure and effectively reduced the separated flow region, thus improving efficiency in most cases. As a result, the average efficiency increased across the range of simulated flow coefficients.

Keywords: renewable energy, trailing edge serrations, Wells turbine, partial serration

Procedia PDF Downloads 69
4385 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a

Authors: K. Djellabi, M. E. H. Latreche

Abstract:

Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper deals with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries. For the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.

Keywords: numerical methods, induction furnaces, induction heating, finite element method, Comsol multiphysics software

Procedia PDF Downloads 405
4384 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.

Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems

Procedia PDF Downloads 398
4383 About Multi-Resolution Techniques for Large Eddy Simulation of Reactive Multi-Phase Flows

Authors: Giacomo Rossi, Bernardo Favini, Eugenio Giacomazzi, Franca Rita Picchia, Nunzio Maria Salvatore Arcidiacono

Abstract:

A numerical technique for mesh refinement in the HeaRT (Heat Release and Transfer) numerical code is presented. In the CFD framework, Large Eddy Simulation (LES) approach is gaining in importance as a tool for simulating turbulent combustion processes, also if this approach has an high computational cost due to the complexity of the turbulent modeling and the high number of grid points necessary to obtain a good numerical solution. In particular, when a numerical simulation of a big domain is performed with a structured grid, the number of grid points can increase so much that the simulation becomes impossible: this problem can be overcame with a mesh refinement technique. Mesh refinement technique developed for HeaRT numerical code (a staggered finite difference code) is based on an high order reconstruction of the variables at the grid interfaces by means of a least square quasi-ENO interpolation: numerical code is written in modern Fortran (2003 standard of newer) and is parallelized using domain decomposition and message passing interface (MPI) standard.

Keywords: LES, multi-resolution, ENO, fortran

Procedia PDF Downloads 333
4382 Effects of Diluent Gas Velocity on Formation of Moderate or Intense Low-Oxygen Dilution Combustion with Fuel Spray for Gas Turbine

Authors: ChunLoon Cha, HoYeon Lee, SangSoon Hwang

Abstract:

Mild combustion is characterized with its distinguished features, such as suppressed pollutant emission, homogeneous temperature distribution, reduced noise and thermal stress. However, most studies for MILD combustion have been focused on gas phase fuel. Therefore further study on MILD combustion using liquid fuel is needed for the application to liquid fueled gas turbine especially. In this work, we will focus on numerical simulation of the effects of diluent gas velocity on the formation of liquid fuel MILD combustion used in gas turbine area. A series of numerical simulations using Ansys fluent 18.2 have been carried out in order to investigate the detail effect of the flow field in the furnace on the formation of MILD combustion. The operating conditions were fixed at relatively lower heat intensity of 1.28 MW/m³ atm and various global equivalence ratios were changed. The results show that the local high temperature region was decreased and the flame temperature was uniformly distributed due to high velocity of diluted burnt gas. The increasing of diluted burnt gas velocity can be controlled by open ratio of adapter size. It was found that the maximum temperature became lower than 1800K and the average temperature was lower than 1500K that thermal NO formation was suppressed.

Keywords: MILD combustion, spray combustion, liquid fuel, diluent gas velocity, low NOx emission

Procedia PDF Downloads 202
4381 An Overview of the Wind and Wave Climate in the Romanian Nearshore

Authors: Liliana Rusu

Abstract:

The goal of the proposed work is to provide a more comprehensive picture of the wind and wave climate in the Romanian nearshore, using the results provided by numerical models. The Romanian coastal environment is located in the western side of the Black Sea, the more energetic part of the sea, an area with heavy maritime traffic and various offshore operations. Information about the wind and wave climate in the Romanian waters is mainly based on observations at Gloria drilling platform (70 km from the coast). As regards the waves, the measurements of the wave characteristics are not so accurate due to the method used, being also available for a limited period. For this reason, the wave simulations that cover large temporal and spatial scales represent an option to describe better the wave climate. To assess the wind climate in the target area spanning 1992–2016, data provided by the NCEP-CFSR (U.S. National Centers for Environmental Prediction - Climate Forecast System Reanalysis) and consisting in wind fields at 10m above the sea level are used. The high spatial and temporal resolution of the wind fields is good enough to represent the wind variability over the area. For the same 25-year period, as considered for the wind climate, this study characterizes the wave climate from a wave hindcast data set that uses NCEP-CFSR winds as input for a model system SWAN (Simulating WAves Nearshore) based. The wave simulation results with a two-level modelling scale have been validated against both in situ measurements and remotely sensed data. The second level of the system, with a higher resolution in the geographical space (0.02°×0.02°), is focused on the Romanian coastal environment. The main wave parameters simulated at this level are used to analyse the wave climate. The spatial distributions of the wind speed, wind direction and the mean significant wave height have been computed as the average of the total data. As resulted from the amount of data, the target area presents a generally moderate wave climate that is affected by the storm events developed in the Black Sea basin. Both wind and wave climate presents high seasonal variability. All the results are computed as maps that help to find the more dangerous areas. A local analysis has been also employed in some key locations corresponding to highly sensitive areas, as for example the main Romanian harbors.

