Search results for: learning effect
18410 'Go Baby Go'; Community-Based Integrated Early Childhood and Maternal Child Health Model Improving Early Childhood Stimulation, Care Practices and Developmental Outcomes in Armenia: A Quasi-Experimental Study
Authors: Viktorya Sargsyan, Arax Hovhannesyan, Karine Abelyan
Abstract:
Introduction: During the last decade, scientific studies have proven the importance of Early Childhood Development (ECD) interventions. These interventions are shown to create strong foundations for children’s intellectual, emotional and physical well-being, as well as the impact they have on learning and economic outcomes for children as they mature into adulthood. Many children in rural Armenia fail to reach their full development potential due to lack of early brain stimulation (playing, singing, reading, etc.) from their parents, and lack of community tools and services to follow-up children’s neurocognitive development. This is exacerbated by high rates of stunting and anemia among children under 3(CU3). This research study tested the effectiveness of an integrated ECD and Maternal, Newborn and Childhood Health (MNCH) model, called “Go Baby, Go!” (GBG), against the traditional (MNCH) strategy which focuses solely on preventive health and nutrition interventions. The hypothesis of this quasi-experimental study was: Children exposed to GBG will have better neurocognitive and nutrition outcomes compared to those receiving only the MNCH intervention. The secondary objective was to assess the effect of GBG on parental child care and nutrition practices. Methodology: The 14 month long study, targeted all 1,300 children aged 0 to 23 months, living in 43 study communities the in Gavar and Vardenis regions (Gegharkunik province, Armenia). Twenty-three intervention communities, 680 children, received GBG, and 20 control communities, 630 children, received MCHN interventions only. Baseline and evaluation data on child development, nutrition status and parental child care and nutrition practices were collected (caregiver interview, direct child assessment). In the intervention sites, in addition to MNCH (maternity schools, supportive supervision for Health Care Providers (HCP), the trained GBG facilitators conducted six interactive group sessions for mothers (key messages, information, group discussions, role playing, video-watching, toys/books preparation, according to GBG curriculum), and two sessions (condensed GBG) for adult family members (husbands, grandmothers). The trained HCPs received quality supervision for ECD counseling and screening. Findings: The GBG model proved to be effective in improving ECD outcomes. Children in the intervention sites had 83% higher odd of total ECD composite score (cognitive, language, motor) compared to children in the control sites (aOR 1.83; 95 percent CI: 1.08-3.09; p=0.025). Caregivers also demonstrated better child care and nutrition practices (minimum dietary diversity in intervention site is 55 percent higher compared to control (aOR=1.55, 95 percent CI 1.10-2.19, p =0.013); support for learning and disciplining practices (aOR=2.22, 95 percent CI 1.19-4.16, p=0.012)). However, there was no evidence of stunting reduction in either study arm. he effect of the integrated model was more prominent in Vardenis, a community which is characterised by high food insecurity and limited knowledge of positive parenting skills. Conclusion: The GBG model is effective and could be applied in target areas with the greatest economic disadvantages and parenting challenges to improve ECD, care practices and developmental outcomes. Longitudinal studies are needed to view the long-term effects of GBG on learning and school readiness.Keywords: early childhood development, integrated interventions, parental practices, quasi-experimental study
Procedia PDF Downloads 17218409 The Development and Evaluation of the Reliability and Validity of the Science Flow Experience Scale
Authors: Wen-Wei Chiang
Abstract:
In this study, the researcher developed a scale for use in measuring the degree to which high school students experience a state of flow. The researcher then verified its reliability and validity in an actual classroom setting. The ultimate objective was to identify feasible methods by which to promote the experience of a flow state among high school students engaged in the study of science. The nine indices identified in this study to assess the engagement of high school students focus primarily on the study of science-related topics; however, the principles on which they are based are applicable to a wide range of learning situations. Teachers must outline the goals of each lesson clearly and provide unambiguous feedback. They must also look for ways to make the lessons more fun and appealing.Keywords: flow experience, positive psychology, questionnaire, science learning
Procedia PDF Downloads 11918408 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming
Authors: Rohit Mittal, Bright Keswani, Amit Mithal
Abstract:
This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming
Procedia PDF Downloads 64618407 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 13018406 Learning Language through Story: Development of Storytelling Website Project for Amazighe Language Learning
Authors: Siham Boulaknadel
Abstract:
Every culture has its share of a rich history of storytelling in oral, visual, and textual form. The Amazigh language, as many languages, has its own which has entertained and informed across centuries and cultures, and its instructional potential continues to serve teachers. According to many researchers, listening to stories draws attention to the sounds of language and helps children develop sensitivity to the way language works. Stories including repetitive phrases, unique words, and enticing description encourage students to join in actively to repeat, chant, sing, or even retell the story. This kind of practice is important to language learners’ oral language development, which is believed to correlate completely with student’s academic success. Today, with the advent of multimedia, digital storytelling for instance can be a practical and powerful learning tool. It has the potential in transforming traditional learning into a world of unlimited imaginary environment. This paper reports on a research project on development of multimedia Storytelling Website using traditional Amazigh oral narratives called “tell me a story”. It is a didactic tool created for the learning of good moral values in an interactive multimedia environment combining on-screen text, graphics and audio in an enticing environment and enabling the positive values of stories to be projected. This Website developed in this study is based on various pedagogical approaches and learning theories deemed suitable for children age 8 to 9 year-old. The design and development of Website was based on a well-researched conceptual framework enabling users to: (1) re-play and share the stories in schools or at home, and (2) access the Website anytime and anywhere. Furthermore, the system stores the students work and activities over the system, allowing parents or teachers to monitor students’ works, and provide online feedback. The Website contains following main feature modules: Storytelling incorporates a variety of media such as audio, text and graphics in presenting the stories. It introduces the children to various kinds of traditional Amazigh oral narratives. The focus of this module is to project the positive values and images of stories using digital storytelling technique. Besides development good moral sense in children using projected positive images and moral values, it also allows children to practice their comprehending and listening skills. Reading module is developed based on multimedia material approach which offers the potential for addressing the challenges of reading instruction. This module is able to stimulate children and develop reading practice indirectly due to the tutoring strategies of scaffolding, self-explanation and hyperlinks offered in this module. Word Enhancement assists the children in understanding the story and appreciating the good moral values more efficiently. The difficult words or vocabularies are attached to present the explanation, which makes the children understand the vocabulary better. In conclusion, we believe that the interactive multimedia storytelling reveals an interesting and exciting tool for learning Amazigh. We plan to address some learning issues, in particularly the uses of activities to test and evaluate the children on their overall understanding of story and words presented in the learning modules.Keywords: Amazigh language, e-learning, storytelling, language teaching
Procedia PDF Downloads 40418405 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning
Authors: A. D. Tayal
Abstract:
The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.Keywords: data, innovation, renewable, solar
Procedia PDF Downloads 36418404 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors
Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde
Abstract:
In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affects the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance
Procedia PDF Downloads 12418403 Ethical and Personality Factors and Accounting Professional Judgement
Authors: Shannon Hashemi, Alireza Daneshfar
Abstract:
Accounting ethical awareness has been widely promoted in recent years both in academia and in practice. However, the effectiveness of ethical awareness on accountants' judgment and choice of action is still debatable. This study investigates whether Machiavellianism and gender, as significant personality factors, influence the effect of ethical awareness on accountants' decision-making. Using an experiment, the results of ANOVA tests show that although introducing ethical awareness positively influences the accountants' judgment and choice of action, such an effect is significantly moderated by the accountants' Machiavellianism score and gender. Specifically, the test results show that the effect of introducing ethical awareness was higher on males with low Machiavellian score. The results also show that when the Machiavellian scores were high, the effect of ethical awareness was lower for both males and females. Applications of the results are discussed for accounting professionals as well as accounting ethics educators and researchers.Keywords: ethical awareness, accounting decision making, Machiavellianism, ANOVA, ethics, accounting education
Procedia PDF Downloads 11418402 Effect of Cerebellar High Frequency rTMS on the Balance of Multiple Sclerosis Patients with Ataxia
Authors: Shereen Ismail Fawaz, Shin-Ichi Izumi, Nouran Mohamed Salah, Heba G. Saber, Ibrahim Mohamed Roushdi
