Search results for: place-based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7190

Search results for: place-based learning

4250 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm

Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio

Abstract:

The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.

Keywords: algorithm, CoAP, DoS, IoT, machine learning

Procedia PDF Downloads 80
4249 Building Community through Discussion Forums in an Online Accelerated MLIS Program: Perspectives of Instructors and Students

Authors: Mary H Moen, Lauren H. Mandel

Abstract:

Creating a sense of community in online learning is important for student engagement and success. The integration of discussion forums within online learning environments presents an opportunity to explore how this computer mediated communications format can cultivate a sense of community among students in accelerated master’s degree programs. This research has two aims, to delve into the ways instructors utilize this communications technology to create community and to understand the feelings and experiences of graduate students participating in these forums in regard to its effectiveness in community building. This study is a two-phase approach encompassing qualitative and quantitative methodologies. The data will be collected at an online accelerated Master of Library and Information Studies program at a public university in the northeast of the United States. Phase 1 is a content analysis of the syllabi from all courses taught in the 2023 calendar year, which explores the format and rules governing discussion forum assignments. Four to six individual interviews of department faculty and part time faculty will also be conducted to illuminate their perceptions of the successes and challenges of their discussion forum activities. Phase 2 will be an online survey administered to students in the program during the 2023 calendar year. Quantitative data will be collected for statistical analysis, and short answer responses will be analyzed for themes. The survey is adapted from the Classroom Community Scale Short-Form (CSS-SF), which measures students' self-reported responses on their feelings of connectedness and learning. The prompts will contextualize the items from their experience in discussion forums during the program. Short answer responses on the challenges and successes of using discussion forums will be analyzed to gauge student perceptions and experiences using this type of communication technology in education. This research study is in progress. The authors anticipate that the findings will provide a comprehensive understanding of the varied approaches instructors use in discussion forums for community-building purposes in an accelerated MLIS program. They predict that the more varied, flexible, and consistent student uses of discussion forums are, the greater the sense of community students will report. Additionally, students’ and instructors’ perceptions and experiences within these forums will shed light on the successes and challenges faced, thereby offering valuable recommendations for enhancing online learning environments. The findings are significant because they can contribute actionable insights for instructors, educational institutions, and curriculum designers aiming to optimize the use of discussion forums in online accelerated graduate programs, ultimately fostering a richer and more engaging learning experience for students.

Keywords: accelerated online learning, discussion forums, LIS programs, sense of community, g

Procedia PDF Downloads 84
4248 The Impact of Intercultural Communicative Competence on the Academic Achievement of English Language Learners: Students Working in the Sector of Tourism in Jordan (Petra and Jerash) as a Case Study

Authors: Haneen Alrawashdeh, Naciye Kunt

Abstract:

Intercultural communicative competence or (ICC), is an extension of communicative competence that takes into account the intercultural aspect of learning a foreign language. Accordingly, this study aimed at investigating the intercultural interaction impact on English as a foreign language learners' academic achievement of language as a scholastic subject and their motivation towards learning it. To achieve the aim of the study, a qualitative research approach was implemented by means of semi-structured interviews. Interview sessions were conducted with eight teachers of English as well as ten English language learners who work in the tourism industry in a variety of career paths, such as selling antiques and traditional costumes. An analysis of learners' grades of English subjects from 2014 to 2019 academic years was performed by using the Open Education Management Information System Database in Jordan to support the findings of the study. The results illustrated that due to the fact that they work in the tourism sector, students gain skills and knowledge that assist them in better academic achievement in the subject of English by practicing intercultural communication with different nationalities on a daily basis; intercultural communication enhances students speaking skills, lexicon, and fluency; however, despite that their grades showed increasing, from teachers perspectives, intercultural communicative competence reduces their linguistic accuracy and ability to perform English academic writing in academic contexts such as exams.

