Search results for: resistor network
1839 Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media
Authors: Jinghui Peng, Shanyu Tang, Jia Li
Abstract:
Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media.Keywords: steganalysis, security, Fast Fourier Transform, streaming media
Procedia PDF Downloads 1491838 Li-Fi Technology: Data Transmission through Visible Light
Authors: Shahzad Hassan, Kamran Saeed
Abstract:
People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.Keywords: communication, LED, Li-Fi, Wi-Fi
Procedia PDF Downloads 3481837 Developing Medium Term Maintenance Plan For Road Networks
Authors: Helen S. Ghali, Haidy S. Ghali, Salma Ibrahim, Ossama Hosny, Hatem S. Elbehairy
Abstract:
Infrastructure systems are essential assets in any community; accordingly, authorities aim to maximize its life span while minimizing the life cycle cost. This requires studying the asset conditions throughout its operation and forming a cost-efficient maintenance strategy plan. The objective of this study is to develop a highway management system that provides medium-term maintenance plans with the minimum life cycle cost subject to budget constraints. The model is applied to data collected for the highway network in India with the aim to output a 5-year maintenance plan strategy from 2019 till 2023. The main element considered is the surface coarse, either rigid or flexible pavement. The model outputs a 5-year maintenance plan for each segment given the budget constraint while maximizing the new pavement condition rating and minimizing its life cycle cost.Keywords: infrastructure, asset management, optimization, maintenance plan
Procedia PDF Downloads 2201836 Risk Prioritization in Tunneling Construction Projects
Authors: David Nantes, George Gilbert
Abstract:
There are a lot of risks that might crop up as a tunneling project develops, and it's crucial to be aware of them. Due to the unexpected nature of tunneling projects and the interconnectedness of risk occurrences, the risk assessment approach presents a significant challenge. The purpose of this study is to provide a hybrid FDEMATEL-ANP model to help prioritize risks during tunnel construction projects. The ambiguity in expert judgments and the relative severity of interdependencies across risk occurrences are both taken into consideration by this model, thanks to the Fuzzy Decision-Making Trial and Evaluation Laboratory (FDEMATEL). The Analytic Network Process (ANP) method is used to rank priorities and assess project risks. The authors provide a case study of a subway tunneling construction project to back up the validity of their methodology. The results showed that the proposed method successfully isolated key risk factors and elucidated their interplay in the case study. The proposed method has the potential to become a helpful resource for evaluating dangers associated with tunnel construction projects.Keywords: risk, prioritization, FDEMATEL, ANP, tunneling construction projects
Procedia PDF Downloads 931835 Suitable Die Shaping for a Rectangular Shape Bottle by Application of FEM and AI Technique
Authors: N. Ploysook, R. Rugsaj, C. Suvanjumrat
Abstract:
The characteristic requirement for producing rectangular shape bottles was a uniform thickness of the plastic bottle wall. Die shaping was a good technique which controlled the wall thickness of bottles. An advance technology which was the finite element method (FEM) for blowing parison to be a rectangular shape bottle was conducted to reduce waste plastic from a trial and error method of a die shaping and parison control method. The artificial intelligent (AI) comprised of artificial neural network and genetic algorithm was selected to optimize the die gap shape from the FEM results. The application of AI technique could optimize the suitable die gap shape for the parison blow molding which did not depend on the parison control method to produce rectangular bottles with the uniform wall. Particularly, this application can be used with cheap blow molding machines without a parison controller therefore it will reduce cost of production in the bottle blow molding process.Keywords: AI, bottle, die shaping, FEM
Procedia PDF Downloads 2391834 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed
Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot
Abstract:
Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning
Procedia PDF Downloads 3731833 Research on Greenway System Planning of Mountainous City: A Case Study of Chengkou County, Chongqing
Authors: Youping Huang, Yang Liu
Abstract:
Mountainous cities have unique landscape relationship, topography and urban spatial pattern different from plain cities, which put forward different requirements for greenway system planning strategy. Taking the greenway planning of Chengkou County in Chongqing as an example, this paper discusses the greenway system planning strategy of mountainous cities based on urban and rural green space, urban landscape resources, human resources and other factors. Through multi-angle maintenance of landscape pattern, multi-objective integration of urban resources, multi-level construction of greenway network, and multi-interactive development control, the sustainable development of mountain city landscape resources is realized, the new urban ecology is constructed, and the quality of life of urban and rural residents is improved.Keywords: greenway planning, mountain city, landscape pattern, cultural resources, chongqing