Abstract:
Background: Multiple sclerosis (MS) is a chronic, inflammatory, mainly demyelinating disease of the central nervous system, more common in young adults. Cerebellar involvement is one of the most disabling lesions in MS and is usually a sign of disease progression. It plays a major role in the planning, initiation, and organization of movement via its influence on the motor cortex and corticospinal outputs. Therefore, it contributes to controlling movement, motor adaptation, and motor learning, in addition to its vast connections with other major pathways controlling balance, such as the cerebellopropriospinal pathways and cerebellovestibular pathways. Hence, trying to stimulate the cerebellum by facilitatory protocols will add to our motor control and balance function. Non-invasive brain stimulation, both repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), has recently emerged as effective neuromodulators to influence motor and nonmotor functions of the brain. Anodal tDCS has been shown to improve motor skill learning and motor performance beyond the training period. Similarly, rTMS, when used at high frequency (>5 Hz), has a facilitatory effect on the motor cortex. Objective: Our aim was to determine the effect of high-frequency rTMS over the cerebellum in improving balance and functional ambulation of multiple sclerosis patients with Ataxia. Patients and methods: This was a randomized single-blinded placebo-controlled prospective trial on 40 patients. The active group (N=20) received real rTMS sessions, and the control group (N=20) received Sham rTMS using a placebo program designed for this treatment. Both groups received 12 sessions of high-frequency rTMS over the cerebellum, followed by an intensive exercise training program. Sessions were given three times per week for four weeks. The active group protocol had a frequency of 10 Hz rTMS over the cerebellar vermis, work period 5S, number of trains 25, and intertrain interval 25s. The total number of pulses was 1250 pulses per session. The control group received Sham rTMS using a placebo program designed for this treatment. Both groups of patients received an intensive exercise program, which included generalized strengthening exercises, endurance and aerobic training, trunk abdominal exercises, generalized balance training exercises, and task-oriented training such as Boxing. As a primary outcome measure the Modified ICARS was used. Static Posturography was done with: Patients were tested both with open and closed eyes. Secondary outcome measures included the expanded Disability Status Scale (EDSS) and 8 Meter walk test (8MWT). Results: The active group showed significant improvements in all the functional scales, modified ICARS, EDSS, and 8-meter walk test, in addition to significant differences in static Posturography with open eyes, while the control group did not show such differences. Conclusion: Cerebellar high-frequency rTMS could be effective in the functional improvement of balance in MS patients with ataxia.Keywords: brain neuromodulation, high frequency rTMS, cerebellar stimulation, multiple sclerosis, balance rehabilitation
Procedia PDF Downloads 9018401 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 10218400 Synergistic Effect of Eugenol Acetate with Betalactam Antibiotic on Betalactamase and Its Bioinformatics Analysis
Authors: Vinod Nair, C. Sadasivan
Abstract:
Beta-lactam antibiotics are the most frequently prescribed medications in modern medicine. The antibiotic resistance by the production of enzyme beta-lactamase is an important mechanism seen in microorganisms. Resistance to beta-lactams mediated by beta-lactamases can be overcome successfully with the use of beta-lactamase inhibitors. New generations of the antibiotics contain mostly synthetic compounds, and many side effects have been reported for them. Combinations of beta-lactam and beta-lactamase inhibitors have become one of the most successful antimicrobial strategies in the current scenario of bacterial infections. Plant-based drugs are very cheap and having lesser adverse effect than synthetic compounds. The synergistic effect of eugenol acetate with beta-lactams restores the activity of beta-lactams, allowing their continued clinical use. It is reported here the enhanced inhibitory effect of phytochemical, eugenol acetate, isolated from the plant Syzygium aromaticum with beta-lactams on beta-lactamase. The compound was found to have synergistic effect with the antibiotic amoxicillin against antibiotic-resistant strain of S.aureus. The enzyme was purified from the organism and incubated with the compound. The assay showed that the compound could inhibit the enzymatic activity of beta-lactamase. Modeling and molecular docking studies indicated that the compound can fit into the active site of beta-lactamase and can mask the important residue for hydrolysis of beta-lactams. The synergistic effects of eugenol acetate with beta-lactam antibiotics may justify, the use of these plant compounds for the preparation of β-lactamase inhibitors against β-lactam resistant S.aureus.Keywords: betalactamase, eugenol acetate, synergistic effect, molecular modeling
Procedia PDF Downloads 24918399 Image Processing techniques for Surveillance in Outdoor Environment
Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.
