Search results for: sound propagation models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8106

Search results for: sound propagation models

5166 The System Dynamics Research of China-Africa Trade, Investment and Economic Growth

Authors: Emma Serwaa Obobisaa, Haibo Chen

Abstract:

International trade and outward foreign direct investment are important factors which are generally recognized in the economic growth and development. Though several scholars have struggled to reveal the influence of trade and outward foreign direct investment (FDI) on economic growth, most studies utilized common econometric models such as vector autoregression and aggregated the variables, which for the most part prompts, however, contradictory and mixed results. Thus, there is an exigent need for the precise study of the trade and FDI effect of economic growth while applying strong econometric models and disaggregating the variables into its separate individual variables to explicate their respective effects on economic growth. This will guarantee the provision of policies and strategies that are geared towards individual variables to ensure sustainable development and growth. This study, therefore, seeks to examine the causal effect of China-Africa trade and Outward Foreign Direct Investment on the economic growth of Africa using a robust and recent econometric approach such as system dynamics model. Our study impanels and tests an ensemble of a group of vital variables predominant in recent studies on trade-FDI-economic growth causality: Foreign direct ınvestment, international trade and economic growth. Our results showed that the system dynamics method provides accurate statistical inference regarding the direction of the causality among the variables than the conventional method such as OLS and Granger Causality predominantly used in the literature as it is more robust and provides accurate, critical values.

Keywords: economic growth, outward foreign direct investment, system dynamics model, international trade

Procedia PDF Downloads 107
5165 Filtration Efficacy of Reusable Full-Face Snorkel Masks for Personal Protective Equipment

Authors: Adrian Kong, William Chang, Rolando Valdes, Alec Rodriguez, Roberto Miki

Abstract:

The Pneumask consists of a custom snorkel-specific adapter that attaches a snorkel-port of the mask to a 3D-printed filter. This full-face snorkel mask was designed for use as personal protective equipment (PPE) during the COVID-19 pandemic when there was a widespread shortage of PPE for medical personnel. Various clinical validation tests have been conducted, including the sealing capability of the mask, filter performance, CO2 buildup, and clinical usability. However, data regarding the filter efficiencies of Pneumask and multiple filter types have not been determined. Using an experimental system, we evaluated the filtration efficiency across various masks and filters during inhalation. Eighteen combinations of respirator models (5 P100 FFRs, 4 Dolfino Masks) and filters (2091, 7093, 7093CN, BB50T) were evaluated for their exposure to airborne particles sized 0.3 - 10.0 microns using an electronic airborne particle counter. All respirator model combinations provided similar performance levels for 1.0-micron, 3.0-micron, 5.0-micron, 10.0-microns, with the greatest differences in the 0.3-micron and 0.5-micron range. All models provided expected performances against all particle sizes, with Class P100 respirators providing the highest performance levels across all particle size ranges. In conclusion, the modified snorkel mask has the potential to protect providers who care for patients with COVID-19 from increased airborne particle exposure.

Keywords: COVID-19, PPE, mask, filtration, efficiency

Procedia PDF Downloads 167
5164 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models

Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi

Abstract:

Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.

Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel

Procedia PDF Downloads 181
5163 Unleashing the Potential of Waqf: An Exploratory Study of Contemporary Waqf Models in Islamic Finance Ecosystem

Authors: Mohd Bahroddin Badri, Ridzuan Masri

Abstract:

Despite the existence of large volume of waqf assets, it is argued that the potential of these assets not fully unleashed. There are many waqf assets especially in the form of land waqf that are idle and undeveloped mainly because of the insufficient fund and lack of investment expertise. This paper attempts to explore few cases on the innovation of waqf development in Malaysia and some countries that demonstrate synergistic collaboration between stakeholders, e.g., the government, nazir, Islamic religious councils, corporate entities and Islamic financial institutions for waqf development. This paper shows that cash waqf, corporate waqf, Build-Operate-Transfer (BOT) and Sukuk are found to be contemporary mechanisms within Islamic finance ecosystem that drive and rejuvenate the development of waqf to the next level. It further highlights few samples of waqf Sukuk that were successfully issued in selected countries. This paper also demonstrates that the benefit of waqf is beyond religious matters, which may also include education, healthcare, social care, infrastructure and corporate social responsibility (CSR) activities. This research is qualitative in nature, whereby the researcher employs descriptive method on the collected data. The researcher applies case study and library research method to collect and analyse data from journal articles, research papers, conference paper and annual reports. In a nutshell, the potential of contemporary models as demonstrated in this paper is very promising, in which the practical application of those instruments should be expanded for the rejuvenation of waqf asset.

