Search results for: hysteresis loops
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 260

Search results for: hysteresis loops

260 One Period Loops of Memristive Circuits with Mixed-Mode Oscillations

Authors: Wieslaw Marszalek, Zdzislaw Trzaska

Abstract:

Interesting properties of various one-period loops of singularly perturbed memristive circuits with mixed-mode oscillations (MMOs) are analyzed in this paper. The analysis is mixed, both analytical and numerical and focused on the properties of pinched hysteresis of the memristive element and other one-period loops formed by pairs of time-series solutions for various circuits' variables. The memristive element is the only nonlinear element in the two circuits. A theorem on periods of mixed-mode oscillations of the circuits is formulated and proved. Replacements of memristors by parallel G-C or series R-L circuits for a MMO response with equivalent RMS values is also discussed.

Keywords: mixed-mode oscillations, memristive circuits, pinched hysteresis, one-period loops, singularly perturbed circuits

Procedia PDF Downloads 443
259 Modeling of Single Bay Precast Residential House Using Ruaumoko 2D Program

Authors: N. H. Hamid, N. M. Mohamed, S. A. Anuar

Abstract:

Precast residential houses are normally constructed in Malaysia using precast shear-key wall panel and precast wall panel are designed using BS8110 where there is no provision for earthquake. However, the safety of this house under moderate and strong earthquake is still questionable. Consequently, the full-scale of residential house are designed, constructed, tested and analyzed under in-plane lateral cyclic loading. Hysteresis loops are plotted based on the experimental work and compared with modeling of hysteresis loops using HYSTERES in RUAUMOKO 2D program. Modified Takeda hysteresis model is chosen to behave a similar pattern with experimental work. This program will display the earthquake excitations, spectral displacements, pseudo spectral acceleration, and deformation shape of the structure. It can be concluded that this building is suffering severe cracks and damage under moderate and severe earthquake.

Keywords: precast shear-key, hysteresis loops, spectral displacements, deformation shape

Procedia PDF Downloads 429
258 Coarse-Graining in Micromagnetic Simulations of Magnetic Hyperthermia

Authors: Razyeh Behbahani, Martin L. Plumer, Ivan Saika-Voivod

Abstract:

Micromagnetic simulations based on the stochastic Landau-Lifshitz-Gilbert equation are used to calculate dynamic magnetic hysteresis loops relevant to magnetic hyperthermia applications. With the goal to effectively simulate room-temperature loops for large iron-oxide based systems at relatively slow sweep rates on the order of 1 Oe/ns or less, a coarse-graining scheme is proposed and tested. The scheme is derived from a previously developed renormalization-group approach. Loops associated with nanorods, used as building blocks for larger nanoparticles that were employed in preclinical trials (Dennis et al., 2009 Nanotechnology 20 395103), serve as the model test system. The scaling algorithm is shown to produce nearly identical loops over several decades in the model grain sizes. Sweep-rate scaling involving the damping constant alpha is also demonstrated.

Keywords: coarse-graining, hyperthermia, hysteresis loops, micromagnetic simulations

Procedia PDF Downloads 117
257 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior

Procedia PDF Downloads 298
256 First Order Reversal Curve Method for Characterization of Magnetic Nanostructures

Authors: Bashara Want

Abstract:

One of the key factors limiting the performance of magnetic memory is that the coercivity has a distribution with finite width, and the reversal starts at the weakest link in the distribution. So one must first know the distribution of coercivities in order to learn how to reduce the width of distribution and increase the coercivity field to obtain a system with narrow width. First Order Reversal Curve (FORC) method characterizes a system with hysteresis via the distribution of local coercivities and, in addition, the local interaction field. The method is more versatile than usual conventional major hysteresis loops that give only the statistical behaviour of the magnetic system. The FORC method will be presented and discussed at the conference.

Keywords: magnetic materials, hysteresis, first-order reversal curve method, nanostructures

Procedia PDF Downloads 53
255 Relaxing Convergence Constraints in Local Priority Hysteresis Switching Logic

Authors: Mubarak Alhajri

Abstract:

This paper addresses certain inherent limitations of local priority hysteresis switching logic. Our main result establishes that under persistent excitation assumption, it is possible to relax constraints requiring strict positivity of local priority and hysteresis switching constants. Relaxing these constraints allows the adaptive system to reach optimality which implies the performance improvement. The unconstrained local priority hysteresis switching logic is examined and conditions for global convergence are derived.

