Search results for: simulation modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8108

Search results for: simulation modeling

5168 Using Business Simulations and Game-Based Learning for Enterprise Resource Planning Implementation Training

Authors: Carin Chuang, Kuan-Chou Chen

Abstract:

An Enterprise Resource Planning (ERP) system is an integrated information system that supports the seamless integration of all the business processes of a company. Implementing an ERP system can increase efficiencies and decrease the costs while helping improve productivity. Many organizations including large, medium and small-sized companies have already adopted an ERP system for decades. Although ERP system can bring competitive advantages to organizations, the lack of proper training approach in ERP implementation is still a major concern. Organizations understand the importance of ERP training to adequately prepare managers and users. The low return on investment, however, for the ERP training makes the training difficult for knowledgeable workers to transfer what is learned in training to the jobs at workplace. Inadequate and inefficient ERP training limits the value realization and success of an ERP system. That is the need to call for a profound change and innovation for ERP training in both workplace at industry and the Information Systems (IS) education in academia. The innovated ERP training approach can improve the users’ knowledge in business processes and hands-on skills in mastering ERP system. It also can be instructed as educational material for IS students in universities. The purpose of the study is to examine the use of ERP simulation games via the ERPsim system to train the IS students in learning ERP implementation. The ERPsim is the business simulation game developed by ERPsim Lab at HEC Montréal, and the game is a real-life SAP (Systems Applications and Products) ERP system. The training uses the ERPsim system as the tool for the Internet-based simulation games and is designed as online student competitions during the class. The competitions involve student teams with the facilitation of instructor and put the students’ business skills to the test via intensive simulation games on a real-world SAP ERP system. The teams run the full business cycle of a manufacturing company while interacting with suppliers, vendors, and customers through sending and receiving orders, delivering products and completing the entire cash-to-cash cycle. To learn a range of business skills, student needs to adopt individual business role and make business decisions around the products and business processes. Based on the training experiences learned from rounds of business simulations, the findings show that learners have reduced risk in making mistakes that help learners build self-confidence in problem-solving. In addition, the learners’ reflections from their mistakes can speculate the root causes of the problems and further improve the efficiency of the training. ERP instructors teaching with the innovative approach report significant improvements in student evaluation, learner motivation, attendance, engagement as well as increased learner technology competency. The findings of the study can provide ERP instructors with guidelines to create an effective learning environment and can be transferred to a variety of other educational fields in which trainers are migrating towards a more active learning approach.

Keywords: business simulations, ERP implementation training, ERPsim, game-based learning, instructional strategy, training innovation

Procedia PDF Downloads 139
5167 Progressive Damage Analysis of Mechanically Connected Composites

Authors: Şeyma Saliha Fidan, Ozgur Serin, Ata Mugan

Abstract:

While performing verification analyses under static and dynamic loads that composite structures used in aviation are exposed to, it is necessary to obtain the bearing strength limit value for mechanically connected composite structures. For this purpose, various tests are carried out in accordance with aviation standards. There are many companies in the world that perform these tests in accordance with aviation standards, but the test costs are very high. In addition, due to the necessity of producing coupons, the high cost of coupon materials, and the long test times, it is necessary to simulate these tests on the computer. For this purpose, various test coupons were produced by using reinforcement and alignment angles of the composite radomes, which were integrated into the aircraft. Glass fiber reinforced and Quartz prepreg is used in the production of the coupons. The simulations of the tests performed according to the American Society for Testing and Materials (ASTM) D5961 Procedure C standard were performed on the computer. The analysis model was created in three dimensions for the purpose of modeling the bolt-hole contact surface realistically and obtaining the exact bearing strength value. The finite element model was carried out with the Analysis System (ANSYS). Since a physical break cannot be made in the analysis studies carried out in the virtual environment, a hypothetical break is realized by reducing the material properties. The material properties reduction coefficient was determined as 10%, which is stated to give the most realistic approach in the literature. There are various theories in this method, which is called progressive failure analysis. Because the hashin theory does not match our experimental results, the puck progressive damage method was used in all coupon analyses. When the experimental and numerical results are compared, the initial damage and the resulting force drop points, the maximum damage load values ​​, and the bearing strength value are very close. Furthermore, low error rates and similar damage patterns were obtained in both test and simulation models. In addition, the effects of various parameters such as pre-stress, use of bushing, the ratio of the distance between the bolt hole center and the plate edge to the hole diameter (E/D), the ratio of plate width to hole diameter (W/D), hot-wet environment conditions were investigated on the bearing strength of the composite structure.

Keywords: puck, finite element, bolted joint, composite

Procedia PDF Downloads 102
5166 A Molecular-Level Study of Combining the Waste Polymer and High-Concentration Waste Cooking Oil as an Additive on Reclamation of Aged Asphalt Pavement

Authors: Qiuhao Chang, Liangliang Huang, Xingru Wu

Abstract:

In the United States, over 90% of the roads are paved with asphalt. The aging of asphalt is the most serious problem that causes the deterioration of asphalt pavement. Waste cooking oils (WCOs) have been found they can restore the properties of aged asphalt and promote the reuse of aged asphalt pavement. In our previous study, it was found the optimal WCO concentration to restore the aged asphalt sample should be in the range of 10~15 wt% of the aged asphalt sample. After the WCO concentration exceeds 15 wt%, as the WCO concentration increases, some important properties of the asphalt sample can be weakened by the addition of WCO, such as cohesion energy density, surface free energy density, bulk modulus, shear modulus, etc. However, maximizing the utilization of WCO can create environmental and economic benefits. Therefore, in this study, a new idea about using the waste polymer is another additive to restore the WCO modified asphalt that contains a high concentration of WCO (15-25 wt%) is proposed, which has never been reported before. In this way, both waste polymer and WCO can be utilized. The molecular dynamics simulation is used to study the effect of waste polymer on properties of WCO modified asphalt and understand the corresponding mechanism at the molecular level. The radial distribution function, self-diffusion, cohesion energy density, surface free energy density, bulk modulus, shear modulus, adhesion energy between asphalt and aggregate are analyzed to validate the feasibility of combining the waste polymer and WCO to restore the aged asphalt. Finally, the optimal concentration of waste polymer and WCO are determined.