Keywords: cash waqf, corporate waqf, Sukuk waqf, build-operate-transfer

Procedia PDF Downloads 178
5162 Becoming Vegan: The Theory of Planned Behavior and the Moderating Effect of Gender

Authors: Estela Díaz

Abstract:

This article aims to make three contributions. First, build on the literature on ethical decision-making literature by exploring factors that influence the intention of adopting veganism. Second, study the superiority of extended models of the Theory of Planned Behavior (TPB) for understanding the process involved in forming the intention of adopting veganism. Third, analyze the moderating effect of gender on TPB given that attitudes and behavior towards animals are gender-sensitive. No study, to our knowledge, has examined these questions. Veganism is not a diet but a political and moral stand that exclude, for moral reasons, the use of animals. Although there is a growing interest in studying veganism, it continues being overlooked in empirical research, especially within the domain of social psychology. TPB has been widely used to study a broad range of human behaviors, including moral issues. Nonetheless, TPB has rarely been applied to examine ethical decisions about animals and, even less, to veganism. Hence, the validity of TPB in predicting the intention of adopting veganism remains unanswered. A total of 476 non-vegan Spanish university students (55.6% female; the mean age was 23.26 years, SD= 6.1) responded to online and pencil-and-paper self-reported questionnaire based on previous studies. TPB extended models incorporated two background factors: ‘general attitudes towards humanlike-attributes ascribed to animals’ (AHA) (capacity for reason/emotions/suffer, moral consideration, and affect-towards-animals); and ‘general attitudes towards 11 uses of animals’ (AUA). SPSS 22 and SmartPLS 3.0 were used for statistical analyses. This study constructed a second-order reflective-formative model and took the multi-group analysis (MGA) approach to study gender effects. Six models of TPB (the standard and five competing) were tested. No a priori hypotheses were formulated. The results gave partial support to TPB. Attitudes (ATTV) (β = .207, p < .001), subjective norms (SNV) (β = .323, p < .001), and perceived control behavior (PCB) (β = .149, p < .001) had a significant direct effect on intentions (INTV). This model accounted for 27,9% of the variance in intention (R2Adj = .275) and had a small predictive relevance (Q2 = .261). However, findings from this study reveal that contrary to what TPB generally proposes, the effect of the background factors on intentions was not fully mediated by the proximal constructs of intentions. For instance, in the final model (Model#6), both factors had significant multiple indirect effect on INTV (β = .074, 95% C = .030, .126 [AHA:INTV]; β = .101, 95% C = .055, .155 [AUA:INTV]) and significant direct effect on INTV (β = .175, p < .001 [AHA:INTV]; β = .100, p = .003 [AUA:INTV]). Furthermore, the addition of direct paths from background factors to intentions improved the explained variance in intention (R2 = .324; R2Adj = .317) and the predictive relevance (Q2 = .300) over the base-model. This supports existing literature on the superiority of enhanced TPB models to predict ethical issues; which suggests that moral behavior may add additional complexity to decision-making. Regarding gender effect, MGA showed that gender only moderated the influence of AHA on ATTV (e.g., βWomen−βMen = .296, p < .001 [Model #6]). However, other observed gender differences (e.g. the explained variance of the model for intentions were always higher for men that for women, for instance, R2Women = .298; R2Men = .394 [Model #6]) deserve further considerations, especially for developing more effective communication strategies.