Keywords: adaptive control, convergence, hysteresis constant, hysteresis switching

Procedia PDF Downloads 359
254 Modelling of Rate-Dependent Hysteresis of Polypyrrole Dual Sensing-Actuators for Precise Position Control

Authors: Johanna Schumacher, Toribio F. Otero, Victor H. Pascual

Abstract:

Bending dual sensing-actuators based on electroactive polymers are faradaic motors meaning the consumed charge determines the actuator’s tip position. During actuation, consumed charges during oxidation and reduction result in different tip positions showing dynamic hysteresis effects with errors up to 25%. For a precise position control of these actuators, the characterization of the hysteresis effect due to irreversible reactions is crucial. Here, the investigation and modelling of dynamic hysteresis effects of polypyrrole-dodezylbenzenesulfonate (PPyDBS) actuators under ambient working conditions are presented. The hysteresis effect is studied for charge consumption at different frequencies and a rate-dependent hysteresis model is derived. The hysteresis model is implemented as closed loop system and is verified experimentally.

Keywords: dual sensing-actuator, electroactive polymers, hysteresis, position control

Procedia PDF Downloads 359
253 Hysteresis Behavior and Microstructure in Nanostructured Alloys Cu-Fe and Cu-Fe-Co

Authors: Laslouni Warda, M. Azzaz

Abstract:

The intermetallic-based on transition metal compounds present interesting magnetic properties for the technological applications (permanent magnets, magnetic recording…). Cu70 Fe18Co12 and Cu70 Fe30 nanostructured with crystallite size vary from 10 a 12 nanometers have been developed by a mechanical milling method. For Cu-Fe samples, the iron and copper distribution was clear. The distribution showed a homogeneous distribution of iron and copper in a Cu-Fe obtained after 36 h milling. The structural properties have been performed with X-ray diffraction. With increasing milling times, Fe and Co diffuse into the Cu matrix, which accelerates the formation of the magnetic nanostructure Cu- Fe-Co and Cu-Fe alloys. The magnetic behavior is investigated using Vibrating Sample Magnetometer (VSM). The two alloys nanocrystals possess ferromagnetic character at room temperature

Keywords: Cu-Fe-Co, Cu-Fe, nanocrystals, SEM, hysteresis loops, VSM, anisotropy theory

Procedia PDF Downloads 307
252 Hysteresis Modeling in Iron-Dominated Magnets Based on a Deep Neural Network Approach

Authors: Maria Amodeo, Pasquale Arpaia, Marco Buzio, Vincenzo Di Capua, Francesco Donnarumma

Abstract:

Different deep neural network architectures have been compared and tested to predict magnetic hysteresis in the context of pulsed electromagnets for experimental physics applications. Modelling quasi-static or dynamic major and especially minor hysteresis loops is one of the most challenging topics for computational magnetism. Recent attempts at mathematical prediction in this context using Preisach models could not attain better than percent-level accuracy. Hence, this work explores neural network approaches and shows that the architecture that best fits the measured magnetic field behaviour, including the effects of hysteresis and eddy currents, is the nonlinear autoregressive exogenous neural network (NARX) model. This architecture aims to achieve a relative RMSE of the order of a few 100 ppm for complex magnetic field cycling, including arbitrary sequences of pseudo-random high field and low field cycles. The NARX-based architecture is compared with the state-of-the-art, showing better performance than the classical operator-based and differential models, and is tested on a reference quadrupole magnetic lens used for CERN particle beams, chosen as a case study. The training and test datasets are a representative example of real-world magnet operation; this makes the good result obtained very promising for future applications in this context.

Keywords: deep neural network, magnetic modelling, measurement and empirical software engineering, NARX

Procedia PDF Downloads 102
251 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops

Procedia PDF Downloads 252
250 The Effect of Vertical Shear-link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems

Authors: Mohammad Reza Baradaran, Farhad Hamzezarghani, Mehdi Rastegari Ghiri, Zahra Mirsanjari

Abstract:

Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. One of the most effective, yet simple passive control methods is the use of vertical shear-links (VSL) in systems with eccentric bracing. In fact, vertical shear-links dissipate the earthquake energy and act like a ductile fuse. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample.