Keywords: reclaim aged asphalt pavement, waste cooking oil, waste polymer, molecular dynamics simulation

Procedia PDF Downloads 220
5165 Tracing Sources of Sediment in an Arid River, Southern Iran

Authors: Hesam Gholami

Abstract:

Elevated suspended sediment loads in riverine systems resulting from accelerated erosion due to human activities are a serious threat to the sustainable management of watersheds and ecosystem services therein worldwide. Therefore, mitigation of deleterious sediment effects as a distributed or non-point pollution source in the catchments requires reliable provenance information. Sediment tracing or sediment fingerprinting, as a combined process consisting of sampling, laboratory measurements, different statistical tests, and the application of mixing or unmixing models, is a useful technique for discriminating the sources of sediments. From 1996 to the present, different aspects of this technique, such as grouping the sources (spatial and individual sources), discriminating the potential sources by different statistical techniques, and modification of mixing and unmixing models, have been introduced and modified by many researchers worldwide, and have been applied to identify the provenance of fine materials in agricultural, rural, mountainous, and coastal catchments, and in large catchments with numerous lakes and reservoirs. In the last two decades, efforts exploring the uncertainties associated with sediment fingerprinting results have attracted increasing attention. The frameworks used to quantify the uncertainty associated with fingerprinting estimates can be divided into three groups comprising Monte Carlo simulation, Bayesian approaches and generalized likelihood uncertainty estimation (GLUE). Given the above background, the primary goal of this study was to apply geochemical fingerprinting within the GLUE framework in the estimation of sub-basin spatial sediment source contributions in the arid Mehran River catchment in southern Iran, which drains into the Persian Gulf. The accuracy of GLUE predictions generated using four different sets of statistical tests for discriminating three sub-basin spatial sources was evaluated using 10 virtual sediments (VS) samples with known source contributions using the root mean square error (RMSE) and mean absolute error (MAE). Based on the results, the contributions modeled by GLUE for the western, central and eastern sub-basins are 1-42% (overall mean 20%), 0.5-30% (overall mean 12%) and 55-84% (overall mean 68%), respectively. According to the mean absolute fit (MAF; ≥ 95% for all target sediment samples) and goodness-of-fit (GOF; ≥ 99% for all samples), our suggested modeling approach is an accurate technique to quantify the source of sediments in the catchments. Overall, the estimated source proportions can help watershed engineers plan the targeting of conservation programs for soil and water resources.

Keywords: sediment source tracing, generalized likelihood uncertainty estimation, virtual sediment mixtures, Iran

Procedia PDF Downloads 74
5164 River Habitat Modeling for the Entire Macroinvertebrate Community

Authors: Pinna Beatrice., Laini Alex, Negro Giovanni, Burgazzi Gemma, Viaroli Pierluigi, Vezza Paolo

Abstract:

Habitat models rarely consider macroinvertebrates as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the entire community. This research aimed to provide an approach to model the habitat of the macroinvertebrate community. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the meso-habitat scale. Using different datasets gathered from both field data collection and 2D hydrodynamic simulations, the model has been calibrated in the Trebbia river (2019 campaign), and then validated in the Trebbia, Taro, and Enza rivers (2020 campaign). The three rivers are characterized by a braiding morphology, gravel riverbeds, and summer low flows. The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R² coefficient (R²𝒸ᵥ) of the training dataset is 0.71 for the Trebbia River (2019), whereas the R² coefficient for the validation datasets (Trebbia, Taro, and Enza Rivers 2020) is 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and to possible river morphological modifications. Lastly, the proposed approach allows extending the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to flow design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.

Keywords: ecological flows, macroinvertebrate community, mesohabitat, river habitat modeling

Procedia PDF Downloads 94
5163 Optimal Design of Storm Water Networks Using Simulation-Optimization Technique

Authors: Dibakar Chakrabarty, Mebada Suiting

Abstract:

Rapid urbanization coupled with changes in land use pattern results in increasing peak discharge and shortening of catchment time of concentration. The consequence is floods, which often inundate roads and inhabited areas of cities and towns. Management of storm water resulting from rainfall has, therefore, become an important issue for the municipal bodies. Proper management of storm water obviously includes adequate design of storm water drainage networks. The design of storm water network is a costly exercise. Least cost design of storm water networks assumes significance, particularly when the fund available is limited. Optimal design of a storm water system is a difficult task as it involves the design of various components, like, open or closed conduits, storage units, pumps etc. In this paper, a methodology for least cost design of storm water drainage systems is proposed. The methodology proposed in this study consists of coupling a storm water simulator with an optimization method. The simulator used in this study is EPA’s storm water management model (SWMM), which is linked with Genetic Algorithm (GA) optimization method. The model proposed here is a mixed integer nonlinear optimization formulation, which takes care of minimizing the sectional areas of the open conduits of storm water networks, while satisfactorily conveying the runoff resulting from rainfall to the network outlet. Performance evaluations of the developed model show that the proposed method can be used for cost effective design of open conduit based storm water networks.