Keywords: intercultural communicative competence, Jordan, language learning motivation, language academic achievement

Procedia PDF Downloads 207
4247 Does sustainability disclosure improve analysts’ forecast accuracy Evidence from European banks

Authors: Albert Acheampong, Tamer Elshandidy

Abstract:

We investigate the extent to which sustainability disclosure from the narrative section of European banks’ annual reports improves analyst forecast accuracy. We capture sustainability disclosure using a machine learning approach and use forecast error to proxy analyst forecast accuracy. Our results suggest that sustainability disclosure significantly improves analyst forecast accuracy by reducing the forecast error. In a further analysis, we also find that the induction of Directive 2014/95/European Union (EU) is associated with increased disclosure content, which then reduces forecast error. Collectively, our results suggest that sustainability disclosure improves forecast accuracy, and the induction of the new EU directive strengthens this improvement. These results hold after several further and robustness analyses. Our findings have implications for market participants and policymakers.

Keywords: sustainability disclosure, machine learning, analyst forecast accuracy, forecast error, European banks, EU directive

Procedia PDF Downloads 76
4246 The Development of Web Based Instruction on Puppet Show

Authors: Piyanut Sujit

Abstract:

The purposes of this study were to: 1) create knowledge and develop web based instruction on the puppet show, 2) evaluate the effectiveness of the web based instruction on the puppet show by using the criteria of 80/80, and 3) compare and analyze the achievement of the students before and after learning with web based instruction on the puppet show. The population of this study included 53 students in the Program of Library and Information Sciences who registered in the subject of Reading and Reading Promotion in semester 1/2011, Suansunandha Rajabhat University. The research instruments consisted of web based instruction on the puppet show, specialist evaluation form, achievement test, and tests during the lesson. The research statistics included arithmetic mean, variable means, standard deviation, and t-test in SPSS for Windows. The results revealed that the effectiveness of the developed web based instruction was 84.67/80.47 which was higher than the set criteria at 80/80. The student achievement before and after learning showed statistically significant difference at 0.05 as in the hypothesis.

Keywords: puppet, puppet show, web based instruction, library and information sciences

Procedia PDF Downloads 367
4245 [Keynote Talk]: Pragmatic Leadership in School Organization and Research in Physical Education Professional Development

Authors: Ellie Abdi

Abstract:

This paper is a review of a recently published book (April 2018) by Dr. Ellie Abdi. The book divides into two sections of 1) leadership in school organization and 2) pragmatic research in physical education professional development. The first part of the book explores school organizational development in terms of 1) communication development, 2) community development, and 3) decision making development. It concludes to acknowledge that decision making is the heart of educational management. This is while communication and community are essential to the development of the school organization. The role of a leader in a professional learning community (PLC) is acknowledged with the organizational development plan and moves onto 5 overall objectives of a professional development plan. It clarifies that professional learning community (PLC) benefits both students and professionals in education. Furthermore, professional development needs to be involved in opportunities to value diversity and foundations of learning, in addition to search for veteran teachers who offer a rich combination of experience and perspective. School educational platform in terms of teacher training in physical education is discussed in the second part. The book reviews that well-designed programs are powerful and constructive ways to identify the strength and weaknesses of teachers. Post-positivism, constructivism, advocacy/participatory, and pragmatism in teacher education are also disclosed. The book specifically unfolds pragmatic research in professional development of physical education. It provides researchers, doctoral, and masters level students with defined examples. In summary, the book shows how appropriate it is when many different traditions are displayed in a pragmatic way, following the stages of research from development to dissemination.

Keywords: leadership, physical education, pragmatic, professional development

Procedia PDF Downloads 162
4244 Didactic Suitability and Mathematics Through Robotics and 3D Printing

Authors: Blanco T. F., Fernández-López A.

Abstract:

Nowadays, education, motivated by the new demands of the 21st century, acquires a dimension that converts the skills that new generations may need into a huge and uncertain set of knowledge too broad to be entirety covered. Within this set, and as tools to reach them, we find Learning and Knowledge Technologies (LKT). Thus, in order to prepare students for an everchanging society in which the technological boom involves everything, it is essential to develop digital competence. Nevertheless LKT seems not to have found their place in the educational system. This work is aimed to go a step further in the research of the most appropriate procedures and resources for technological integration in the classroom. The main objective of this exploratory study is to analyze the didactic suitability (epistemic, cognitive, affective, interactional, mediational and ecological) for teaching and learning processes of mathematics with robotics and 3D printing. The analysis carried out is drawn from a STEAM (Science, Technology, Engineering, Art and Mathematics) project that has the Pilgrimage way to Santiago de Compostela as a common thread. The sample is made up of 25 Primary Education students (10 and 11 years old). A qualitative design research methodology has been followed, the sessions have been distributed according to the type of technology applied. Robotics has been focused towards learning two-dimensional mathematical notions while 3D design and printing have been oriented towards three-dimensional concepts. The data collection instruments used are evaluation rubrics, recordings, field notebooks and participant observation. Indicators of didactic suitability proposed by Godino (2013) have been used for the analysis of the data. In general, the results show a medium-high level of didactic suitability. Above these, a high mediational and cognitive suitability stands out, which led to a better understanding of the positions and relationships of three-dimensional bodies in space and the concept of angle. With regard to the other indicators of the didactic suitability, it should be noted that the interactional suitability would require more attention and the affective suitability a deeper study. In conclusion, the research has revealed great expectations around the combination of teaching-learning processes of mathematics and LKT. Although there is still a long way to go in terms of the provision of means and teacher training.

Keywords: 3D printing, didactic suitability, educational design, robotics

Procedia PDF Downloads 104
4243 A Participatory Study in Using Augmented Reality for Teaching Civics in Middle Schools

Authors: E. Sahar

Abstract:

Civic political knowledge is crucial for the stability of democratic countries. In the USA, Americans have poor knowledge about their constitution and their political systems. Some states such as Florida State suffers from a huge decline in civics comparing to the National Average. This study concerns with using new technologies such as augmented reality to engage students in learning civics in classrooms. This is a participatory study, which engage teachers in the process of designing augmented reality civic games. The researcher used survey to find out the materials that teachers struggle with while teaching civics. Four lessons were found the most difficult to teach for middle school students: SS7C1.1 Enlightenment thinkers, SS7C1.2 influencing documents, SS7C1.7-Weakness of the Articles of Confederation, and Forms and systems of governments. For the limited scope of this study, we focused on “Forms and Systems of governments’ as the main project. Augmented Reality is used to help students to engage in learning civics through building a game that is based on the pedagogy constructivism theory. The resulted project meets the educational requirements for civics, provide students with more knowledge in at stake issues such as migration and citizenship, and help them to build leadership skills while playing in groups. The augmented reality game is also designed to test the students learning for each stage. This study helps to generate insightful implications for the use of augmented reality by educators, researchers, instructional designers, and developers who are interested in integrating technology in teaching civics for students in middle school classrooms.

Keywords: augmented reality, games, civics teaching, Florida middle school

Procedia PDF Downloads 122
4242 Demystifying Board Games for Teachers

Authors: Shilpa Sharma, Lakshmi Ganesh, Mantra Gurumurthy, Shweta Sharma

Abstract:

Board games provide affordances of 21st-century skills like collaboration, critical thinking, and strategy. Board games such as chess, Catan, Battleship, Scrabble, and Taboo can enhance learning in these areas. While board games are popular in informal child settings, their use in formal K-12 education is limited. To encourage teachers to incorporate board games, it's essential to grasp their perceptions and tailor professional development programs accordingly. This paper aims to explore teacher attitudes toward board games and propose interventions to motivate teachers to integrate and create board games in the classroom. A user study was conceived, designed, and administered with teachers (n=38) to understand their experience in playing board games and using board games in the classroom. Purposive sampling was employed as the questionnaire was floated to teacher groups that the authors were aware of. The teachers taught in K-12 affordable private schools. The majority of them had experience ranging from 2-5 years. The questionnaire consisted of questions on teacher perceptions and beliefs of board game usage in the classroom. From the responses, it was observed that ~90% of teachers, though they had experience of playing board games, rarely did it translate to using board games in the classroom. Additionally, it was observed that translating learning objectives to board game objectives is the key factor that teachers consider while using board games in the classroom. Based on the results from the questionnaire, a professional development workshop was co-designed with the objective of motivating teachers to design, create and use board games in the classroom. The workshop is based on the principles of gamification. This is to ensure that the teachers experience a board game in a learning context. Additionally, the workshop is based on the principles of andragogy, such as agency, pertinence, and relevance. The workshop will begin by modifying and reusing known board games in the learning context so that the teachers do not find it difficult and daunting. The intention is to verify the face validity and content validity of the workshop design, orchestration and content with experienced teacher development professionals and education researchers. The results from this study will be published in the full paper.