Keywords: vertical shear-link, passive control, cyclic analysis, energy dissipation, honeycomb beam

Procedia PDF Downloads 452
249 Ferroelectricity in Fused Potassium Nitrate-Polymer Composite Films

Authors: Navneet Dabra, Baljinder Kaur, Lakhbir Singh, V. Annapu Reddy, R. Nath, Dae-Yong Jeong, Jasbir S. Hundal

Abstract:

The ferroelectric properties of fused potassium nitrate (KNO3)- polyvinyl alcohol (PVA) composite films have been investigated. The composite films of KNO3-PVA have been prepared by solvant cast technique and then fused over the brass substrate. The ferroelectric hysteresis loops (P-E) have been obtained at room temperature using modified Sawyer-Tower circuit. Percentage of back switching and differential dielectric constant has been derived from P-V loops. The x-ray diffraction (XRD) studies confirm the formation of ferroelectric phase (phase III) in these composite films. The AFM and FE-SEM studies have been used to study the surface morphology of these composite films. The values of remanemt polarization, coercive field, back switching, crystallite size, lattice parameters, and surface roughness have been estimated and correlated.

Keywords: ferroelectric polymer composite, remanemt polarization, back switching, crystallite size, lattice parameters and surface roughness

Procedia PDF Downloads 370
248 Hysteresis Effect in Organometallic Perovskite Solar Cells with Mesoscopic NiO as a Hole Transport Layer

Authors: D. C. Asebiah, D. Saranin, S. Karazhanov, A. R. Tameev, M. Kah

Abstract:

In this paper, the mesoscopic NiO was used as a hole transport layer in the inverted planar organometallic hybrid perovskite solar cell to study the effect of hysteresis. The devices we fabricated have the structures Fluorine Tin Oxide (FTO)/mesoscopic NiO/perovskite/[6,6]-phenyl C₆₁-butyric acid methyl ester (PC₆₁BM) photovoltaic device. The perovskite solar cell was done by toluene air (TLA) method and horn sonication for the dispersion of the NiO nanoparticles in deionized water. The power conversion efficiency was 12.07% under 1.5 AM illumination. We report hysteresis in the in current-voltage dependence of the solar cells with mesoscopic NiO as a hole transport layer.

Keywords: perovskite, mesoscopic, hysteresis, toluene air

Procedia PDF Downloads 143
247 The Effect of Adhesion on the Frictional Hysteresis Loops at a Rough Interface

Authors: M. Bazrafshan, M. B. de Rooij, D. J. Schipper

Abstract:

Frictional hysteresis is the phenomenon in which mechanical contacts are subject to small (compared to contact area) oscillating tangential displacements. In the presence of adhesion at the interface, the contact repulsive force increases leading to a higher static friction force and pre-sliding displacement. This paper proposes a boundary element model (BEM) for the adhesive frictional hysteresis contact at the interface of two contacting bodies of arbitrary geometries. In this model, adhesion is represented by means of a Dugdale approximation of the total work of adhesion at local areas with a very small gap between the two bodies. The frictional contact is divided into sticking and slipping regions in order to take into account the transition from stick to slip (pre-sliding regime). In the pre-sliding regime, the stick and slip regions are defined based on the local values of shear stress and normal pressure. In the studied cases, a fixed normal force is applied to the interface and the friction force varies in such a way to start gross sliding in one direction reciprocally. For the first case, the problem is solved at the smooth interface between a ball and a flat for different values of work of adhesion. It is shown that as the work of adhesion increases, both static friction and pre-sliding distance increase due to the increase in the contact repulsive force. For the second case, the rough interface between a glass ball against a silicon wafer and a DLC (Diamond-Like Carbon) coating is considered. The work of adhesion is assumed to be identical for both interfaces. As adhesion depends on the interface roughness, the corresponding contact repulsive force is different for these interfaces. For the smoother interface, a larger contact repulsive force and consequently, a larger static friction force and pre-sliding distance are observed.