Keywords: genetic algorithm (GA), optimal design, simulation-optimization, storm water network, SWMM

Procedia PDF Downloads 248
5162 A Comprehensive Study of Spread Models of Wildland Fires

Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.

Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling

Procedia PDF Downloads 81
5161 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna

Abstract:

Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.

Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network

Procedia PDF Downloads 158
5160 CFD Simulation Approach for Developing New Powder Dispensing Device

Authors: Revanth Rallapalli

Abstract:

Manually dispensing powders can be difficult as it requires gradually pouring and checking the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices saving time and money by reducing the number of prototypes and testing. This paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in the air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to the trocar’s end side is done by rotation of the screw conveyor. The performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.

Keywords: multiphase flow, screw conveyor, transient, dense discrete phase model (DDPM), kinetic theory of granular flow (KTGF)

Procedia PDF Downloads 146
5159 Strategies of Drug Discovery in Insects

Authors: Alaaeddeen M. Seufi

Abstract:

Many have been published on therapeutic derivatives from living organisms including insects. In addition to traditional maggot therapy, more than 900 therapeutic products were isolated from insects. Most people look at insects as enemies and others believe that insects are friends. Many beneficial insects rather than Honey Bees, Silk Worms and Shellac insect could insure human-insect friendship. In addition, insects could be MicroFactories, Biosensors or Bioreactors. InsectFarm is an amazing example of the applied research that transfers insects from laboratory to market by Prof Mircea Ciuhrii and co-workers. They worked for 18 years to derive therapeutics from insects. Their research resulted in production of more than 30 commercial medications derived from insects (e.g. Imunomax, Noblesse, etc.). Two general approaches were followed to discover drugs from living organisms. Some laboratories preferred biochemical approach to purify components of the innate immune system of insects and insect metabolites as well. Then the purified components could be tested for many therapeutic trials. Other researchers preferred molecular approach based on proteomic studies. Components of the innate immune system of insects were then tested for their medical activities. Our Laboratory team preferred to induce insect immune system (using oral, topical and injection routes of administration), then a transcriptomic study was done to discover the induced genes and to identify specific biomarkers that can help in drug discovery. Biomarkers play an important role in medicine and in drug discovery and development as well. Optimum biomarker development and application will require a team approach because of the multifaceted nature of biomarker selection, validation, and application. This team uses several techniques such as pharmacoepidemiology, pharmacogenomics, and functional proteomics; bioanalytical development and validation; modeling and simulation to improve and refine drug development. Our Achievements included the discovery of four components of the innate immune system of Spodoptera littoralis and Musca domestica. These components were designated as SpliDef (defesin), SpliLec (lectin), SpliCec (cecropin) and MdAtt (attacin). SpliDef, SpliLec and MdAtt were confirmed as antimicrobial peptides, while SpliCec was additionally confirmed as anticancer peptide. Our current research is going on to achieve something in antioxidants and anticoagulants from insects. Our perspective is to achieve something in the mass production of prototypes of our products and to reach it to the commercial level. These achievements are the integrated contributions of everybody in our team staff.

Keywords: AMPs, insect, innate immunitty, therappeutics

Procedia PDF Downloads 370
5158 Simulation and Experimental Study on Dual Dense Medium Fluidization Features of Air Dense Medium Fluidized Bed

Authors: Cheng Sheng, Yuemin Zhao, Chenlong Duan

Abstract:

Air dense medium fluidized bed is a typical application of fluidization techniques for coal particle separation in arid areas, where it is costly to implement wet coal preparation technologies. In the last three decades, air dense medium fluidized bed, as an efficient dry coal separation technique, has been studied in many aspects, including energy and mass transfer, hydrodynamics, bubbling behaviors, etc. Despite numerous researches have been published, the fluidization features, especially dual dense medium fluidization features have been rarely reported. In dual dense medium fluidized beds, different combinations of different dense mediums play a significant role in fluidization quality variation, thus influencing coal separation efficiency. Moreover, to what extent different dense mediums mix and to what extent the two-component particulate mixture affects the fluidization performance and quality have been in suspense. The proposed work attempts to reveal underlying mechanisms of generation and evolution of two-component particulate mixture in the fluidization process. Based on computational fluid dynamics methods and discrete particle modelling, movement and evolution of dual dense mediums in air dense medium fluidized bed have been simulated. Dual dense medium fluidization experiments have been conducted. Electrical capacitance tomography was employed to investigate the distribution of two-component mixture in experiments. Underlying mechanisms involving two-component particulate fluidization are projected to be demonstrated with the analysis and comparison of simulation and experimental results.