Keywords: board games, professional development, teacher motivation, teacher perception

Procedia PDF Downloads 107
4241 What Do Board Members Learn from Their External Connectedness? The Case of Firm Diversification

Authors: Pei-Gi Shu, Yin-Hua Yeh, Chao-Ting Chen

Abstract:

Using a dataset consisting of 7,120 firm-year observations from the Taiwan stock market over the 2007-2011 sample period, we find a significantly negative relationship between board external connectedness and firm diversification. We propose a learningeffect hypothesis indicating that an externally connected board member’s experiences in other companies directly affect his recommendations regarding the underlying firm’s diversification. The partial correlation between diversification and the performance of firms with externally connected board members is used as a proxy for the learning effect. The empirical results show that the learning effect is asymmetrically embedded in firm diversification, with negative experiences having a greater effect on firm diversification than positive experiences. Externally connected board members are associated with reduced diversification in one firm after they learn that diversification is detrimental to value in other companies. Moreover, the diversification of a firm due to board external connectedness is moderated by the controlling owner’s interest alignment and entrenchment.

Keywords: board, external, connectedness, diversification

Procedia PDF Downloads 462
4240 Online Versus Offline Learning: A Comparative Analysis of Modes of Education Amidst Pandemic

Authors: Nida B. Syed

Abstract:

Following second wave of the current pandemic COVID-19, education transmission is occurring via both the modes of education, that is, online as well as offline in the college. The aim of the current study was, therefore, to bring forth the comparative analysis of both the modes of education and their impact on the levels of academic stress and states of the mental wellbeing of the students amidst the current pandemic. Measures of the constructs were obtained by the online Google forms, which consist of the Perceptions of Academic Stress Scale (PASS) by and Warwick-Edinburg Mental Well-being Scale, from a sample of 100 undergraduate students aged 19-25 years studying in different colleges of Bengaluru, India. Modes of education were treated as the predictor variables whilst academic stress, and mental wellbeing constituted the criterion variables. Two-way ANOVA was employed. Results show that the levels of academic stress are found to be a bit higher in students attending online classes as compared to those taking offline classes in college (MD = 1.10, df = 98, t = 0.590, p > 0.05), whereas mental wellbeing is found to be low in students attending offline classes in colleges than those taking online classes (MD = 5.180, df = 98, t =2.340, p > 0.05 level). The combined interactional effect of modes of education and academic stress on the states of the mental wellbeing of the students is found to be low (R2 = 0.053), whilst the combined impact of modes of education and mental wellbeing on the levels of academic stress was found to be quite low (R2 = 0.014). It was concluded that modes of education have an impact on levels of academic stress and states of the mental well-being of the students amidst the current pandemic, but it is low.

Keywords: modes of education, online learning, offline learning, pandemic

Procedia PDF Downloads 107
4239 Vocational Education for Sustainable Development: Teaching Methods and Practices

Authors: Seyilnan Hannah Wadak, Dangway Monica Clement

Abstract:

This theoretical study explores distinct teaching methods and practices for integrating sustainable development principles into vocational education. It examines how vocational institutions can prepare students for a sustainability-oriented workforce while addressing environmental and social challenges. The research analyzes current literature, case studies, and emerging trends to identify effective strategies for incorporating sustainability across various vocational disciplines. Key approaches discussed include experiential learning, green skills training, and interdisciplinary projects that simulate real-world sustainability challenges. The study also investigates the role of technology, such as virtual reality and online collaboration tools, in enhancing sustainability education. Additionally, it addresses the importance of industry partnerships and community engagement in creating relevant, practical learning experiences. The paper highlights potential barriers to implementation and proposes solutions for overcoming them, including professional development for educators and curriculum redesign. Findings suggest that integrating sustainability into vocational education not only enhances students’ employability but also contributes to broader societal goals of sustainable development. This research provides a comprehensive framework for educational institutions and policymakers to transform vocational programs, ensuring they meet the evolving demands of a sustainable future.