Keywords: boundary element model, frictional hysteresis, adhesion, roughness, pre-sliding

Procedia PDF Downloads 142
246 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization

Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin

Abstract:

In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.

Keywords: the Bouc-Wen hysteresis model, particle swarm optimization, Prandtl-Ishlinskii model, automation engineering

Procedia PDF Downloads 487
245 Seismic Performance of Two-Storey RC Frame Designed EC8 under In-Plane Cyclic Loading

Authors: N. H. Hamid, A. Azmi, M. I. Adiyanto

Abstract:

This main purpose of this paper is to evaluate the seismic performance of double bay two-storey reinforced concrete frame under in-plane lateral cyclic loading which designed using Eurocode 8 (EC8) by taking into account of seismic loading. The prototype model of reinforced concrete frame was constructed in one-half scale tested under in-plane lateral cyclic loading starts with ±0.2% drift, ±0.25% up to ±3.0% drift with the increment of ±0.25%. The performance of the RC frame is evaluated in terms of the hysteresis loop (load vs. displacement), stiffness, ductility, lateral strength, stress-strain relationship and equivalent viscous damping. Visual observation of the crack pattern after testing were observed where the beam- column joint suffer the most severe damage as it is the critical part in moment resisting frame. Spalling of concrete starts occurred at ±2.0% drift and become worse at ±2.5% drift. The experimental result shows that the maximum lateral strength of specimen is 99.98 kN and ductility of the specimen is µ=4.07 which lies between 3≤µ≤6 in order to withstand moderate to severe earthquakes.

Keywords: ductility, equivalent viscous damping, hysteresis loops, lateral strength, stiffness

Procedia PDF Downloads 324
244 Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System

Authors: Rajan Goyal, S. Lamba, S. Annapoorni

Abstract:

The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system.

Keywords: indirect exchange coupling, MH loop, Monte Carlo simulation, recoil curve

Procedia PDF Downloads 164
243 Hysteresis in Sustainable Two-layer Circular Tube under a Lateral Compression Load

Authors: Ami Nomura, Ken Imanishi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki

Abstract:

Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.

Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device

Procedia PDF Downloads 262
242 Study on Hysteresis in Sustainable Two-Layer Circular Tube under a Lateral Compression Load

Authors: Ami Nomura, Ken Imanishi, Yukinori Taniguchi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki

Abstract:

Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.

Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device

Procedia PDF Downloads 329
241 Possible Sulfur Induced Superconductivity in Nano-Diamond

Authors: J. Mona, R. R. da Silva, C.-L.Cheng, Y. Kopelevich

Abstract:

We report on a possible occurrence of superconductivity in 5 nm particle size diamond powders treated with sulfur (S) at 500 o C for 10 hours in ~10-2 Torr vacuum. Superconducting-like magnetization hysteresis loops M(H) have been measured up to ~ 50 K by means of the SQUID magnetometer (Quantum Design). Both X-ray (Θ-2Θ geometry) and Raman spectroscopy analyses revealed no impurity or additional phases. Nevertheless, the measured Raman spectra are characteristic to the diamond with embedded disordered carbon and/or graphitic fragments suggesting a link to the previous reports of the local or surface superconductivity in graphite- and amorphous carbon–sulfur composites.

Keywords: nanodiamond, sulfur, superconductivity, Raman spectroscopy

Procedia PDF Downloads 457
240 Magnetoelectric Coupling in Hetero-Structured Nano-Composite of BST-BLFM Films

Authors: Navneet Dabra, Jasbir S. HUndal

Abstract:

Hetero-structured nano-composite thin film of Ba0.5Sr0.5TiO3/Bi0.9La0.1Fe0.9Mn0.1O3 (BST/BLFM) has been prepared by chemical solution deposition method with various BST to BLFM thickness ratios. These films have been deposited over on p-type Si (100) substrate. These samples exhibited low leakage current, large grain size and uniform distribution of particles. The maximum remanent polarization (Pr) was achieved in the heterostructures with thickness ratio of 2.65. The dielectric tenability, electric hysteresis (P-E), ME coupling coefficient, magnetic hysteresis (M-H), ferromagnetic exchange interaction and magnetoelectric measurements were carried out. Field Emission Scanning Electron Microscopy has been employed to investigate the surface morphology of these heterostructured nano-composite films.