Keywords: air dense medium fluidized bed, particle separation, computational fluid dynamics, discrete particle modelling

Procedia PDF Downloads 382
5157 Augmented and Virtual Reality Experiences in Plant and Agriculture Science Education

Authors: Sandra Arango-Caro, Kristine Callis-Duehl

Abstract:

The Education Research and Outreach Lab at the Donald Danforth Plant Science Center established the Plant and Agriculture Augmented and Virtual Reality Learning Laboratory (PAVRLL) to promote science education through professional development, school programs, internships, and outreach events. Professional development is offered to high school and college science and agriculture educators on the use and applications of zSpace and Oculus platforms. Educators learn to use, edit, or create lesson plans in the zSpace platform that are aligned with the Next Generation Science Standards. They also learn to use virtual reality experiences created by the PAVRLL available in Oculus (e.g. The Soybean Saga). Using a cost-free loan rotation system, educators can bring the AVR units to the classroom and offer AVR activities to their students. Each activity has user guides and activity protocols for both teachers and students. The PAVRLL also offers activities for 3D plant modeling. High school students work in teams of art-, science-, and technology-oriented students to design and create 3D models of plant species that are under research at the Danforth Center and present their projects at scientific events. Those 3D models are open access through the zSpace platform and are used by PAVRLL for professional development and the creation of VR activities. Both teachers and students acquire knowledge of plant and agriculture content and real-world problems, gain skills in AVR technology, 3D modeling, and science communication, and become more aware and interested in plant science. Students that participate in the PAVRLL activities complete pre- and post-surveys and reflection questions that evaluate interests in STEM and STEM careers, students’ perceptions of three design features of biology lab courses (collaboration, discovery/relevance, and iteration/productive failure), plant awareness, and engagement and learning in AVR environments. The PAVRLL was established in the fall of 2019, and since then, it has trained 15 educators, three of which will implement the AVR programs in the fall of 2021. Seven students have worked in the 3D plant modeling activity through a virtual internship. Due to the COVID-19 pandemic, the number of teachers trained, and classroom implementations have been very limited. It is expected that in the fall of 2021, students will come back to the schools in person, and by the spring of 2022, the PAVRLL activities will be fully implemented. This will allow the collection of enough data on student assessments that will provide insights on benefits and best practices for the use of AVR technologies in the classrooms. The PAVRLL uses cutting-edge educational technologies to promote science education and assess their benefits and will continue its expansion. Currently, the PAVRLL is applying for grants to create its own virtual labs where students can experience authentic research experiences using real Danforth research data based on programs the Education Lab already used in classrooms.

Keywords: assessment, augmented reality, education, plant science, virtual reality

Procedia PDF Downloads 172
5156 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 469
5155 Fault Tolerant Control of the Dynamical Systems Based on Internal Structure Systems

Authors: Seyed Mohammad Hashemi, Shahrokh Barati

Abstract:

The problem of fault-tolerant control (FTC) by accommodation method has been studied in this paper. The fault occurs in any system components such as actuators, sensors or internal structure of the system and leads to loss of performance and instability of the system. When a fault occurs, the purpose of the fault-tolerant control is designate strategy that can keep the control loop stable and system performance as much as possible perform it without shutting down the system. Here, the section of fault detection and isolation (FDI) system has been evaluated with regard to actuator's fault. Designing a fault detection and isolation system for a multi input-multi output (MIMO) is done by an unknown input observer, so the system is divided to several subsystems as the effect of other inputs such as disturbing given system state equations. In this observer design method, the effect of these disturbances will weaken and the only fault is detected on specific input. The results of this approach simulation can confirm the ability of the fault detection and isolation system design. After fault detection and isolation, it is necessary to redesign controller based on a suitable modification. In this regard after the use of unknown input observer theory and obtain residual signal and evaluate it, PID controller parameters redesigned for iterative. Stability of the closed loop system has proved in the presence of this method. Also, In order to soften the volatility caused by Annie variations of the PID controller parameters, modifying Sigma as a way acceptable solution used. Finally, the simulation results of three tank popular example confirm the accuracy of performance.

Keywords: fault tolerant control, fault detection and isolation, actuator fault, unknown input observer

Procedia PDF Downloads 452
5154 Modeling Salam Contract for Profit and Loss Sharing

Authors: Dchieche Amina, Aboulaich Rajae

Abstract:

Profit and loss sharing suggests an equitable sharing of risks and profits between the parts involved in a financial transaction. Salam is a contract in which advance payment is made for goods to be delivered at a future date. The purpose of this work is to price a new contract for profit and loss sharing based on Salam contract, using Khiyar Al Ghabn which is an agreement of choice in case of misrepresent facts.

Keywords: Islamic finance, shariah compliance, profi t and loss sharing, derivatives, risks, hedging, salam contract

Procedia PDF Downloads 332
5153 Application of Discrete-Event Simulation in Health Technology Assessment: A Cost-Effectiveness Analysis of Alzheimer’s Disease Treatment Using Real-World Evidence in Thailand

Authors: Khachen Kongpakwattana, Nathorn Chaiyakunapruk

Abstract:

Background: Decision-analytic models for Alzheimer’s disease (AD) have been advanced to discrete-event simulation (DES), in which individual-level modelling of disease progression across continuous severity spectra and incorporation of key parameters such as treatment persistence into the model become feasible. This study aimed to apply the DES to perform a cost-effectiveness analysis of treatment for AD in Thailand. Methods: A dataset of Thai patients with AD, representing unique demographic and clinical characteristics, was bootstrapped to generate a baseline cohort of patients. Each patient was cloned and assigned to donepezil, galantamine, rivastigmine, memantine or no treatment. Throughout the simulation period, the model randomly assigned each patient to discrete events including hospital visits, treatment discontinuation and death. Correlated changes in cognitive and behavioral status over time were developed using patient-level data. Treatment effects were obtained from the most recent network meta-analysis. Treatment persistence, mortality and predictive equations for functional status, costs (Thai baht (THB) in 2017) and quality-adjusted life year (QALY) were derived from country-specific real-world data. The time horizon was 10 years, with a discount rate of 3% per annum. Cost-effectiveness was evaluated based on the willingness-to-pay (WTP) threshold of 160,000 THB/QALY gained (4,994 US$/QALY gained) in Thailand. Results: Under a societal perspective, only was the prescription of donepezil to AD patients with all disease-severity levels found to be cost-effective. Compared to untreated patients, although the patients receiving donepezil incurred a discounted additional costs of 2,161 THB, they experienced a discounted gain in QALY of 0.021, resulting in an incremental cost-effectiveness ratio (ICER) of 138,524 THB/QALY (4,062 US$/QALY). Besides, providing early treatment with donepezil to mild AD patients further reduced the ICER to 61,652 THB/QALY (1,808 US$/QALY). However, the dominance of donepezil appeared to wane when delayed treatment was given to a subgroup of moderate and severe AD patients [ICER: 284,388 THB/QALY (8,340 US$/QALY)]. Introduction of a treatment stopping rule when the Mini-Mental State Exam (MMSE) score goes below 10 to a mild AD cohort did not deteriorate the cost-effectiveness of donepezil at the current treatment persistence level. On the other hand, none of the AD medications was cost-effective when being considered under a healthcare perspective. Conclusions: The DES greatly enhances real-world representativeness of decision-analytic models for AD. Under a societal perspective, treatment with donepezil improves patient’s quality of life and is considered cost-effective when used to treat AD patients with all disease-severity levels in Thailand. The optimal treatment benefits are observed when donepezil is prescribed since the early course of AD. With healthcare budget constraints in Thailand, the implementation of donepezil coverage may be most likely possible when being considered starting with mild AD patients, along with the stopping rule introduced.

Keywords: Alzheimer's disease, cost-effectiveness analysis, discrete event simulation, health technology assessment

Procedia PDF Downloads 129
5152 Performance Analysis of VoIP Coders for Different Modulations Under Pervasive Environment

Authors: Jasbinder Singh, Harjit Pal Singh, S. A. Khan

Abstract:

The work, in this paper, presents the comparison of encoded speech signals by different VoIP narrow-band and wide-band codecs for different modulation schemes. The simulation results indicate that codec has an impact on the speech quality and also effected by modulation schemes.

Keywords: VoIP, coders, modulations, BER, MOS

Procedia PDF Downloads 516
5151 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 83
5150 Creation of a Realistic Railway Simulator Developed on a 3D Graphic Game Engine Using a Numerical Computing Programming Environment

Authors: Kshitij Ansingkar, Yohei Hoshino, Liangliang Yang

Abstract:

Advances in algorithms related to autonomous systems have made it possible to research on improving the accuracy of a train’s location. This has the capability of increasing the throughput of a railway network without the need for the creation of additional infrastructure. To develop such a system, the railway industry requires data to test sensor fusion theories or implement simultaneous localization and mapping (SLAM) algorithms. Though such simulation data and ground truth datasets are available for testing automation algorithms of vehicles, however, due to regulations and economic considerations, there is a dearth of such datasets in the railway industry. Thus, there is a need for the creation of a simulation environment that can generate realistic synthetic datasets. This paper proposes (1) to leverage the capabilities of open-source 3D graphic rendering software to create a visualization of the environment. (2) to utilize open-source 3D geospatial data for accurate visualization and (3) to integrate the graphic rendering software with a programming language and numerical computing platform. To develop such an integrated platform, this paper utilizes the computing platform’s advanced sensor models like LIDAR, camera, IMU or GPS and merges it with the 3D rendering of the game engine to generate high-quality synthetic data. Further, these datasets can be used to train Railway models and improve the accuracy of a train’s location.

Keywords: 3D game engine, 3D geospatial data, dataset generation, railway simulator, sensor fusion, SLAM

Procedia PDF Downloads 1
5149 A Sharp Interface Model for Simulating Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Algeria)

Authors: Abdelkader Hachemi, Boualem Remini

Abstract:

Seawater intrusion is a significant challenge faced by coastal aquifers in the Mediterranean basin. This study aims to determine the position of the sharp interface between seawater and freshwater in the aquifer of Wadi Nador, located in the Wilaya of Tipaza, Algeria. A numerical areal sharp interface model using the finite element method is developed to investigate the spatial and temporal behavior of seawater intrusion. The aquifer is assumed to be homogeneous and isotropic. The simulation results are compared with geophysical prospection data obtained through electrical methods in 2011 to validate the model. The simulation results demonstrate a good agreement with the geophysical prospection data, confirming the accuracy of the sharp interface model. The position of the sharp interface in the aquifer is found to be approximately 1617 meters from the sea. Two scenarios are proposed to predict the interface position for the year 2024: one without pumping and the other with pumping. The results indicate a noticeable retreat of the sharp interface position in the first scenario, while a slight decline is observed in the second scenario. The findings of this study provide valuable insights into the dynamics of seawater intrusion in the Wadi Nador aquifer. The predicted changes in the sharp interface position highlight the potential impact of pumping activities on the aquifer's vulnerability to seawater intrusion. This study emphasizes the importance of implementing measures to manage and mitigate seawater intrusion in coastal aquifers. The sharp interface model developed in this research can serve as a valuable tool for assessing and monitoring the vulnerability of aquifers to seawater intrusion.