Keywords: veganism, Theory of Planned Behavior, background factors, gender moderation

Procedia PDF Downloads 347
5161 An Event-Related Potentials Study on the Processing of English Subjunctive Mood by Chinese ESL Learners

Authors: Yan Huang

Abstract:

Event-related potentials (ERPs) technique helps researchers to make continuous measures on the whole process of language comprehension, with an excellent temporal resolution at the level of milliseconds. The research on sentence processing has developed from the behavioral level to the neuropsychological level, which brings about a variety of sentence processing theories and models. However, the applicability of these models to L2 learners is still under debate. Therefore, the present study aims to investigate the neural mechanisms underlying English subjunctive mood processing by Chinese ESL learners. To this end, English subject clauses with subjunctive moods are used as the stimuli, all of which follow the same syntactic structure, “It is + adjective + that … + (should) do + …” Besides, in order to examine the role that language proficiency plays on L2 processing, this research deals with two groups of Chinese ESL learners (18 males and 22 females, mean age=21.68), namely, high proficiency group (Group H) and low proficiency group (Group L). Finally, the behavioral and neurophysiological data analysis reveals the following findings: 1) Syntax and semantics interact with each other on the SECOND phase (300-500ms) of sentence processing, which is partially in line with the Three-phase Sentence Model; 2) Language proficiency does affect L2 processing. Specifically, for Group H, it is the syntactic processing that plays the dominant role in sentence processing while for Group L, semantic processing also affects the syntactic parsing during the THIRD phase of sentence processing (500-700ms). Besides, Group H, compared to Group L, demonstrates a richer native-like ERPs pattern, which further demonstrates the role of language proficiency in L2 processing. Based on the research findings, this paper also provides some enlightenment for the L2 pedagogy as well as the L2 proficiency assessment.

Keywords: Chinese ESL learners, English subjunctive mood, ERPs, L2 processing

Procedia PDF Downloads 131
5160 3D Non-Linear Analyses by Using Finite Element Method about the Prediction of the Cracking in Post-Tensioned Dapped-End Beams

Authors: Jatziri Y. Moreno-Martínez, Arturo Galván, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, for the elevated viaducts in Mexico City, a construction system based on precast/pre-stressed concrete elements has been used, in which the bridge girders are divided in two parts by imposing a hinged support in sections where the bending moments that are originated by the gravity loads in a continuous beam are minimal. Precast concrete girders with dapped ends are a representative sample of a behavior that has complex configurations of stresses that make them more vulnerable to cracking due to flexure–shear interaction. The design procedures for ends of the dapped girders are well established and are based primarily on experimental tests performed for different configurations of reinforcement. The critical failure modes that can govern the design have been identified, and for each of them, the methods for computing the reinforcing steel that is needed to achieve adequate safety against failure have been proposed. Nevertheless, the design recommendations do not include procedures for controlling diagonal cracking at the entrant corner under service loading. These cracks could cause water penetration and degradation because of the corrosion of the steel reinforcement. The lack of visual access to the area makes it difficult to detect this damage and take timely corrective actions. Three-dimensional non-linear numerical models based on Finite Element Method to study the cracking at the entrant corner of dapped-end beams were performed using the software package ANSYS v. 11.0. The cracking was numerically simulated by using the smeared crack approach. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The longitudinal post-tension was modeled using LINK8 elements with multilinear isotropic hardening behavior using von Misses plasticity. The reinforcement was introduced with smeared approach. The numerical models were calibrated using experimental tests carried out in “Instituto de Ingeniería, Universidad Nacional Autónoma de México”. In these numerical models the characteristics of the specimens were considered: typical solution based on vertical stirrups (hangers) and on vertical and horizontal hoops with a post-tensioned steel which contributed to a 74% of the flexural resistance. The post-tension is given by four steel wires with a 5/8’’ (16 mm) diameter. Each wire was tensioned to 147 kN and induced an average compressive stress of 4.90 MPa on the concrete section of the dapped end. The loading protocol consisted on applying symmetrical loading to reach the service load (180 kN). Due to the good correlation between experimental and numerical models some additional numerical models were proposed by considering different percentages of post-tension in order to find out how much it influences in the appearance of the cracking in the reentrant corner of the dapped-end beams. It was concluded that the increasing of percentage of post-tension decreases the displacements and the cracking in the reentrant corner takes longer to appear. The authors acknowledge at “Universidad de Guanajuato, Campus Celaya-Salvatierra” and the financial support of PRODEP-SEP (UGTO-PTC-460) of the Mexican government. The first author acknowledges at “Instituto de Ingeniería, Universidad Nacional Autónoma de México”.