Abstract:
This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management
Procedia PDF Downloads 2618398 Music Education in Aged Care: Positive Ageing through Instrumental Music Learning
Authors: Ellina Zipman
Abstract:
This research investigates the place of music education in aged care facilities through the implementation of a program of regular piano lessons for residents. Using a qualitative case study methodology, the research explores aged care residents’ experiences in learning to play the piano. Since the aged care homes are unlikely places for formal learning and since older adults, especially in residential care, are not considered likely candidates for learning, this research opens the door for innovative and transformative thinking about where and to whom educational programs can be delivered. By addressing the educational needs of residents in aged care facilities, this research fills the gap in the literature. The research took place in Australia in two of Melbourne’s residential aged care facilities, engaging two residents (a nonagenarian female and an octogenarian male) to participate in 12-months weekly individual piano lessons. The data was collected through video recording of lessons, observations, interviews, emails, and a reflective journal. Data analysis was done using Nvivo and hard copy analysis with identifications of themes. The case studies revealed that passion for music was a major driver in participants’ motivation to engage in a long-term piano lessons program. This participation led to experiences of positive emotions, positive attitude, successes and challenges, the exercise of control, maintaining and building new relationships, improved self-confidence through autonomy and independent skills development, and discovering new identities through finding a new purpose and new roles in life. Speaking through participants’ voices, this research project demonstrates the importance of music education for older adults and hopes to influence transformation in the residential aged care sector.Keywords: adult music education, quality of life, passion, positive ageing, wellbeing
Procedia PDF Downloads 8718397 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population
Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya
Abstract:
Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa
Procedia PDF Downloads 10618396 Discourses in Mother Tongue-Based Classes: The Case of Hiligaynon Language
Authors: Kayla Marie Sarte
Abstract:
This study sought to describe mother tongue-based classes in the light of classroom interactional discourse using the Sinclair and Coulthard model. It specifically identified the exchanges, grouped into Teaching and Boundary types; moves, coded as Opening, Answering and Feedback; and the occurrence of the 13 acts (Bid, Cue, Nominate, Reply, React, Acknowledge, Clue, Accept, Evaluate, Loop, Comment, Starter, Conclusion, Aside and Silent Stress) in the classroom, and determined what these reveal about the teaching and learning processes in the MTB classroom. Being a qualitative study, using the Single Collective Case Within-Site (embedded) design, varied data collection procedures such as non-participant observations, audio-recordings and transcription of MTB classes, and semi-structured interviews were utilized. The results revealed the presence of all the codes in the model (except for the silent stress) which also implied that the Hiligaynon mother tongue-based class was eclectic, cultural and communicative, and had a healthy, analytical and focused environment which aligned with the aims of MTB-MLE, and affirmed the purported benefits of mother tongue teaching. Through the study, gaps in the mother tongue teaching and learning were also identified which involved the difficulty of children in memorizing Hiligaynon terms expressed in English in their homes and in the communities.Keywords: discourse analysis, language teaching and learning, mother tongue-based education, multilingualism
Procedia PDF Downloads 26018395 Quantifying the Aspect of ‘Imagining’ in the Map of Dialogical inquiry
Authors: Chua Si Wen Alicia, Marcus Goh Tian Xi, Eunice Gan Ghee Wu, Helen Bound, Lee Liang Ying, Albert Lee
Abstract:
In a world full of rapid changes, people often need a set of skills to help them navigate an ever-changing workscape. These skills, often known as “future-oriented skills,” include learning to learn, critical thinking, understanding multiple perspectives, and knowledge creation. Future-oriented skills are typically assumed to be domain-general, applicable to multiple domains, and can be cultivated through a learning approach called Dialogical Inquiry. Dialogical Inquiry is known for its benefits of making sense of multiple perspectives, encouraging critical thinking, and developing learner’s capability to learn. However, it currently exists as a quantitative tool, which makes it hard to track and compare learning processes over time. With these concerns, the present research aimed to develop and validate a quantitative tool for the Map of Dialogical Inquiry, focusing Imagining aspect of learning. The Imagining aspect four dimensions: 1) speculative/ look for alternatives, 2) risk taking/ break rules, 3) create/ design, and 4) vision/ imagine. To do so, an exploratory literature