Procedia PDF Downloads 1041832 Exhaustive Study of Essential Constraint Satisfaction Problem Techniques Based on N-Queens Problem
Authors: Md. Ahsan Ayub, Kazi A. Kalpoma, Humaira Tasnim Proma, Syed Mehrab Kabir, Rakib Ibna Hamid Chowdhury
Abstract:
Constraint Satisfaction Problem (CSP) is observed in various applications, i.e., scheduling problems, timetabling problems, assignment problems, etc. Researchers adopt a CSP technique to tackle a certain problem; however, each technique follows different approaches and ways to solve a problem network. In our exhaustive study, it has been possible to visualize the processes of essential CSP algorithms from a very concrete constraint satisfaction example, NQueens Problem, in order to possess a deep understanding about how a particular constraint satisfaction problem will be dealt with by our studied and implemented techniques. Besides, benchmark results - time vs. value of N in N-Queens - have been generated from our implemented approaches, which help understand at what factor each algorithm produces solutions; especially, in N-Queens puzzle. Thus, extended decisions can be made to instantiate a real life problem within CSP’s framework.Keywords: arc consistency (AC), backjumping algorithm (BJ), backtracking algorithm (BT), constraint satisfaction problem (CSP), forward checking (FC), least constrained values (LCV), maintaining arc consistency (MAC), minimum remaining values (MRV), N-Queens problem
Procedia PDF Downloads 3661831 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia
Authors: The Danh Phan
Abstract:
House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise
Procedia PDF Downloads 2331830 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata
Procedia PDF Downloads 3921829 Modeling the Impact of Time Pressure on Activity-Travel Rescheduling Heuristics
Authors: Jingsi Li, Neil S. Ferguson
Abstract:
Time pressure could have an influence on the productivity, quality of decision making, and the efficiency of problem-solving. This has been mostly stemmed from cognitive research or psychological literature. However, a salient scarce discussion has been held for transport adjacent fields. It is conceivable that in many activity-travel contexts, time pressure is a potentially important factor since an excessive amount of decision time may incur the risk of late arrival to the next activity. The activity-travel rescheduling behavior is commonly explained by costs and benefits of factors such as activity engagements, personal intentions, social requirements, etc. This paper hypothesizes that an additional factor of perceived time pressure could affect travelers’ rescheduling behavior, thus leading to an impact on travel demand management. Time pressure may arise from different ways and is assumed here to be essentially incurred due to travelers planning their schedules without an expectation of unforeseen elements, e.g., transport disruption. In addition to a linear-additive utility-maximization model, the less computationally compensatory heuristic models are considered as an alternative to simulate travelers’ responses. The paper will contribute to travel behavior modeling research by investigating the following questions: how to measure the time pressure properly in an activity-travel day plan context? How do travelers reschedule their plans to cope with the time pressure? How would the importance of the activity affect travelers’ rescheduling behavior? What will the behavioral model be identified to describe the process of making activity-travel rescheduling decisions? How do these identified coping strategies affect the transport network? In this paper, a Mixed Heuristic Model (MHM) is employed to identify the presence of different choice heuristics through a latent class approach. The data about travelers’ activity-travel rescheduling behavior is collected via a web-based interactive survey where a fictitious scenario is created comprising multiple uncertain events on the activity or travel. The experiments are conducted in order to gain a real picture of activity-travel reschedule, considering the factor of time pressure. The identified behavioral models are then integrated into a multi-agent transport simulation model to investigate the effect of the rescheduling strategy on the transport network. The results show that an increased proportion of travelers use simpler, non-compensatory choice strategies instead of compensatory methods to cope with time pressure. Specifically, satisfying - one of the heuristic decision-making strategies - is adopted commonly since travelers tend to abandon the less important activities and keep the important ones. Furthermore, the importance of the activity is found to increase the weight of negative information when making trip-related decisions, especially route choices. When incorporating the identified non-compensatory decision-making heuristic models into the agent-based transport model, the simulation results imply that neglecting the effect of perceived time pressure may result in an inaccurate forecast of choice probability and overestimate the affectability to the policy changes.Keywords: activity-travel rescheduling, decision making under uncertainty, mixed heuristic model, perceived time pressure, travel demand management
Procedia PDF Downloads 1151828 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying
Procedia PDF Downloads 5021827 When Ideological Intervention Backfires: The Case of the Iranian Clerical System’s Intervention in the Pandemic-Era Elementary Education
Authors: Hasti Ebrahimi
Abstract:
This study sheds light on the challenges and difficulties caused by the Iranian clerical system’s intervention in the country’s school education during the COVID-19 pandemic, when schools remained closed for almost two years. The pandemic brought Iranian elementary school education to a standstill for almost 6 months before the country developed a nationwide learning platform – a customized television network. While the initiative seemed to have been welcomed by the majority of Iranian parents, it resented some of the more traditional strata of the society, including the influential Friday Prayer Leaders who found the televised version of the elementary education ‘less spiritual’ and ‘more ‘material’ or science-based. That prompted the Iranian Channel of Education, the specialized television network that had been chosen to serve as a nationally televised school during the pandemic, to try to redefine much of its online elementary school educational content within the religious ideology of the Islamic Republic of Iran. As a result, young clergies appeared on the television screen as preachers of Islamic morality, religious themes and even sociology, history, and arts. The present research delves into the consequences of such an intervention, how it might have impacted the infrastructure of Iranian elementary education and whether or not the new ideology-infused curricula would withstand the opposition of students and mainstream teachers. The main methodology used in this study is Critical Discourse Analysis with a cognitive approach. It systematically finds and analyzes the alternative ideological structures of discourse in the Iranian Channel of Education from September 2021 to July 2022, when the clergy ‘teachers’ replaced ‘regular’ history and arts teachers on the television screen for the first time. It has aimed to assess how the various uses of the alternative ideological discourse in elementary school content have influenced the processes of learning: the acquisition of knowledge, beliefs, opinions, attitudes, abilities, and other cognitive and emotional changes, which are the goals of institutional education. This study has been an effort aimed at understanding and perhaps clarifying the relationships between the traditional textual structures and processing on the one hand and socio-cultural contexts created by the clergy teachers on the other. This analysis shows how the clerical portion of elementary education on the Channel of Education that seemed to have dominated the entire televised teaching and learning process faded away as the pandemic was contained and mainstream classes were restored. It nevertheless reflects the deep ideological rifts between the clerical approach to school education and the mainstream teaching process in Iranian schools. The semantic macrostructures of social content in the current Iranian elementary school education, this study suggests, have remained intact despite the temporary ideological intervention of the ruling clerical elite in their formulation and presentation. Finally, using thematic and schematic frameworks, the essay suggests that the ‘clerical’ social content taught on the Channel of Education during the pandemic cannot have been accepted cognitively by the channel’s target audience, including students and mainstream teachers.Keywords: televised elementary school learning, Covid 19, critical discourse analysis, Iranian clerical ideology
Procedia PDF Downloads 551826 Secret Sharing in Visual Cryptography Using NVSS and Data Hiding Techniques
Authors: Misha Alexander, S. B. Waykar
Abstract:
Visual Cryptography is a special unbreakable encryption technique that transforms the secret image into random noisy pixels. These shares are transmitted over the network and because of its noisy texture it attracts the hackers. To address this issue a Natural Visual Secret Sharing Scheme (NVSS) was introduced that uses natural shares either in digital or printed form to generate the noisy secret share. This scheme greatly reduces the transmission risk but causes distortion in the retrieved secret image through variation in settings and properties of digital devices used to capture the natural image during encryption / decryption phase. This paper proposes a new NVSS scheme that extracts the secret key from randomly selected unaltered multiple natural images. To further improve the security of the shares data hiding techniques such as Steganography and Alpha channel watermarking are proposed.Keywords: decryption, encryption, natural visual secret sharing, natural images, noisy share, pixel swapping
Procedia PDF Downloads 4071825 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study
Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq
Abstract:
Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study
Procedia PDF Downloads 3271824 A Case Study of Assessing the Impact of Electronic Payment System on the Service Delivery of Banks in Nigeria
Authors: Idris Lawal
Abstract:
Electronic payment system is simply a payment or monetary transaction made over the internet or a network of computers. This study was carried out in order to assess how electronic payment system has impacted on banks service delivery, to examine the efficiency of electronic payment system in Nigeria and to determine the level of customer's satisfaction as a direct result of the deployment of electronic payment systems. It is an empirical study conducted using structured questionnaire distributed to officials and customers of Access Bank plc. Chi-square(x2) was adopted for the purpose of data analysis. The result of the study showed that the development of electronic payment system offer great benefit to bank customers including improved services, reduced turn-around time, ease of banking transaction, significant cost saving etc. The study recommends that customer protection laws should be properly put in place to safeguard the interest of end users of e-payment instruments.Keywords: bank, electronic payment systems, service delivery, customer's satisfaction