Keywords: vocational education, sustainable development, teaching methods, experiential learning, green skills, curriculum integration, industry partnerships, educational technology

Procedia PDF Downloads 30
4238 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning

Authors: Kevin Fernagut, Olivier Flauzac, Erick M. G. Robledo, Florent Nolot

Abstract:

The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-Based Virtual Machine (KVM), Linux Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.

Keywords: containerization, containers, cybersecurity, cyberattacks, isolation, performance, virtualization, virtual machines

Procedia PDF Downloads 149
4237 Assessment of the Implementation of Recommended Teaching and Evaluation Methods of NCE Arabic Language Curriculum in Colleges of Education in North Western Nigeria

Authors: Hamzat Shittu Atunnise

Abstract:

This study on Assessment of the Implementation of Recommended Teaching and Evaluation Methods of the Nigeria Certificate in Education (NCE) Arabic Language Curriculum in Colleges of Education in North Western Nigeria was conducted with four objectives, four research questions and four null hypotheses. Descriptive survey design was used and the multistage sampling procedure adopted. Frequency count and percentage were used to answer research questions and chi-square was used to test all the null hypotheses at an Alpha 0.05 level of significance. Two hundred and ninety one subjects were drawn as sample. Questionnaires were used for data collection. The Context, Input, Process and Product (CIPP) model of evaluation was employed. The study findings indicated that: there were no significant difference in the perceptions of lecturers and students from Federal and State Colleges of Education on the following: extent of which lecturers employ appropriate methods in teaching the language and extent of which recommended evaluation methods are utilized for the implementation of Arabic Curriculum. Based on these findings, it was recommended among other things that: lecturers should adopt teaching methodologies that promote interactive learning; Governments should ensure that information and communication technology facilities are made available and usable in all Colleges of Education; Lecturers should vary their evaluation methods because other methods of evaluation can meet and surpass the level of learning and understanding which essay type questions are believed to create and that language labs should be used in teaching Arabic in Colleges of Education because comprehensive language learning is possible through both classroom and language lab teaching.

Keywords: assessment, arabic language, curriculum, methods of teaching, evaluation methods, NCE

Procedia PDF Downloads 60
4236 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment

Authors: Said Alshukri, Mazhar Hussain Malik

Abstract:

Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.

Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest

Procedia PDF Downloads 79
4235 Inquiry on the Improvement Teaching Quality in the Classroom with Meta-Teaching Skills

Authors: Shahlan Surat, Saemah Rahman, Saadiah Kummin

Abstract:

When teachers reflect and evaluate whether their teaching methods actually have an impact on students’ learning, they will adjust their practices accordingly. This inevitably improves their students’ learning and performance. The approach in meta-teaching can invigorate and create a passion for teaching. It thus helps to increase the commitment and love for the teaching profession. This study was conducted to determine the level of metacognitive thinking of teachers in the process of teaching and learning in the classroom. Metacognitive thinking teachers include the use of metacognitive knowledge which consists of different types of knowledge: declarative, procedural and conditional. The ability of the teachers to plan, monitor and evaluate the teaching process can also be determined. This study was conducted on 377 graduate teachers in Klang Valley, Malaysia. The stratified sampling method was selected for the purpose of this study. The metacognitive teaching inventory consisting of 24 items is called InKePMG (Teacher Indicators of Effectiveness Meta-Teaching). The results showed the level of mean is high for two components of metacognitive knowledge; declarative knowledge (mean = 4.16) and conditional (mean = 4.11) whereas, the mean of procedural knowledge is 4.00 (moderately high). Similarly, the level of knowledge in monitoring (mean = 4.11), evaluating (mean = 4.00) which indicate high score and planning (mean = 4.00) are moderately high score among teachers. In conclusion, this study shows that the planning and procedural knowledge is an important element in improving the quality of teachers teaching in the classroom. Thus, the researcher recommended that further studies should focus on training programs for teachers on metacognitive skills and also on developing creative thinking among teachers.