Keywords: seawater intrusion, sharp interface, coastal aquifer, algeria

Procedia PDF Downloads 120
5148 Setting Uncertainty Conditions Using Singular Values for Repetitive Control in State Feedback

Authors: Muhammad A. Alsubaie, Mubarak K. H. Alhajri, Tarek S. Altowaim

Abstract:

A repetitive controller designed to accommodate periodic disturbances via state feedback is discussed. Periodic disturbances can be represented by a time delay model in a positive feedback loop acting on system output. A direct use of the small gain theorem solves the periodic disturbances problem via 1) isolating the delay model, 2) finding the overall system representation around the delay model and 3) designing a feedback controller that assures overall system stability and tracking error convergence. This paper addresses uncertainty conditions for the repetitive controller designed in state feedback in either past error feedforward or current error feedback using singular values. The uncertainty investigation is based on the overall system found and the stability condition associated with it; depending on the scheme used, to set an upper/lower limit weighting parameter. This creates a region that should not be exceeded in selecting the weighting parameter which in turns assures performance improvement against system uncertainty. Repetitive control problem can be described in lifted form. This allows the usage of singular values principle in setting the range for the weighting parameter selection. The Simulation results obtained show a tracking error convergence against dynamic system perturbation if the weighting parameter chosen is within the range obtained. Simulation results also show the advantage of weighting parameter usage compared to the case where it is omitted.

Keywords: model mismatch, repetitive control, singular values, state feedback

Procedia PDF Downloads 155
5147 Effect of Bi-Dispersity on Particle Clustering in Sedimentation

Authors: Ali Abbas Zaidi

Abstract:

In free settling or sedimentation, particles form clusters at high Reynolds number and dilute suspensions. It is due to the entrapment of particles in the wakes of upstream particles. In this paper, the effect of bi-dispersity of settling particles on particle clustering is investigated using particle-resolved direct numerical simulation. Immersed boundary method is used for particle fluid interactions and discrete element method is used for particle-particle interactions. The solid volume fraction used in the simulation is 1% and the Reynolds number based on Sauter mean diameter is 350. Both solid volume fraction and Reynolds number lie in the clustering regime of sedimentation. In simulations, the particle diameter ratio (i.e. diameter of larger particle to smaller particle (d₁/d₂)) is varied from 2:1, 3:1 and 4:1. For each case of particle diameter ratio, solid volume fraction for each particle size (φ₁/φ₂) is varied from 1:1, 1:2 and 2:1. For comparison, simulations are also performed for monodisperse particles. For studying particles clustering, radial distribution function and instantaneous location of particles in the computational domain are studied. It is observed that the degree of particle clustering decreases with the increase in the bi-dispersity of settling particles. The smallest degree of particle clustering or dispersion of particles is observed for particles with d₁/d₂ equal to 4:1 and φ₁/φ₂ equal to 1:2. Simulations showed that the reduction in particle clustering by increasing bi-dispersity is due to the difference in settling velocity of particles. Particles with larger size settle faster and knockout the smaller particles from clustered regions of particles in the computational domain.

Keywords: dispersion in bi-disperse settling particles, particle microstructures in bi-disperse suspensions, particle resolved direct numerical simulations, settling of bi-disperse particles

Procedia PDF Downloads 207
5146 Estimation of the Mean of the Selected Population

Authors: Kalu Ram Meena, Aditi Kar Gangopadhyay, Satrajit Mandal

Abstract:

Two normal populations with different means and same variance are considered, where the variances are known. The population with the smaller sample mean is selected. Various estimators are constructed for the mean of the selected normal population. Finally, they are compared with respect to the bias and MSE risks by the method of Monte-Carlo simulation and their performances are analysed with the help of graphs.

Keywords: estimation after selection, Brewster-Zidek technique, estimators, selected populations

Procedia PDF Downloads 512
5145 A Configurational Approach to Understand the Effect of Organizational Structure on Absorptive Capacity: Results from PLS and fsQCA

Authors: Murad Ali, Anderson Konan Seny Kan, Khalid A. Maimani

Abstract:

Based on the theory of organizational design and the theory of knowledge, this study uses complexity theory to explain and better understand the causal impacts of various patterns of organizational structural factors stimulating absorptive capacity (ACAP). Organizational structure can be thought of as heterogeneous configurations where various components are often intertwined. This study argues that impact of the traditional variables which define a firm’s organizational structure (centralization, formalization, complexity and integration) on ACAP is better understood in terms of set-theoretic relations rather than correlations. This study uses a data sample of 347 from a multiple industrial sector in South Korea. The results from PLS-SEM support all the hypothetical relationships among the variables. However, fsQCA results suggest the possible configurations of centralization, formalization, complexity, integration, age, size, industry and revenue factors that contribute to high level of ACAP. The results from fsQCA demonstrate the usefulness of configurational approaches in helping understand equifinality in the field of knowledge management. A recent fsQCA procedure based on a modeling subsample and holdout subsample is use in this study to assess the predictive validity of the model under investigation. The same type predictive analysis is also made through PLS-SEM. These analyses reveal a good relevance of causal solutions leading to high level of ACAP. In overall, the results obtained from combining PLS-SEM and fsQCA are very insightful. In particular, they could help managers to link internal organizational structural with ACAP. In other words, managers may comprehend finely how different components of organizational structure can increase the level of ACAP. The configurational approach may trigger new insights that could help managers prioritize selection criteria and understand the interactions between organizational structure and ACAP. The paper also discusses theoretical and managerial implications arising from these findings.