Keywords: concrete dapped-end beams, cracking control, finite element analysis, postension

Procedia PDF Downloads 225
5159 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software

Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven

Abstract:

Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.

Keywords: 3D blade profile, noise disturbance, aeroacoustics, Ffowcs-Williams and Hawkings (FW-H) equations, k-ω-SST turbulence model

Procedia PDF Downloads 212
5158 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 162
5157 Development of Probability Distribution Models for Degree of Bending (DoB) in Chord Member of Tubular X-Joints under Bending Loads

Authors: Hamid Ahmadi, Amirreza Ghaffari

Abstract:

Fatigue life of tubular joints in offshore structures is not only dependent on the value of hot-spot stress, but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The DoB exhibits considerable scatter calling for greater emphasis in accurate determination of its governing probability distribution which is a key input for the fatigue reliability analysis of a tubular joint. Although the tubular X-joints are commonly found in offshore jacket structures, as far as the authors are aware, no comprehensive research has been carried out on the probability distribution of the DoB in tubular X-joints. What has been used so far as the probability distribution of the DoB in reliability analyses is mainly based on assumptions and limited observations, especially in terms of distribution parameters. In the present paper, results of parametric equations available for the calculation of the DoB have been used to develop probability distribution models for the DoB in the chord member of tubular X-joints subjected to four types of bending loads. Based on a parametric study, a set of samples was prepared and density histograms were generated for these samples using Freedman-Diaconis method. Twelve different probability density functions (PDFs) were fitted to these histograms. The maximum likelihood method was utilized to determine the parameters of fitted distributions. In each case, Kolmogorov-Smirnov test was used to evaluate the goodness of fit. Finally, after substituting the values of estimated parameters for each distribution, a set of fully defined PDFs have been proposed for the DoB in tubular X-joints subjected to bending loads.

Keywords: tubular X-joint, degree of bending (DoB), probability density function (PDF), Kolmogorov-Smirnov goodness-of-fit test

Procedia PDF Downloads 719
5156 Adding a Few Language-Level Constructs to Improve OOP Verifiability of Semantic Correctness

Authors: Lian Yang

Abstract:

Object-oriented programming (OOP) is the dominant programming paradigm in today’s software industry and it has literally enabled average software developers to develop millions of commercial strength software applications in the era of INTERNET revolution over the past three decades. On the other hand, the lack of strict mathematical model and domain constraint features at the language level has long perplexed the computer science academia and OOP engineering community. This situation resulted in inconsistent system qualities and hard-to-understand designs in some OOP projects. The difficulties with regards to fix the current situation are also well known. Although the power of OOP lies in its unbridled flexibility and enormously rich data modeling capability, we argue that the ambiguity and the implicit facade surrounding the conceptual model of a class and an object should be eliminated as much as possible. We listed the five major usage of class and propose to separate them by proposing new language constructs. By using well-established theories of set and FSM, we propose to apply certain simple, generic, and yet effective constraints at OOP language level in an attempt to find a possible solution to the above-mentioned issues regarding OOP. The goal is to make OOP more theoretically sound as well as to aid programmers uncover warning signs of irregularities and domain-specific issues in applications early on the development stage and catch semantic mistakes at runtime, improving correctness verifiability of software programs. On the other hand, the aim of this paper is more practical than theoretical.

Keywords: new language constructs, set theory, FSM theory, user defined value type, function groups, membership qualification attribute (MQA), check-constraint (CC)

Procedia PDF Downloads 239
5155 Development of Building Information Modeling in Property Industry: Beginning with Building Information Modeling Construction

Authors: B. Godefroy, D. Beladjine, K. Beddiar

Abstract:

In France, construction BIM actors commonly evoke the BIM gains for exploitation by integrating of the life cycle of a building. The standardization of level 7 of development would achieve this stage of the digital model. The householders include local public authorities, social landlords, public institutions (health and education), enterprises, facilities management companies. They have a dual role: owner and manager of their housing complex. In a context of financial constraint, the BIM of exploitation aims to control costs, make long-term investment choices, renew the portfolio and enable environmental standards to be met. It assumes a knowledge of the existing buildings, marked by its size and complexity. The information sought must be synthetic and structured, it concerns, in general, a real estate complex. We conducted a study with professionals about their concerns and ways to use it to see how householders could benefit from this development. To obtain results, we had in mind the recurring interrogation of the project management, on the needs of the operators, we tested the following stages: 1) Inculcate a minimal culture of BIM with multidisciplinary teams of the operator then by business, 2) Learn by BIM tools, the adaptation of their trade in operations, 3) Understand the place and creation of a graphic and technical database management system, determine the components of its library so their needs, 4) Identify the cross-functional interventions of its managers by business (operations, technical, information system, purchasing and legal aspects), 5) Set an internal protocol and define the BIM impact in their digital strategy. In addition, continuity of management by the integration of construction models in the operation phase raises the question of interoperability in the control of the production of IFC files in the operator’s proprietary format and the export and import processes, a solution rivaled by the traditional method of vectorization of paper plans. Companies that digitize housing complex and those in FM produce a file IFC, directly, according to their needs without recourse to the model of construction, they produce models business for the exploitation. They standardize components, equipment that are useful for coding. We observed the consequences resulting from the use of the BIM in the property industry and, made the following observations: a) The value of data prevail over the graphics, 3D is little used b) The owner must, through his organization, promote the feedback of technical management information during the design phase c) The operator's reflection on outsourcing concerns the acquisition of its information system and these services, observing the risks and costs related to their internal or external developments. This study allows us to highlight: i) The need for an internal organization of operators prior to a response to the construction management ii) The evolution towards automated methods for creating models dedicated to the exploitation, a specialization would be required iii) A review of the communication of the project management, management continuity not articulating around his building model, it must take into account the environment of the operator and reflect on its scope of action.

Keywords: information system, interoperability, models for exploitation, property industry

Procedia PDF Downloads 144
5154 Application of Medical Information System for Image-Based Second Opinion Consultations–Georgian Experience

Authors: Kldiashvili Ekaterina, Burduli Archil, Ghortlishvili Gocha

Abstract:

Introduction – Medical information system (MIS) is at the heart of information technology (IT) implementation policies in healthcare systems around the world. Different architecture and application models of MIS are developed. Despite of obvious advantages and benefits, application of MIS in everyday practice is slow. Objective - On the background of analysis of the existing models of MIS in Georgia has been created a multi-user web-based approach. This presentation will present the architecture of the system and its application for image based second opinion consultations. Methods – The MIS has been created with .Net technology and SQL database architecture. It realizes local (intranet) and remote (internet) access to the system and management of databases. The MIS is fully operational approach, which is successfully used for medical data registration and management as well as for creation, editing and maintenance of the electronic medical records (EMR). Five hundred Georgian language electronic medical records from the cervical screening activity illustrated by images were selected for second opinion consultations. Results – The primary goal of the MIS is patient management. However, the system can be successfully applied for image based second opinion consultations. Discussion – The ideal of healthcare in the information age must be to create a situation where healthcare professionals spend more time creating knowledge from medical information and less time managing medical information. The application of easily available and adaptable technology and improvement of the infrastructure conditions is the basis for eHealth applications. Conclusion - The MIS is perspective and actual technology solution. It can be successfully and effectively used for image based second opinion consultations.

Keywords: digital images, medical information system, second opinion consultations, electronic medical record

Procedia PDF Downloads 450
5153 There Is No Meaningful Opportunity in Meaningless Data: Why It Is Unconstitutional to Use Life Expectancy Tables in Post-Graham Sentences

Authors: Stacie Nelson Colling, Adele Cummings

Abstract:

The United States Supreme Court recently announced that it is unconstitutional to sentence a child to life without parole for non-homicide offenses, and that each child so situated must be afforded a meaningful opportunity for release from prison in his lifetime. The Court also declared that it is unconstitutional to impose a mandatory sentence of life without parole on a child for homicide offenses. Across the United States, attorneys and advocates continue to litigate issues surrounding the implementation of these legal principles. Some states have held that any sentence to a finite term of years, no matter how long, is not the same as ‘life’ and therefore does not violate the constitution. Other states have held that a sentence to a term of years that is less than the expected life of that particular child is not unconstitutional. In Colorado, the courts have routinely looked to life expectancy estimates from governmental organizations to determine how long a particular child is expected to live. They then compare that the date that the child is expected to be eligible for parole, and if the child is expected to still be living when he is eligible for parole, the sentence is deemed constitutional. This paper argues that it is inappropriate, reckless, unconstitutional and not scientifically sound to use such estimates in determining whether a child will have a meaningful opportunity for release from prison and life outside of prison before he dies. This paper argues that the opportunity for release must mean more than a probability that a child will be released before his death, and that it must include an opportunity for a meaningful life outside of prison (not just the opportunity to be released and then die on the outside). The paper further argues that life expectancy estimates cannot guide a court or a legislature in determining whether a sentence is or is not constitutional.

Keywords: life without parole, life expectancy, juvenile sentencing, meaningful opportunity for release from prison

Procedia PDF Downloads 394
5152 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 88
5151 A Molecular Dynamics Study on Intermittent Plasticity and Dislocation Avalanche Emissions in FCC and BCC Crystals

Authors: Javier Varillas, Jorge Alcalá

Abstract:

We investigate dislocation avalanche phenomena in face-centered cubic (FCC) and body-centered cubic (BCC) crystals using massive, large-scale molecular dynamics (MD) simulations. The analysis is focused on the intermittent development of dense dislocation arrangements subjected to uniaxial tensile straining under displacement control. We employ a novel computational scheme that allows us to inject an entangled dislocation structure in periodic MD domains. We assess the emission of plastic bursts (or dislocation avalanches) in terms of the sharp stress drops detected in the stress-strain curve. The plastic activity corresponds to the sporadic operation of specific dislocation glide processes exhibiting quiescent periods between successive avalanche events. We find that the plastic intermittences in our simulations do not overlap in time under sufficiently low strain rates as dissipation operates faster than driving, where the dense dislocation networks evolve through the emission of dislocation avalanche events whose carried slip adheres to self-organized power-law distributions. These findings enable the extension of the slip distributions obtained from strict displacement-controlled micropillar compression experiments towards smaller values of slip size. Our results furnish further understanding upon the development of entangled dislocation networks in metal plasticity, including specific mechanisms of dislocation propagation and annihilation, along with the evolution of specific dislocation populations through dislocation density analyses.

Keywords: dislocations, intermittent plasticity, molecular dynamics, slip distributions

Procedia PDF Downloads 139
5150 Mechanical Properties and Crack Extension Mechanism of Rock Contained Blocks Under Uniaxial Compression

Authors: Ruiyang Bi

Abstract:

Natural rock masses are cut into rock blocks of different shapes and sizes by intersecting joints. These rock blocks often determine the mechanical properties of the rock mass. In this study, fine sandstone cube specimens were produced, and three intersecting joint cracks were cut inside the specimen. Uniaxial compression tests were conducted using mechanical tests and numerical simulation methods to study the mechanical properties and crack propagation mechanism of triangular blocks within the rock. During the test, the mechanical strength, acoustic emission characteristics and strain field evolution of the specimen were analyzed. Discrete element software was used to study the expansion of microcracks during the specimen failure process, and the crack types were divided. The simulation results show that as the inclination angles of the three joints increase simultaneously, the mechanical strength of the specimen first decreases and then increases, and the crack type is mainly shear. As the inclination angle of a single joint increases, the strength of the specimen gradually decreases. When the inclination angles of the two joints increase at the same time, the strength of the specimen gradually decreases. The research results show that the stability of the rock mass is affected by the joint inclination angle and the size of the cut blocks. The greater the joint dip and block size, the more significant the development of micro-cracks in the rock mass, and the worse the stability.