Keywords: magnetoelectric, Schottky emission, interface coupling, dielectric tenability, electric hysteresis (P-E), ME coupling coefficient, magnetic hysteresis (M-H)

Procedia PDF Downloads 395
239 Seismic Response of Moment Resisting Steel Frame with Hysteresis Envelope Model of Joints

Authors: Krolo Paulina

Abstract:

The seismic response of moment-resisting steel frames depends on the behavior of the joints, especially when they are considered as ductile zones. The aim of this research is to provide a realistic assessment of the moment-resisting steel frame behavior under seismic loading using nonlinear static pushover analysis (N2 method). The hysteresis behavior of the joints in the frame model was described using a new hysteresis envelope model. The obtained seismic response was compared with the results of the seismic analysis obtained for the same steel frame that takes into account the monotonic model of the joints.

Keywords: beam-to-column joints, hysteresis envelope model, moment-resisting frame, nonlinear static pushover analysis, N2 method

Procedia PDF Downloads 239
238 Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels

Authors: Pierre van Tonder, Christoff Kruger

Abstract:

Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops.

Keywords: supplementary reinforcement, anchor loops, retaining panels, reinforced concrete, pull-out failure

Procedia PDF Downloads 154
237 Wettability Behavior of Organic Silane Molecules with Different Alkyl-Chain Length Coated Si Surface

Authors: Takahiro Ishizaki, Shutaro Hisada, Oi Lun Li

Abstract:

Control of surface wettability is very important in various industrial fields. Thus, contact angle hysteresis which is defined as the difference between advancing and receding water contact angles has been paid attention because the surface having low contact angle hysteresis can control wetting behavior of water droplet. Self-assembled monolayer (SAM) formed using organic silane molecules has been used to control surface wettability, in particular, static contact angles, however, the effect of alkyl-chain length in organic silane molecules on the contact angle hysteresis has not yet clarified. In this study, we aimed to investigate the effect of alkyl-chain length (C1-C18) in organic silane molecules on the contact angle hysteresis. SAMs were formed on Si wafer by thermal CVD method using silane coupling agents having different alkyl-chain length. The static water contact angles increased with an increase in the alkyl-chain length. On the other hand, although the water contact angle hysteresis tended to decrease with an increase in the alkyl-chain length, in case of the alkyl-chain length of more than C16 the contact angle hysteresis increased. This could be due to the decrease in the molecular mobility because of the increase in the molecular packing density in chemisorbed silane molecules.

Keywords: alkyl-chain length, self-assembled monolayer, silane coupling agent, surface wettability

Procedia PDF Downloads 352
236 Effects of Hydrogen-Ion Irritation on the Microstructure and Hardness of Fe-0.2wt.%V Alloy

Authors: Jing Zhang, Yongqin Chang, Yongwei Wang, Xiaolin Li, Shaoning Jiang, Farong Wan, Yi Long

Abstract:

Microstructural and hardening changes of Fe-0.2wt.%V alloy and pure Fe irradiated with 100 keV hydrogen ions at room temperature were investigated. It was found that dislocation density varies dramatically after irradiation, ranging from dislocation free to dense areas with tangled and complex dislocation configuration. As the irradiated Fe-0.2wt.%V samples were annealed at 773 K, the irradiation-induced dislocation loops disappear, while many small precipitates with enriched C distribute in the matrix. Some large precipitates with enriched V were also observed. The hardness of Fe-0.2wt.%V alloy and pure Fe increases after irradiation, which ascribes to the formation of dislocation loops in the irradiated specimens. Compared with pure Fe, the size of the irradiation-introduced dislocation loops in Fe-0.2wt.%V alloy decreases and the density increases, the change of the hardness also decreases.