Keywords: metacognitive thinking skills, procedural knowledge, conditional knowledge, meta-teaching and regulation of cognitive

Procedia PDF Downloads 409
4234 Teaching Business Process Management using IBM’s INNOV8 BPM Simulation Game

Authors: Hossam Ali-Hassan, Michael Bliemel

Abstract:

This poster reflects upon our experiences using INNOV8, IBM’s Business Process Management (BPM) simulation game, in online MBA and undergraduate MIS classes over a period of 2 years. The game is designed to gives both business and information technology players a better understanding of how effective BPM impacts an entire business ecosystem. The game includes three different scenarios: Smarter Traffic, which is used to evaluate existing traffic patterns and re-route traffic based on incoming metrics; Smarter Customer Service where players develop more efficient ways to respond to customers in a call centre environment; and Smarter Supply Chains where players balance supply and demand and reduce environmental impact in a traditional supply chain model. We use the game as an experiential learning tool, where students have to act as managers making real time changes to business processes to meet changing business demands and environments. The students learn how information technology (IT) and information systems (IS) can be used to intelligently solve different problems and how computer simulations can be used to test different scenarios or models based on business decisions without having to actually make the potentially costly and/or disruptive changes to business processes. Moreover, when students play the three different scenarios, they quickly see how practical process improvements can help meet profitability, customer satisfaction and environmental goals while addressing real problems faced by municipalities and businesses today. After spending approximately two hours in the game, students reflect on their experience from it to apply several BPM principles that were presented in their textbook through the use of a structured set of assignment questions. For each final scenario students submit a screenshot of their solution followed by one paragraph explaining what criteria you were trying to optimize, and why they picked their input variables. In this poster we outline the course and the module’s learning objectives where we used the game to place this into context. We illustrate key features of the INNOV8 Simulation Game, and describe how we used them to reinforce theoretical concepts. The poster will also illustrate examples from the simulation, assignment, and learning outcomes.

Keywords: experiential learning, business process management, BPM, INNOV8, simulation, game

Procedia PDF Downloads 329
4233 Visualize Global Warming and Its Consequences Using Augmented Reality

Authors: K. R. Parvathy, R. Rao Bhavani , M. L. McLain, Kamal Bijlani, R. Jayakrishnan

Abstract:

Augmented Reality (AR) technology is considered to be an important emerging technology used in education today. One potentially key use of AR in education is to teach socio-scientific issues (SSI), topics that inure students towards social conscience and critical thinking. This work uses multiple markers and virtual buttons that interact with each other, creating a life-like visual spectacle. Learning about issues such as global warming by using AR technology, students will have an increased sense of experiencing immersion, immediacy, and presence, thereby enhancing their learning as well as likely improving their ability to make better informed decisions about considerations of such issues. Another advantage of AR is that it is a low cost technology, making it advantageous for educators to adapt to their classrooms. Also in this work we compare the effectiveness of AR versus ordinary video by polling a group of students to assess the content understandability, effectiveness and interaction of both the delivery methods.

Keywords: augmented reality, global warming, multiple markers, virtual buttons

Procedia PDF Downloads 400
4232 Parental Investment in Education: A Pathway for the Children's Access to Quality Education

Authors: Tukur Husaini Nahuche

Abstract:

The parent resources play a vital role in the life of the offspring. It help give children basic necessities of life like food, clothing, and housing. In a like manner financial assets allow parents to move into neighborhood with more affluent school systems, to pay school bills, purchase expensive technologies like personal computer, save money for tutoring books, magazines, journals, Newspapers etc. Making of proper provision in the home environment conducive for learning after school hours and creation of other outdoor activities for them are what necessitate in enhancing and accelerating children’s learning opportunities. Indeed, this paper intends to discuss parental investment in education, parent income resources, parental education, occupation, and income as relatively influencing children’s access to quality education. With the hope that families would provide equal opportunities for children irrespective of their sex, intelligence, subject choice,etc.

Keywords: parental investment, children's access, quality education

Procedia PDF Downloads 551
4231 Wireless Sensor Anomaly Detection Using Soft Computing

Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh

Abstract:

We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.