Keywords: rock joints, uniaxial compression, crack extension, discrete element simulation

Procedia PDF Downloads 65
5149 Sustainability of Photovoltaic Recycling Planning

Authors: Jun-Ki Choi

Abstract:

The usage of valuable resources and the potential for waste generation at the end of the life cycle of photovoltaic (PV) technologies necessitate a proactive planning for a PV recycling infrastructure. To ensure the sustainability of PV in large scales of deployment, it is vital to develop and institute low-cost recycling technologies and infrastructure for the emerging PV industry in parallel with the rapid commercialization of these new technologies. There are various issues involved in the economics of PV recycling and this research examine those at macro and micro levels, developing a holistic interpretation of the economic viability of the PV recycling systems. This study developed mathematical models to analyze the profitability of recycling technologies and to guide tactical decisions for allocating optimal location of PV take-back centers (PVTBC), necessary for the collection of end of life products. The economic decision is usually based on the level of the marginal capital cost of each PVTBC, cost of reverse logistics, distance traveled, and the amount of PV waste collected from various locations. Results illustrated that the reverse logistics costs comprise a major portion of the cost of PVTBC; PV recycling centers can be constructed in the optimally selected locations to minimize the total reverse logistics cost for transporting the PV wastes from various collection facilities to the recycling center. In the micro- process level, automated recycling processes should be developed to handle the large amount of growing PV wastes economically. The market price of the reclaimed materials are important factors for deciding the profitability of the recycling process and this illustrates the importance of the recovering the glass and expensive metals from PV modules.

Keywords: photovoltaic, recycling, mathematical models, sustainability

Procedia PDF Downloads 255
5148 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies

Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel

Abstract:

To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.

Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots

Procedia PDF Downloads 526
5147 Optimization Aluminium Design for the Facade Second Skin toward Visual Comfort: Case Studies & Dialux Daylighting Simulation Model

Authors: Yaseri Dahlia Apritasari

Abstract:

Visual comfort is important for the building occupants to need. Visual comfort can be fulfilled through natural lighting (daylighting) and artificial lighting. One strategy to optimize natural lighting can be achieved through the facade second skin design. This strategy can reduce glare, and fulfill visual comfort need. However, the design strategy cannot achieve light intensity for visual comfort. Because the materials, design and opening percentage of the facade of second skin blocked sunlight. This paper discusses aluminum material for the facade second skin design that can fulfill the optimal visual comfort with the case studies Multi Media Tower building. The methodology of the research is combination quantitative and qualitative through field study observed, lighting measurement and visual comfort questionnaire. Then it used too simulation modeling (DIALUX 4.13, 2016) for three facades second skin design model. Through following steps; (1) Measuring visual comfort factor: light intensity indoor and outdoor; (2) Taking visual comfort data from building occupants; (3) Making models with different facade second skin design; (3) Simulating and analyzing the light intensity value for each models that meet occupants visual comfort standard: 350 lux (Indonesia National Standard, 2010). The result shows that optimization of aluminum material for the facade second skin design can meet optimal visual comfort for building occupants. The result can give recommendation aluminum opening percentage of the facade second skin can meet optimal visual comfort for building occupants.

Keywords: aluminium material, Facade, second skin, visual comfort

Procedia PDF Downloads 352
5146 Resonant Tunnelling Diode Output Characteristics Dependence on Structural Parameters: Simulations Based on Non-Equilibrium Green Functions

Authors: Saif Alomari

Abstract:

The paper aims at giving physical and mathematical descriptions of how the structural parameters of a resonant tunnelling diode (RTD) affect its output characteristics. Specifically, the value of the peak voltage, peak current, peak to valley current ratio (PVCR), and the difference between peak and valley voltages and currents ΔV and ΔI. A simulation-based approach using the Non-Equilibrium Green Function (NEGF) formalism based on the Silvaco ATLAS simulator is employed to conduct a series of designed experiments. These experiments show how the doping concentration in the emitter and collector layers, their thicknesses, and the width of the barriers and the quantum well influence the above-mentioned output characteristics. Each of these parameters was systematically changed while holding others fixed in each set of experiments. Factorial experiments are outside the scope of this work and will be investigated in future. The physics involved in the operation of the device is thoroughly explained and mathematical models based on curve fitting and underlaying physical principles are deduced. The models can be used to design devices with predictable output characteristics. These models were found absent in the literature that the author acanned. Results show that the doping concentration in each region has an effect on the value of the peak voltage. It is found that increasing the carrier concentration in the collector region shifts the peak to lower values, whereas increasing it in the emitter shifts the peak to higher values. In the collector’s case, the shift is either controlled by the built-in potential resulting from the concentration gradient or the conductivity enhancement in the collector. The shift to higher voltages is found to be also related to the location of the Fermi-level. The thicknesses of these layers play a role in the location of the peak as well. It was found that increasing the thickness of each region shifts the peak to higher values until a specific characteristic length, afterwards the peak becomes independent of the thickness. Finally, it is shown that the thickness of the barriers can be optimized for a particular well width to produce the highest PVCR or the highest ΔV and ΔI. The location of the peak voltage is important in optoelectronic applications of RTDs where the operating point of the device is usually the peak voltage point. Furthermore, the PVCR, ΔV, and ΔI are of great importance for building RTD-based oscillators as they affect the frequency response and output power of the oscillator.

Keywords: peak to valley ratio, peak voltage shift, resonant tunneling diodes, structural parameters

Procedia PDF Downloads 142
5145 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 473
5144 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate

Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar

Abstract:

Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.

Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis

Procedia PDF Downloads 198
5143 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods

Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne

Abstract:

The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.

Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.

Procedia PDF Downloads 23
5142 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 66
5141 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets

Authors: S. D. El Wakil

Abstract:

The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.

Keywords: fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joints

Procedia PDF Downloads 232
5140 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure

Authors: T. Nozu, K. Hibi, T. Nishiie

Abstract:

This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.

Keywords: deflagration, large eddy simulation, turbulent combustion, vented enclosure

Procedia PDF Downloads 244
5139 An Application of Quantile Regression to Large-Scale Disaster Research

Authors: Katarzyna Wyka, Dana Sylvan, JoAnn Difede

Abstract:

Background and significance: The following disaster, population-based screening programs are routinely established to assess physical and psychological consequences of exposure. These data sets are highly skewed as only a small percentage of trauma-exposed individuals develop health issues. Commonly used statistical methodology in post-disaster mental health generally involves population-averaged models. Such models aim to capture the overall response to the disaster and its aftermath; however, they may not be sensitive enough to accommodate population heterogeneity in symptomatology, such as post-traumatic stress or depressive symptoms. Methods: We use an archival longitudinal data set from Weill-Cornell 9/11 Mental Health Screening Program established following the World Trade Center (WTC) terrorist attacks in New York in 2001. Participants are rescue and recovery workers who participated in the site cleanup and restoration (n=2960). The main outcome is the post-traumatic stress symptoms (PTSD) severity score assessed via clinician interviews (CAPS). For a detailed understanding of response to the disaster and its aftermath, we are adapting quantile regression methodology with particular focus on predictors of extreme distress and resilience to trauma. Results: The response variable was defined as the quantile of the CAPS score for each individual under two different scenarios specifying the unconditional quantiles based on: 1) clinically meaningful CAPS cutoff values and 2) CAPS distribution in the population. We present graphical summaries of the differential effects. For instance, we found that the effect of the WTC exposures, namely seeing bodies and feeling that life was in danger during rescue/recovery work was associated with very high PTSD symptoms. A similar effect was apparent in individuals with prior psychiatric history. Differential effects were also present for age and education level of the individuals. Conclusion: We evaluate the utility of quantile regression in disaster research in contrast to the commonly used population-averaged models. We focused on assessing the distribution of risk factors for post-traumatic stress symptoms across quantiles. This innovative approach provides a comprehensive understanding of the relationship between dependent and independent variables and could be used for developing tailored training programs and response plans for different vulnerability groups.

Keywords: disaster workers, post traumatic stress, PTSD, quantile regression

Procedia PDF Downloads 284
5138 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards

Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia

Abstract:

Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.

Keywords: aquaponics, deep learning, internet of things, vermiponics

Procedia PDF Downloads 71
5137 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology

Authors: Mouhamadou Diop, Mohamed I. Hassan

Abstract:

Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.

Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field

Procedia PDF Downloads 245