Procedia PDF Downloads 3991823 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment
Authors: Frederic Jumelle, Kelvin So, Didan Deng
Abstract:
A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.Keywords: artificial intelligence, neurofinance, neuropsychology, risk management
Procedia PDF Downloads 1401822 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 2121821 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction
Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga
Abstract:
Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.Keywords: genetic algorithm, neural networks, word prediction, machine learning
Procedia PDF Downloads 1951820 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs
Authors: Gaurav Sancheti
Abstract:
This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques
Procedia PDF Downloads 2231819 Towards an Enhanced Compartmental Model for Profiling Malware Dynamics
Authors: Jessemyn Modiini, Timothy Lynar, Elena Sitnikova
Abstract:
We present a novel enhanced compartmental model for malware spread analysis in cyber security. This paper applies cyber security data features to epidemiological compartmental models to model the infectious potential of malware. Compartmental models are most efficient for calculating the infectious potential of a disease. In this paper, we discuss and profile epidemiologically relevant data features from a Domain Name System (DNS) dataset. We then apply these features to epidemiological compartmental models to network traffic features. This paper demonstrates how epidemiological principles can be applied to the novel analysis of key cybersecurity behaviours and trends and provides insight into threat modelling above that of kill-chain analysis. In applying deterministic compartmental models to a cyber security use case, the authors analyse the deficiencies and provide an enhanced stochastic model for cyber epidemiology. This enhanced compartmental model (SUEICRN model) is contrasted with the traditional SEIR model to demonstrate its efficacy.Keywords: cybersecurity, epidemiology, cyber epidemiology, malware
Procedia PDF Downloads 1101818 Low-Cost IoT System for Monitoring Ground Propagation Waves due to Construction and Traffic Activities to Nearby Construction
Authors: Lan Nguyen, Kien Le Tan, Bao Nguyen Pham Gia
Abstract:
Due to the high cost, specialized dynamic measurement devices for industrial lands are difficult for many colleges to equip for hands-on teaching. This study connects a dynamic measurement sensor and receiver utilizing an inexpensive Raspberry Pi 4 board, some 24-bit ADC circuits, a geophone vibration sensor, and embedded Python open-source programming. Gather and analyze signals for dynamic measuring, ground vibration monitoring, and structure vibration monitoring. The system may wirelessly communicate data to the computer and is set up as a communication node network, enabling real-time monitoring of background vibrations at various locations. The device can be utilized for a variety of dynamic measurement and monitoring tasks, including monitoring earthquake vibrations, ground vibrations from construction operations, traffic, and vibrations of building structures.Keywords: sensors, FFT, signal processing, real-time data monitoring, ground propagation wave, python, raspberry Pi 4
Procedia PDF Downloads 1041817 Mexico's Steam Connections Across the Pacific (1867-1910)
Authors: Ruth Mandujano Lopez
Abstract:
During the second half of the 19th century, in the transition from sail to steam navigation, the transpacific space underwent major transformation. This paper examines the role that the steamship companies between Mexico, the rest of North America and Asia played in that process. Based on primary sources found in Mexico, California, London and Hong Kong, it argues that these companies actively participated in the redefining of the Pacific space as they opened new routes, transported thousands of people and had an impact on regional geopolitics. In order to prove this, the text will present the cases of a handful of companies that emerged between 1867 and 1910 and of some of their passengers. By looking at the way the Mexican ports incorporated to the transpacific steam maritime network, this work contributes to have a better understanding of the role that Latin American ports have played in the formation of a global order. From a theoretical point of view, it proposes the conceptualization of space in the form of transnational networks as a point of departure to conceive a history that is truly global.Keywords: mexico, steamships, transpacific, maritime companies
Procedia PDF Downloads 511816 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error
Procedia PDF Downloads 4481815 An Industrial Scada System Remote Control Using Mobile Phones
Authors: Ahmidah Elgali
Abstract:
SCADA is the abbreviation for "Administrative Control And Data Acquisition." SCADA frameworks are generally utilized in industry for administrative control and information securing of modern cycles. Regular SCADA frameworks use PC, journal, slim client, and PDA as a client. In this paper, a Java-empowered cell phone has been utilized as a client in an example SCADA application to show and regulate the place of an example model crane. The paper presents a genuine execution of the online controlling of the model crane through a cell phone. The remote correspondence between the cell phone and the SCADA server is performed through a base station by means of general parcel radio assistance GPRS and remote application convention WAP. This application can be used in industrial sites in areas that are likely to be exposed to a security emergency (like terrorist attacks) which causes the sudden exit of the operators; however, no time to perform the shutdown procedures for the plant. Hence this application allows shutting down units and equipment remotely by mobile and so avoids damage and losses.Keywords: control, industrial, mobile, network, remote, SCADA
Procedia PDF Downloads 801814 A Query Optimization Strategy for Autonomous Distributed Database Systems
Authors: Dina K. Badawy, Dina M. Ibrahim, Alsayed A. Sallam
Abstract:
Distributed database is a collection of logically related databases that cooperate in a transparent manner. Query processing uses a communication network for transmitting data between sites. It refers to one of the challenges in the database world. The development of sophisticated query optimization technology is the reason for the commercial success of database systems, which complexity and cost increase with increasing number of relations in the query. Mariposa, query trading and query trading with processing task-trading strategies developed for autonomous distributed database systems, but they cause high optimization cost because of involvement of all nodes in generating an optimal plan. In this paper, we proposed a modification on the autonomous strategy K-QTPT that make the seller’s nodes with the lowest cost have gradually high priorities to reduce the optimization time. We implement our proposed strategy and present the results and analysis based on those results.Keywords: autonomous strategies, distributed database systems, high priority, query optimization
Procedia PDF Downloads 5251813 Mourning Motivations for Celebrities in Instagram: A Case Study of Mohammadreza Shajarian's Death
Authors: Zahra Afshordi
Abstract:
Instagram, as an everyday life social network, hosts from the ultrasound image of an unborn fetus to the pictures of newly placed gravestones and funerals. It is a platform that allows its users to create a second identity independently from and at the same time in relation to the real space identity. The motives behind this identification are what this article is about. This article studies the motivations of Instagram users mourning for celebrities with a focus on the death of MohammadReza Shajarian. The Shajarian’s death had a wide reflection on Instagram Persian-speaking users. The purpose of this qualitative survey is to comprehend and study the user’s motivations in posting mourning and memorializing content. The methodology of the essay is a hybrid methodology consisting of content analysis and open-ended interviews. The results highlight that users' motives are more than just simple sympathy and include political protest, gaining cultural capital, reaching social status, and escaping from solitude.Keywords: case study, celebrity, identity, Instagram, mourning, qualitative survey
Procedia PDF Downloads 1591812 Uncertainty Estimation in Neural Networks through Transfer Learning
Authors: Ashish James, Anusha James
Abstract:
The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.Keywords: uncertainty estimation, neural networks, transfer learning, regression
Procedia PDF Downloads 1371811 Quantifying Stability of Online Communities and Its Impact on Disinformation
Authors: Victor Chomel, Maziyar Panahi, David Chavalarias
Abstract:
Misinformation has taken an increasingly worrying place in social media. Propagation patterns are closely linked to the structure of communities. This study proposes a method of community analysis based on a combination of centrality indicators for the network and its main communities. The objective is to establish a link between the stability of the communities over time, the social ascension of its members internally, and the propagation of information in the community. To this end, data from the debates about global warming and political communities on Twitter have been collected, and several tens of millions of tweets and retweets have helped us better understand the structure of these communities. The quantification of this stability allows for the study of the propagation of information of any kind, including disinformation. Our results indicate that the most stable communities over time are the ones that enable the establishment of nodes capturing a large part of the information and broadcasting its opinions. Conversely, communities with a high turnover and social ascendancy only stabilize themselves strongly in the face of adversity and external events but seem to offer a greater diversity of opinions most of the time.Keywords: community analysis, disinformation, misinformation, Twitter
Procedia PDF Downloads 1421810 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources
Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy
Abstract:
This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.Keywords: big bang big crunch, distributed generation, load control, optimization, planning
Procedia PDF Downloads 348