Keywords: numerical simulations, Romanian nearshore, waves, wind

Procedia PDF Downloads 308
4380 The Effect of Bottom Shape and Baffle Length on the Flow Field in Stirred Tanks in Turbulent and Transitional Flow

Authors: Jie Dong, Binjie Hu, Andrzej W Pacek, Xiaogang Yang, Nicholas J. Miles

Abstract:

The effect of the shape of the vessel bottom and the length of baffles on the velocity distributions in a turbulent and in a transitional flow has been simulated. The turbulent flow was simulated using standard k-ε model and simulation was verified using LES whereas transitional flow was simulated using only LES. It has been found that both the shape of tank bottom and the baffles’ length has significant effect on the flow pattern and velocity distribution below the impeller. In the dished bottom tank with baffles reaching the edge of the dish, the large rotating volume of liquid was formed below the impeller. Liquid in this rotating region was not fully mixing. A dead zone was formed here. The size and the intensity of circulation within this zone calculated by k-ε model and LES were practically identical what reinforces the accuracy of the numerical simulations. Both types of simulations also show that employing full-length baffles can reduce the size of dead zone formed below the impeller. The LES was also used to simulate the velocity distribution below the impeller in transitional flow and it has been found that secondary circulation loops were formed near the tank bottom in all investigated geometries. However, in this case the length of baffles has smaller effect on the volume of rotating liquid than in the turbulent flow.

Keywords: baffles length, dished bottom, dead zone, flow field

Procedia PDF Downloads 273
4379 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility

Authors: He Chao, Zhang Lei, Liu Ran, Li Ang

Abstract:

Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keep the shrouds in the temperature range from -150℃ to +150℃. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.

Keywords: space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent

Procedia PDF Downloads 377
4378 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles

Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado

Abstract:

In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.

Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces

Procedia PDF Downloads 350
4377 Improving the Residence Time of a Rectangular Contact Tank by Varying the Geometry Using Numerical Modeling

Authors: Yamileth P. Herrera, Ronald R. Gutierrez, Carlos, Pacheco-Bustos

Abstract:

This research aims at the numerical modeling of a rectangular contact tank in order to improve the hydrodynamic behavior and the retention time of the water to be treated with the disinfecting agent. The methodology to be followed includes a hydraulic analysis of the tank to observe the fluid velocities, which will allow evidence of low-speed areas that may generate pathogenic agent incubation or high-velocity areas, which may decrease the optimal contact time between the disinfecting agent and the microorganisms to be eliminated. Based on the results of the numerical model, the efficiency of the tank under the geometric and hydraulic conditions considered will be analyzed. This would allow the performance of the tank to be improved before starting a construction process, thus avoiding unnecessary costs.

Keywords: contact tank, numerical models, hydrodynamic modeling, residence time

Procedia PDF Downloads 135
4376 Analysis of Sweat Evaporation and Heat Transfer on Skin Surface: A Pointwise Numerical Study

Authors: Utsav Swarnkar, Rabi Pathak, Rina Maiti

Abstract:

This study aims to investigate the thermoregulatory role of sweating by comprehensively analyzing the evaporation process and its thermal cooling impact on local skin temperature at various time intervals. Traditional experimental methods struggle to fully capture these intricate phenomena. Therefore, numerical simulations play a crucial role in assessing sweat production rates and associated thermal cooling. This research utilizes transient computational fluid dynamics (CFD) to enhance our understanding of the evaporative cooling process on human skin. We conducted a simulation employing the k-w SST turbulence model. This simulation includes a scenario where sweat evaporation occurs over the skin surface, and at particular time intervals, temperatures at different locations have been observed and its effect explained. During this study, sweat evaporation was monitored on the skin surface following the commencement of the simulation. Subsequent to the simulation, various observations were made regarding temperature fluctuations at specific points over time intervals. It was noted that points situated closer to the periphery of the droplets exhibited higher levels of heat transfer and lower temperatures, whereas points within the droplets displayed contrasting trends.