Keywords: irradiation, Fe-0.2wt.%V alloy, microstructures, hardness

Procedia PDF Downloads 348
235 Influence of Stress Relaxation and Hysteresis Effect for Pressure Garment Design

Authors: Chia-Wen Yeh, Ting-Sheng Lin, Chih-Han Chang

Abstract:

Pressure garment has been used to prevent and treat the hypertrophic scars following serious burns since 1970s. The use of pressure garment is believed to hasten the maturation process and decrease the highness of scars. Pressure garment is custom made by reducing circumferential measurement of the patient by 10%~20%, called Reduction Factor. However the exact reducing value used depends on the subjective judgment of the therapist and the feeling of patients throughout the try and error process. The Laplace Law can be applied to calculate the pressure from the dimension of the pressure garment by the circumferential measurements of the patients and the tension profile of the fabrics. The tension profile currently obtained neglects the stress relaxation and hysteresis effect within most elastic fabrics. The purpose of this study was to investigate the influence of the tension attenuation, from stress relaxation and hysteresis effect of the fabrics. Samples of pressure garment were obtained from Sunshine Foundation Organization, a nonprofit organization for burn patients in Taiwan. The wall tension profile of pressure garments were measured on a material testing system. Specimens were extended to 10% of the original length, held for 1 hour for the influence of the stress relaxation effect to take place. Then, specimens were extended to 15% of the original length for 10 seconds, then reduced to 10% to simulate donning movement for the influence of the hysteresis effect to take place. The load history was recorded. The stress relaxation effect is obvious from the load curves. The wall tension is decreased by 8.5%~10% after 60mins of holding. The hysteresis effect is obvious from the load curves. The wall tension is increased slightly, then decreased by 1.5%~2.5% and lower than stress relaxation results after 60mins of holding. The wall tension attenuation of the fabric exists due to stress relaxation and hysteresis effect. The influence of hysteresis is more than stress relaxation. These effect should be considered in order to design and evaluate the pressure of pressure garment more accurately.

Keywords: hypertrophic scars, hysteresis, pressure garment, stress relaxation

Procedia PDF Downloads 487
234 Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies

Authors: Mohammed Farag, Mina Attari, S. Andrew Gadsden, Saeid R. Habibi

Abstract:

Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared.

Keywords: state of charge estimation, battery modeling, one-state hysteresis, filtering and estimation

Procedia PDF Downloads 406
233 Evaluation on Effective Size and Hysteresis Characteristics of CHS Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

This study aims to evaluate the effective size and hysteresis characteristics of Circular Hollow Steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are low cost. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √ ("3”), nonlinear FE analyses were conducted to evaluate the hysteresis characteristics. To verify the analysis simulation quasi static loading was carried out and the result was compared and satisfactory result was obtained.

Keywords: SS400 steel, circular hollow steel damper, effective size, quasi static loading, FE analysis

Procedia PDF Downloads 396
232 Investigation of Surface Water Quality Intera-Annual Variations, Gorganroud Basin, Iran

Authors: K. Ebrahimi, S. Shahid, H. Dehban

Abstract:

Climate variability can affect surface water quality. The objective of present study is to assess the impacts of climate variability on water quality of Gorganroud River, Iran, over the time period 1971 to 2011. To achieve this aim, climate variability and water quality variations were studied involving a newly developed drought index (MRDI) and hysteresis curves, respectively. The results show that climate variability significantly affected surface water quality over the time. The existence of yearly internal variation and hysteresis phenomenon for pH and EC parameters was observed. It was found that though drought affected pH considerably, it could not affect EC significantly.

Keywords: climate variability, hysteresis curves, multi drought index, water quality

Procedia PDF Downloads 339
231 Multidrug Therapies For HIV: Hybrid On-Off, Hysteresis On-Off Control and Simple STI

Authors: Magno Enrique Mendoza Meza

Abstract:

This paper deals with the comparison of three control techniques: the hysteresis on-off control (HyOOC), the hybrid on-off control (HOOC) and the simple Structured Treatment Interruptions (sSTI). These techniques are applied to the mathematical model developed by Kirschner and Webb. To compare these techniques we use a cost functional that minimize the wild-type virus population and the mutant virus population, but the main objective is to minimize the systemic cost of treatment and maximize levels of healthy CD4+ T cells. HyOOC, HOOC, and sSTI are applied to the drug therapies using a reverse transcriptase and protease inhibitors; simulations show that these controls maintain the uninfected cells in a small, bounded neighborhood of a pre-specified level. The controller HyOOC and HOOC are designed by appropriate choice of virtual equilibrium points.

Keywords: virus dynamics, on-off control, hysteresis, multi-drug therapies

Procedia PDF Downloads 359