Keywords: absorptive capacity, organizational structure, PLS-SEM, fsQCA, predictive analysis, modeling subsample, holdout subsample

Procedia PDF Downloads 330
5144 Nonstationary Modeling of Extreme Precipitation in the Wei River Basin, China

Authors: Yiyuan Tao

Abstract:

Under the impact of global warming together with the intensification of human activities, the hydrological regimes may be altered, and the traditional stationary assumption was no longer satisfied. However, most of the current design standards of water infrastructures were still based on the hypothesis of stationarity, which may inevitably result in severe biases. Many critical impacts of climate on ecosystems, society, and the economy are controlled by extreme events rather than mean values. Therefore, it is of great significance to identify the non-stationarity of precipitation extremes and model the precipitation extremes in a nonstationary framework. The Wei River Basin (WRB), located in a continental monsoon climate zone in China, is selected as a case study in this study. Six extreme precipitation indices were employed to investigate the changing patterns and stationarity of precipitation extremes in the WRB. To identify if precipitation extremes are stationary, the Mann-Kendall trend test and the Pettitt test, which is used to examine the occurrence of abrupt changes are adopted in this study. Extreme precipitation indices series are fitted with non-stationary distributions that selected from six widely used distribution functions: Gumbel, lognormal, Weibull, gamma, generalized gamma and exponential distributions by means of the time-varying moments model generalized additive models for location, scale and shape (GAMLSS), where the distribution parameters are defined as a function of time. The results indicate that: (1) the trends were not significant for the whole WRB, but significant positive/negative trends were still observed in some stations, abrupt changes for consecutive wet days (CWD) mainly occurred in 1985, and the assumption of stationarity is invalid for some stations; (2) for these nonstationary extreme precipitation indices series with significant positive/negative trends, the GAMLSS models are able to capture well the temporal variations of the indices, and perform better than the stationary model. Finally, the differences between the quantiles of nonstationary and stationary models are analyzed, which highlight the importance of nonstationary modeling of precipitation extremes in the WRB.

Keywords: extreme precipitation, GAMLSSS, non-stationary, Wei River Basin

Procedia PDF Downloads 124
5143 The Bayesian Premium Under Entropy Loss

Authors: Farouk Metiri, Halim Zeghdoudi, Mohamed Riad Remita

Abstract:

Credibility theory is an experience rating technique in actuarial science which can be seen as one of quantitative tools that allows the insurers to perform experience rating, that is, to adjust future premiums based on past experiences. It is used usually in automobile insurance, worker's compensation premium, and IBNR (incurred but not reported claims to the insurer) where credibility theory can be used to estimate the claim size amount. In this study, we focused on a popular tool in credibility theory which is the Bayesian premium estimator, considering Lindley distribution as a claim distribution. We derive this estimator under entropy loss which is asymmetric and squared error loss which is a symmetric loss function with informative and non-informative priors. In a purely Bayesian setting, the prior distribution represents the insurer’s prior belief about the insured’s risk level after collection of the insured’s data at the end of the period. However, the explicit form of the Bayesian premium in the case when the prior is not a member of the exponential family could be quite difficult to obtain as it involves a number of integrations which are not analytically solvable. The paper finds a solution to this problem by deriving this estimator using numerical approximation (Lindley approximation) which is one of the suitable approximation methods for solving such problems, it approaches the ratio of the integrals as a whole and produces a single numerical result. Simulation study using Monte Carlo method is then performed to evaluate this estimator and mean squared error technique is made to compare the Bayesian premium estimator under the above loss functions.

Keywords: bayesian estimator, credibility theory, entropy loss, monte carlo simulation

Procedia PDF Downloads 334
5142 Sociocultural Influences on Men of Color’s Body Image Concerns: A Structural Equation Modeling Study

Authors: Zikun Li, Regine Talleyrand

Abstract:

Negative body image is one of the most common causes of eating disorders, and it is not only happening to women. Regardless of the increasing attention that researchers and practitioners have been paying to the male population and their body image concerns, men of color have yet to be fully represented or studied. Given the consensus that the sociocultural experiences of people of color may play a significant role in their health and well-being, this study focused on assessing the mechanism through which sociocultural factors may influence men of color’s perceptions of body image. In particular, this study focused on untangling how interpersonal and media pressure, as well as ethnic-racial identities and perceptions, would impact body dissatisfaction in terms of muscularity, body fat, and height in men of color and how this mechanism is moderated across different ethnic-racial groups. The structural equation modeling approach was therefore applied to achieve the research goal. With the sample size of 181 self-identified Black, Indigenous, and People of Color male participants aged 20-50 (M=33.33, SD=6.9) through surveying on Amazon’s MTurk platform, the proposed model achieved a modestly acceptable model fit with the pooled sample, X2(836) = 1412.184, CFI = 0.900, RMSEA = 0.062 [0.056, 0.067]. And SRMR = 0.088, And it explained 89.5% of the variance in body dissatisfaction. The results showed that of all the direct effects on body dissatisfaction, interpersonal appearance pressure exhibited the strongest effect (β = 0.410***), followed by media appearance pressure (β = 0.272**) and self-hatred feeling (β = 0.245**). The ethnic-racial related factors (i.e., stereotype endorsement, ethnic-racial salience, and nationalistic assimilation) statistically influenced body dissatisfaction through the mediators of media appearance pressure and/or self-hatred feeling. Furthermore, the moderation analysis between Black/African American men and non-Black/African American men revealed the substantial differences in how ethnic/racial identity impacts one’s perception of body image, and the Black/African American men were found to be influenced by sociocultural factors at a higher level, compared with their counterparts. The impacts of demographic characteristics (i.e., SES, weight, height) on body dissatisfaction were also examined. Instead of considering interpersonal appearance pressure and media pressure as two subscales under one construct, this study considered them as two separate and distinct sociocultural factors. The good model fit to the data indicates this rationality and encourages scholars to reconsider the impacts of two sources of social pressures on body dissatisfaction. In addition, this study also provided empirical evidence of the moderation effect existing within the population of men of color, which reveals the heterogeneity existing across different ethnic-racial groups and implies the necessity to study individual ethnic-racial groups so as to better understand the mechanism of sociocultural influences on men of color’s body dissatisfaction. These findings strengthened the current understanding of the body image concerns exciting among men of color and meanwhile provided empirical evidence for practitioners to provide tailored health prevention and treatment options for this growing population in the United States.