Keywords: CFD, sweat, evaporation, multiphase flow, local heat loss

Procedia PDF Downloads 21
4375 Multi-Fidelity Fluid-Structure Interaction Analysis of a Membrane Wing

Authors: M. Saeedi, R. Wuchner, K.-U. Bletzinger

Abstract:

In order to study the aerodynamic performance of a semi-flexible membrane wing, Fluid-Structure Interaction simulations have been performed. The fluid problem has been modeled using two different approaches which are the numerical solution of the Navier-Stokes equations and the vortex panel method. Nonlinear analysis of the structural problem is performed using the Finite Element Method. Comparison between the two fluid solvers has been made. Aerodynamic performance of the wing is discussed regarding its lift and drag coefficients and they are compared with those of the equivalent rigid wing.

Keywords: CFD, FSI, Membrane wing, Vortex panel method

Procedia PDF Downloads 455
4374 Numerical Evolution Methods of Rational Form for Diffusion Equations

Authors: Said Algarni

Abstract:

The purpose of this study was to investigate selected numerical methods that demonstrate good performance in solving PDEs. We adapted alternative method that involve rational polynomials. Padé time stepping (PTS) method, which is highly stable for the purposes of the present application and is associated with lower computational costs, was applied. Furthermore, PTS was modified for our study which focused on diffusion equations. Numerical runs were conducted to obtain the optimal local error control threshold.

Keywords: Padé time stepping, finite difference, reaction diffusion equation, PDEs

Procedia PDF Downloads 272
4373 Study of Natural Convection in Storage Tank of LNG

Authors: Hariti Rafika, Fekih Malika, Saighi Mohamed

Abstract:

Heat transfer by natural convection in storage tanks for LNG is extremely related to heat gains through the walls with thermal insulation is not perfectly efficient. In this paper, we present the study of natural convection in the unsteady regime for natural gas in aware phase using the fluent software. The gas is just on the surface of the liquid phase. The CFD numerical method used to solve the system of equations is based on the finite volume method. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature.

Keywords: numerical simulation, natural convection, heat gains, storage tank, liquefied natural gas

Procedia PDF Downloads 407
4372 Molecular Dynamics Simulations of the Structural, Elastic and Thermodynamic Properties of Cubic GaBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present the molecular dynamic simulations results of the structural and dynamical properties of the zinc-blende GaBi over a wide range of temperature (300-1000) K. Our simulation where performed in the framework of the three-body Tersoff potential, which accurately reproduces the lattice constants and elastic constants of the GaBi. A good agreement was found between our calculated results and the available theoretical data of the lattice constant, the bulk modulus and the cohesive energy. Our study allows us to predict the thermodynamic properties such as the specific heat and the lattice thermal expansion. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: Gallium compounds, molecular dynamics simulations, interatomic potential thermodynamic properties, structural phase transition

Procedia PDF Downloads 412
4371 Dilation Effect on 3D Passive Earth Pressure Coefficients for Retaining Wall

Authors: Khelifa Tarek, Benmebarek Sadok

Abstract:

The 2D passive earth pressures acting on rigid retaining walls problem has been widely treated in the literature using different approaches (limit equilibrium, limit analysis, slip line and numerical computation), however, the 3D passive earth pressures problem has received less attention. This paper is concerned with the numerical study of 3D passive earth pressures induced by the translation of a rigid rough retaining wall for associated and non-associated soils. Using the explicit finite difference code FLAC3D, the increase of the passive earth pressures due to the decrease of the wall breadth is investigated. The results given by the present numerical analysis are compared with other investigation. The influence of the angle of dilation on the coefficients is also studied.

Keywords: numerical modeling, FLAC3D, retaining wall, passive earth pressures, angle of dilation

Procedia PDF Downloads 289