Keywords: IDS, Machine learning, WSN, ZigBee technology

Procedia PDF Downloads 543
4230 Naïve Bayes: A Classical Approach for the Epileptic Seizures Recognition

Authors: Bhaveek Maini, Sanjay Dhanka, Surita Maini

Abstract:

Electroencephalography (EEG) is used to classify several epileptic seizures worldwide. It is a very crucial task for the neurologist to identify the epileptic seizure with manual EEG analysis, as it takes lots of effort and time. Human error is always at high risk in EEG, as acquiring signals needs manual intervention. Disease diagnosis using machine learning (ML) has continuously been explored since its inception. Moreover, where a large number of datasets have to be analyzed, ML is acting as a boon for doctors. In this research paper, authors proposed two different ML models, i.e., logistic regression (LR) and Naïve Bayes (NB), to predict epileptic seizures based on general parameters. These two techniques are applied to the epileptic seizures recognition dataset, available on the UCI ML repository. The algorithms are implemented on an 80:20 train test ratio (80% for training and 20% for testing), and the performance of the model was validated by 10-fold cross-validation. The proposed study has claimed accuracy of 81.87% and 95.49% for LR and NB, respectively.

Keywords: epileptic seizure recognition, logistic regression, Naïve Bayes, machine learning

Procedia PDF Downloads 61
4229 Early Stage Suicide Ideation Detection Using Supervised Machine Learning and Neural Network Classifier

Authors: Devendra Kr Tayal, Vrinda Gupta, Aastha Bansal, Khushi Singh, Sristi Sharma, Hunny Gaur

Abstract:

In today's world, suicide is a serious problem. In order to save lives, early suicide attempt detection and prevention should be addressed. A good number of at-risk people utilize social media platforms to talk about their issues or find knowledge on related chores. Twitter and Reddit are two of the most common platforms that are used for expressing oneself. Extensive research has already been done in this field. Through supervised classification techniques like Nave Bayes, Bernoulli Nave Bayes, and Multiple Layer Perceptron on a Reddit dataset, we demonstrate the early recognition of suicidal ideation. We also performed comparative analysis on these approaches and used accuracy, recall score, F1 score, and precision score for analysis.

Keywords: machine learning, suicide ideation detection, supervised classification, natural language processing

Procedia PDF Downloads 90
4228 Robot Technology Impact on Dyslexic Students’ English Learning

Authors: Khaled Hamdan, Abid Amorri, Fatima Hamdan

Abstract:

Involving students in English language learning process and achieving an adequate English language proficiency in the target language can be a great challenge for both teachers and students. This can prove even a far greater challenge to engage students with special needs (Dyslexia) if they have physical impairment and inadequate mastery of basic communicative language competence/proficiency in the target language. From this perspective, technology like robots can probably be used to enhance learning process for the special needs students who have extensive communication needs, who face continuous struggle to interact with their peers and teachers and meet academic requirements. Robots, precisely NAO, can probably provide them with the perfect opportunity to practice social and communication skills, and meet their English academic requirements. This research paper aims to identify to what extent robots can be used to improve students’ social interaction and communication skills and to understand the potential for robotics-based education in motivating and engaging UAEU dyslexic students to meet university requirements. To reach this end, the paper will explore several factors that come into play – Motion Level-involving cognitive activities, Interaction Level-involving language processing, Behavior Level -establishing a close relationship with the robot and Appraisal Level- focusing on dyslexia students’ achievement in the target language.

Keywords: dyslexia, robot technology, motion, interaction, behavior and appraisal levels, social and communication skills

Procedia PDF Downloads 372
4227 Use of Simulation in Medical Education: Role and Challenges

Authors: Raneem Osama Salem, Ayesha Nuzhat, Fatimah Nasser Al Shehri, Nasser Al Hamdan

Abstract:

Background: Recently, most medical schools around the globe are using simulation for teaching and assessing students’ clinical skills and competence. There are many obstacles that could face students and faculty when simulation sessions are introduced into undergraduate curriculum. Objective: The aim of this study is to obtain the opinion of undergraduate medical students and our faculty regarding the role of simulation in undergraduate curriculum, the simulation modalities used, and perceived barriers in implementing stimulation sessions. Methods: To address the role of simulation, modalities used, and perceived challenges to implementation of simulation sessions, a self-administered pilot tested questionnaire with 18 items using a 5 point Likert scale was distributed. Participants included undergraduate male medical students (n=125) and female students (n=70) as well as the faculty members (n=14). Result: Various learning outcomes are achieved and improved through the technology enhanced simulation sessions such as communication skills, diagnostic skills, procedural skills, self-confidence, and integration of basic and clinical sciences. The use of high fidelity simulators, simulated patients and task trainers was more desirable by our students and faculty for teaching and learning as well as an evaluation tool. According to most of the students,' institutional support in terms of resources, staff and duration of sessions was adequate. However, motivation to participate in the sessions and provision of adequate feedback by the staff was a constraint. Conclusion: The use of simulation laboratory is of great benefit to the students and a great teaching tool for the staff to ensure students learning of the various skills.

Keywords: simulators, medical students, skills, simulated patients, performance, challenges, skill laboratory

Procedia PDF Downloads 407
4226 Graphical User Interface Testing by Using Deep Learning

Authors: Akshat Mathur, Sunil Kumar Khatri

Abstract:

This paper presents brief about how the use of Artificial intelligence in respect to GUI testing can reduce workload by using DL-fueled method. This paper also discusses about how graphical user interface and event driven software testing can derive benefits from the use of AI techniques. The use of AI techniques not only reduces the task and work load but also helps in getting better output than manual testing. Although results are same, but the use of Artifical intelligence techniques for GUI testing has proven to provide ideal results. DL-fueled framework helped us to find imperfections of the entire webpage and provides test failure result in a score format between 0 and 1which signifies that are test meets it quality criteria or not. This paper proposes DL-fueled method which helps us to find the genuine GUI bugs and defects and also helped us to scale the existing labour-intensive and skill-intensive methodologies.

Keywords: graphical user interface, GUI, artificial intelligence, deep learning, ML technology

Procedia PDF Downloads 177
4225 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 72
4224 The Coexistence of Quality Practices and Frozen Concept in R and D Projects

Authors: Ayala Kobo-Greenhut, Amos Notea, Izhar Ben-Shlomo

Abstract:

In R&D projects, there is no doubt about the need to change a current concept to an alternative one over time (i.e., concept leaping). Concept leaping is required since with most R&D projects uncertainty is present as they take place in dynamic environments. Despite the importance of concept leaping when needed, R&D teams may fail to do so (i.e., frozen concept). This research suggests a possible reason why frozen concept happens in the framework of quality engineering and control engineering. We suggest that frozen concept occurs since concept determines the derived plan and its implementation may be considered as equivalent to a closed-loop process, and is subject to the problem of not recognizing gaps as failures. We suggest that although implementing quality practices into an R&D project’s routine has many advantages, it intensifies the frozen concept problem since working according to quality practices relates to exploitation of learning behavior, while leaping to a new concept relates to exploring learning behavior.

Keywords: closed loop, control engineering, design, leaping, frozen concept, quality engineering, quality practices

Procedia PDF Downloads 472
4223 In the Spirit of Open Educational Resources: Library Resources and Fashion Merchandising

Authors: Lizhu Y. Davis, Gretchen Higginbottom, Vang Vang

Abstract:

This presentation explores the adoption of library resources to engage students in a Visual Merchandising course during the 2016 spring semester. This study was a cross-disciplinary collaboration between the Fashion Merchandising Program and the Madden Library at California State University, Fresno. The goal of the project was to explore and assess the students’ use of library resources as a part of the Affordable Learning Solutions Initiative, a California State University (CSU) Office of the Chancellor Program that enables faculty to choose and provide high-quality, free or low-cost educational materials for their students. Students were interviewed afterwards and the results were generally favorable and provided insight into how students perceive and use library resources to support their research needs. This study reveals an important step in examining how open educational resources impact student learning.

Keywords: collaboration, library resources, open educational resources, visual merchandising

Procedia PDF Downloads 313
4222 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning

Procedia PDF Downloads 472
4221 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model

Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson

Abstract:

The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.

Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania

Procedia PDF Downloads 105