review was conducted to better understand the dimensions of Imagining. This included deep-diving into the history of the creation of the Map of Dialogical Inquiry and a review on how “Imagining” has been conceptually defined in the field of social psychology, education, and beyond. Then, we synthesised and validated scales. These scales measured the dimension of Imagination and related concepts like creativity, divergent thinking regulatory focus, and instrumental risk. Thereafter, items were adapted from the aforementioned procured scales to form items that would contribute to the preliminary version of the Imagining Scale. For scale validation, 250 participants were recruited. A Confirmatory Factor Analysis (CFA) sought to establish dimensionality of the Imagining Scale with an iterative procedure in item removal. Reliability and validity of the scale’s dimensions were sought through measurements of Cronbach’s alpha, convergent validity, and discriminant validity. While CFA found that the distinction of Imagining’s four dimensions could not be validated, the scale was able to establish high reliability with a Cronbach alpha of .96. In addition, the convergent validity of the Imagining scale was established. A lack of strong discriminant validity may point to overlaps with other components of the Dialogical Map as a measure of learning. Thus, a holistic approach to forming the tool – encompassing all eight different components may be preferable.Keywords: learning, education, imagining, pedagogy, dialogical teaching
Procedia PDF Downloads 9218394 Modulating Plasmon Induced Transparency in Terahertz Metamaterials
Authors: Gagan Kumar, Koijam M. Devi, Amarendra K. Sarma, Dibakar Roy Chowdhury
Abstract:
Research in metamaterials has been gaining momentum over the past decade owing to its ability in controlling electromagnetic wave properties through careful design at the sub-wavelength scale. The metamaterials have led to several important phenomena which are useful in a variety of applications. One such phenomenon is the electromagnetically induced transparency (EIT) effect in which a narrow transparency region is created in an otherwise absorptive spectrum. In our work, we explore plasmon induced transparency (PIT) in terahertz metamaterials which is analogues to EIT effect. The PIT effect is achieved using the plasmonic metamaterials in which a unit cell is comprised of two C (2C) shaped resonators and a cut-wire (CW). When terahertz wave of a particular polarization is normally incident on the proposed metamaterials geometry, it strongly couples with the cut wire, resulting in the excitation of the bright mode. However due to the specific polarization of the incident beam, the fundamental modes of the C-shaped resonators are not excited by the incident terahertz, hence they are termed as the dark mode. The PIT effect occurs as a result of interference between the bright and the dark mode. In order to observe PIT effect, both the bright and dark modes should have similar resonant frequencies with a little deviation. We further have examined that the PIT window can be modulated by displacing the C-shaped resonators w.r.t. the cut-wire. The numerical observations for different coupling configurations can be explained through an equivalent lumped element circuit model. Moving ahead the PIT effect is further explored in a metamaterial comprising of a cross like structure and four C-shaped resonators. For such configuration, equally strong PIT effect is observed for two orthogonally polarized lights. Therefore, such metamaterials demonstrate a polarization independent PIT response w.r.t the incident terahertz radiation. The proposed study could be significant in the development of slow light devices and polarization independent sensing applications.Keywords: terahertz, metamaterial, split ring resonator, plasmon
Procedia PDF Downloads 21318393 A Method for Multimedia User Interface Design for Mobile Learning
Authors: Shimaa Nagro, Russell Campion
Abstract:
Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.Keywords: human-computer interaction, interface design, mobile learning, education
Procedia PDF Downloads 24618392 Self-Supervised Learning for Hate-Speech Identification
Authors: Shrabani Ghosh
Abstract:
Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.Keywords: attention learning, language model, offensive language detection, self-supervised learning
Procedia PDF Downloads 10518391 Academic Success, Problem-Based Learning and the Middleman: The Community Voice
Authors: Isabel Medina, Mario Duran
Abstract:
Although Problem-based learning provides students with multiple opportunities for rigorous instructional experiences in which students are challenged to address problems in the community; there are still gaps in connecting community leaders to the PBL process. At a south Texas high school, community participation serves as an integral component of the PBL process. Problem-based learning (PBL) has recently gained momentum due to the increase in global communities that value collaboration and critical thinking. As an instructional approach, PBL engages high school students in meaningful learning experiences. Furthermore, PBL focuses on providing students with a connection to real-world situations that require effective peer collaboration. For PBL leaders, providing students with a meaningful process is as important as the final PBL outcome. To achieve this goal, STEM high school strategically created a space for community involvement to be woven within the PBL fabric. This study examines the impact community members had on PBL students attending a STEM high school in South Texas. At STEM High School, community members represent a support system that works through the PBL process to ensure students receive real-life mentoring from business and industry leaders situated in the community. A phenomenological study using a semi-structured approach was used to collect data about students’ perception of community involvement within the PBL process for one South Texas high school. In our proposed presentation, we will discuss how community involvement in the PBL process academically impacted the educational experience of high school students at STEM high school. We address the instructional concerns PBL critics have with the lack of direct instruction, by providing a representation of how STEM high school utilizes community members to assist in impacting the academic experience of students.Keywords: phenomenological, STEM education, student engagement, community involvement
Procedia PDF Downloads 9118390 Unsupervised Neural Architecture for Saliency Detection
Authors: Natalia Efremova, Sergey Tarasenko
Abstract:
We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment
Procedia PDF Downloads 34818389 A Case Study in Using the Can-Sized Satellite Platforms for Interdisciplinary Problem-Based Learning in Aeronautical and Electronic Engineering
Authors: Michael Johnson, Vincenzo Oliveri
Abstract:
This work considers an interdisciplinary Problem-Based Learning (PBL) project developed by lecturers from the Aeronautical and Electronic and Computer Engineering departments at the University of Limerick. This “CANSAT” project utilises the CanSat can-sized satellite platform in order to allow students from aeronautical and electronic engineering to engage in a mixed format (online/face-to-face), interdisciplinary PBL assignment using a real-world platform and application. The project introduces students to the design, development, and construction of the CanSat system over the course of a single semester, enabling student(s) to apply their aeronautical and technical skills/capabilities to the realisation of a working CanSat system. In this case study, the CanSat kits are used to pivot the real-world, discipline-relevant PBL goal of designing, building, and testing the CanSat system with payload(s) from a traditional module-based setting to an online PBL setting. Feedback, impressions, benefits, and challenges identified through the semester are presented. Students found the project to be interesting and rewarding, with the interdisciplinary nature of the project appealing to them. Challenges and difficulties encountered are also addressed, with solutions developed between the students and facilitators to overcoming these discussed.Keywords: problem-based learning, interdisciplinary, engineering, CanSATs
Procedia PDF Downloads 12918388 Navigating the Integration of AI in High School Assessment: Strategic Implementation and Ethical Practice
Authors: Loren Clarke, Katie Reed
Abstract:
The integration of artificial intelligence (AI) in high school education assessment offers transformative potential, providing more personalized, timely, and accurate evaluations of student performance. However, the successful adoption of AI-driven assessment systems requires robust change management strategies to navigate the complexities and resistance that often accompany such technological shifts. This presentation explores effective methods for implementing AI in high school assessment, emphasizing the need for strategic planning and stakeholder engagement. Focusing on a case study of a Victorian high school, it will examine the practical steps taken to integrate AI into teaching and learning. This school has developed innovative processes to support academic integrity and foster authentic cogeneration with AI, ensuring that the technology is used ethically and effectively. By creating comprehensive professional development programs for teachers and maintaining transparent communication with students and parents, the school has successfully aligned AI technologies with their existing curricula and assessment frameworks. The session will highlight how AI has enhanced both formative and summative assessments, providing real-time feedback that supports differentiated instruction and fosters a more personalized learning experience. Participants will learn about best practices for managing the integration of AI in high school settings while maintaining a focus on equity and student-centered learning. This presentation aims to equip high school educators with the insights and tools needed to effectively manage the integration of AI in assessment, ultimately improving educational outcomes and preparing students for future success. Methodologies: The research is a case study of a Victorian high school to examine AI integration in assessments, focusing on practical implementation steps, ethical practices, and change management strategies to enhance personalized learning and assessment. Outcomes: This research explores AI integration in high school assessments, focusing on personalized evaluations, ethical use, and change management. A Victorian school case study highlights best practices to enhance assessments and improve student outcomes. Main Contributions: This research contributes by outlining effective AI integration in assessments, showcasing a Victorian school's implementation, and providing best practices for ethical use, change management, and enhancing personalized learning outcomes.Keywords: artificial intelligence, assessment, curriculum design, teaching and learning, ai in education