Keywords: men of color, body image concerns, sociocultural factors, structural equation modeling

Procedia PDF Downloads 69
5141 Perceived and Performed E-Health Literacy: Survey and Simulated Performance Test

Authors: Efrat Neter, Esther Brainin, Orna Baron-Epel

Abstract:

Background: Connecting end-users to newly developed ICT technologies and channeling patients to new products requires an assessment of compatibility. End user’s assessment is conveyed in the concept of eHealth literacy. The study examined the association between perceived and performed eHealth literacy (EHL) in a heterogeneous age sample in Israel. Methods: Participants included 100 Israeli adults (mean age 43,SD 13.9) who were first phone interviewed and then tested on a computer simulation of health-related Internet tasks. Performed, perceived and evaluated EHL were assessed. Levels of successful completion of tasks represented EHL performance and evaluated EHL included observed motivation, confidence, and amount of help provided. Results: The skills of accessing, understanding, appraising, applying, and generating new information had a decreasing successful completion rate with increase in complexity of the task. Generating new information, though highly correlated with all other skills, was least correlated with the other skills. Perceived and performed EHL were correlated (r=.40, P=.001), while facets of performance (i.e, digital literacy and EHL) were highly correlated (r=.89, P<.001). Participants low and high in performed EHL were significantly different: low performers were older, had attained less education, used the Internet for less time and perceived themselves as less healthy. They also encountered more difficulties, required more assistance, were less confident in their conduct and exhibited less motivation than high performers. Conclusions: The association in this age-hetrogenous ample was larger than in previous age-homogenous samples. The moderate association between perceived and performed EHL indicates that the two are associated yet distinct, the latter requiring separate assessment. Features of future rapid performed EHL tools are discussed.

Keywords: eHealth, health literacy, performance, simulation

Procedia PDF Downloads 236
5140 Eco-Friendly Polymeric Corrosion Inhibitor for Sour Oilfield Environment

Authors: Alireza Rahimi, Abdolreza Farhadian, Arash Tajik, Elaheh Sadeh, Avni Berisha, Esmaeil Akbari Nezhad

Abstract:

Although natural polymers have been shown to have some inhibitory properties on sour corrosion, they are not considered very effective green corrosion inhibitors. Accordingly, effective corrosion inhibitors should be developed based on natural resources to mitigate sour corrosion in the oil and gas industry. Here, Arabic gum was employed as an eco-friendly precursor for the synthesis of innovative polyurethanes designed as highly efficient corrosion inhibitors for sour oilfield solutions. A comprehensive assessment, combining experimental and computational analyses, was conducted to evaluate the inhibitory performance of the inhibitor. Electrochemical measurements demonstrated that a concentration of 200 mM of the inhibitor offered substantial protection to mild steel against sour corrosion, yielding inhibition efficiencies of 98% and 95% at 25 ºC and 60 ºC, respectively. Additionally, the presence of the inhibitor led to a smoother steel surface, indicating the adsorption of polyurethane molecules onto the metal surface. X-ray photoelectron spectroscopy results further validated the chemical adsorption of the inhibitor on mild steel surfaces. Scanning Kelvin probe microscopy revealed a shift in the potential distribution of the steel surface towards negative values, indicating inhibitor adsorption and corrosion process inhibition. Molecular dynamic simulation indicated high adsorption energy values for the inhibitor, suggesting its spontaneous adsorption onto the Fe (110) surface. These findings underscore the potential of Arabic gum as a viable resource for the development of polyurethanes under mild conditions, serving as effective corrosion inhibitors for sour solutions.

Keywords: environmental effect, Arabic gum, corrosion inhibitor, sour corrosion, molecular dynamics simulation

Procedia PDF Downloads 62
5139 Virtual Reality as a Method in Transformative Learning: A Strategy to Reduce Implicit Bias

Authors: Cory A. Logston

Abstract:

It is imperative researchers continue to explore every transformative strategy to increase empathy and awareness of racial bias. Racism is a social and political concept that uses stereotypical ideology to highlight racial inequities. Everyone has biases they may not be aware of toward disparate out-groups. There is some form of racism in every profession; doctors, lawyers, and teachers are not immune. There have been numerous successful and unsuccessful strategies to motivate and transform an individual’s unconscious biased attitudes. One method designed to induce a transformative experience and identify implicit bias is virtual reality (VR). VR is a technology designed to transport the user to a three-dimensional environment. In a virtual reality simulation, the viewer is immersed in a realistic interactive video taking on the perspective of a Black man. The viewer as the character experiences discrimination in various life circumstances growing up as a child into adulthood. For instance, the prejudice felt in school, as an adolescent encountering the police and false accusations in the workplace. Current research suggests that an immersive VR simulation can enhance self-awareness and become a transformative learning experience. This study uses virtual reality immersion and transformative learning theory to create empathy and identify any unintentional racial bias. Participants, White teachers, will experience a VR immersion to create awareness and identify implicit biases regarding Black students. The desired outcome provides a springboard to reconceptualize their own implicit bias. Virtual reality is gaining traction in the research world and promises to be an effective tool in the transformative learning process.

Keywords: empathy, implicit bias, transformative learning, virtual reality

Procedia PDF Downloads 194