Procedia PDF Downloads 2118387 Empirical Study of Correlation between the Cost Performance Index Stability and the Project Cost Forecast Accuracy in Construction Projects
Authors: Amin AminiKhafri, James M. Dawson-Edwards, Ryan M. Simpson, Simaan M. AbouRizk
Abstract:
Earned value management (EVM) has been introduced as an integrated method to combine schedule, budget, and work breakdown structure (WBS). EVM provides various indices to demonstrate project performance including the cost performance index (CPI). CPI is also used to forecast final project cost at completion based on the cost performance during the project execution. Knowing the final project cost during execution can initiate corrective actions, which can enhance project outputs. CPI, however, is not constant during the project, and calculating the final project cost using a variable index is an inaccurate and challenging task for practitioners. Since CPI is based on the cumulative progress values and because of the learning curve effect, CPI variation dampens and stabilizes as project progress. Although various definitions for the CPI stability have been proposed in literature, many scholars have agreed upon the definition that considers a project as stable if the CPI at 20% completion varies less than 0.1 from the final CPI. While 20% completion point is recognized as the stability point for military development projects, construction projects stability have not been studied. In the current study, an empirical study was first conducted using construction project data to determine the stability point for construction projects. Early findings have demonstrated that a majority of construction projects stabilize towards completion (i.e., after 70% completion point). To investigate the effect of CPI stability on cost forecast accuracy, the correlation between CPI stability and project cost at completion forecast accuracy was also investigated. It was determined that as projects progress closer towards completion, variation of the CPI decreases and final project cost forecast accuracy increases. Most projects were found to have 90% accuracy in the final cost forecast at 70% completion point, which is inlined with findings from the CPI stability findings. It can be concluded that early stabilization of the project CPI results in more accurate cost at completion forecasts.Keywords: cost performance index, earned value management, empirical study, final project cost
Procedia PDF Downloads 15618386 The Impact of AI on Higher Education
Authors: Georges Bou Ghantous
Abstract:
This literature review examines the transformative impact of Artificial Intelligence (AI) on higher education, highlighting both the potential benefits and challenges associated with its adoption. The review reveals that AI significantly enhances personalized learning by tailoring educational experiences to individual student needs, thereby boosting engagement and learning outcomes. Automated grading systems streamline assessment processes, allowing educators to focus on improving instructional quality and student interaction. AI's data-driven insights provide valuable analytics, helping educators identify trends in at-risk students and refine teaching strategies. Moreover, AI promotes enhanced instructional innovation through the adoption of advanced teaching methods and technologies, enriching the educational environment. Administrative efficiency is also improved as AI automates routine tasks, freeing up time for educators to engage in research and curriculum development. However, the review also addresses the challenges that accompany AI integration, such as data privacy concerns, algorithmic bias, dependency on technology, reduced human interaction, and ethical dilemmas. This balanced exploration underscores the need for careful consideration of both the advantages and potential hurdles in the implementation of AI in higher education.Keywords: administrative efficiency, data-driven insights, data privacy, ethical dilemmas, higher education, personalized learning
Procedia PDF Downloads 2618385 Language Activation Theory: Unlocking Bilingual Language Processing
Authors: Leorisyl D. Siarot
Abstract:
It is conventional to see and hear Filipinos, in general, speak two or more languages. This phenomenon brings us to a closer look on how our minds process the input and produce an output with a specific chosen language. This study aimed to generate a theoretical model which explained the interaction of the first and the second languages in the human mind. After a careful analysis of the gathered data, a theoretical prototype called Language Activation Model was generated. For every string, there are three specialized banks: lexico-semantics, morphono-syntax, and pragmatics. These banks are interrelated to other banks of other language strings. As the bilingual learns more languages, a new string is replicated and is filled up with the information of the new language learned. The principles of the first and second languages' interaction are drawn; these are expressed in laws, namely: law of dominance, law of availability, law of usuality and law of preference. Furthermore, difficulties encountered in the learning of second languages were also determined.Keywords: bilingualism, psycholinguistics, second language learning, languages
Procedia PDF Downloads 51218384 The Relationship between Sexual Minority Stress and Sexual Satisfaction: A Meta-Analytic Review
Authors: Terri A. Croteau, Todd G. Morrison
Abstract:
Despite increased scholarly attention paid to minority stress and sexual satisfaction among sexual minorities, to the authors’ knowledge, no researchers, to date, have attempted to synthesize this literature. To address this omission, the authors conducted a meta-analytic review of the association between sexual minority stress (i.e., sexual identity stigma, internalized sexual identity stigma, and sexual identity concealment) and sexual satisfaction. Twenty-seven articles containing 58 effect sizes were analyzed (N = 183,582). Findings indicated a small, inverse relationship between these constructs, indicating that minority stress may lead to diminished sexual satisfaction among gay/lesbian and bisexual individuals. Further, the overall effect size varied as a function of minority stress type, such that the effect for internalized stigma was significantly larger than the effects for stigma or concealment. Age also moderated the relationship between minority stress and sexual satisfaction; specifically, older age was associated with a smaller effect, suggesting that older adults may be better at coping with minority stress than younger adults. Limitations, implications, and directions for future research are discussed.Keywords: minority stress, stigma, sexual satisfaction, sexual minorities
Procedia PDF Downloads 13318383 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin
Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele
Abstract:
The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater
Procedia PDF Downloads 10118382 Children and Communities Benefit from Mother-Tongue Based Multi-Lingual Education
Authors: Binay Pattanayak
Abstract:
Multilingual state, Jharkhand is home to more than 19 tribal and regional languages. These are used by more than 33 communities in the state. The state has declared 12 of these languages as official languages of the state. However, schools in the state do not recognize any of these community languages even in early grades! Children, who speak in their mother tongues at home, local market and playground, find it very difficult to understand their teacher and textbooks in school. They fail to acquire basic literacy and numeracy skills in early grades. Out of frustration due to lack of comprehension, the majority of children leave school. Jharkhand sees the highest dropout in early grades in India. To address this, the state under the guidance of the author designed a mother tongue based pre-school education programme named Bhasha Puliya and bilingual picture dictionaries in 9 tribal and regional mother tongues of children. This contributed significantly to children’s school readiness in the school. Followed by this, the state designed a mother-tongue based multilingual education programme (MTB-MLE) for multilingual context. The author guided textbook development in 5 tribal (Santhali, Mundari, Ho, Kurukh and Kharia) and two regional (Odia and Bangla) languages. Teachers and community members were trained for MTB-MLE in around 1,000 schools of the concerned language pockets. Community resource groups were constituted along with their academic calendars in each school to promote story-telling, singing, painting, dancing, riddles, etc. with community support. This, on the one hand, created rich learning environments for children. On the other hand, the communities have discovered a great potential in the process of developing a wide variety of learning materials for children in own mother-tongue using their local stories, songs, riddles, paintings, idioms, skits, etc. as a process of their literary, cultural and technical enrichment. The majority of children are acquiring strong early grade reading skills (basic literacy and numeracy) in grades I-II thereby getting well prepared for higher studies. In a phased manner they are learning Hindi and English after 4-5 years of MTB-MLE using the foundational language learning skills. Community members have started designing new books, audio-visual learning materials in their mother-tongues seeing a great potential for their cultural and technological rejuvenation.Keywords: community resource groups, MTB-MLE, multilingual, socio-linguistic survey, learning
Procedia PDF Downloads 19818381 The Differential Role of Written Corrective Feedback in L2 Students’ Noticing and Its Impact on Writing Scores
Authors: Khaled ElEbyary, Ramy Shabara
Abstract:
L2 research has generally acknowledged the role of noticing in language learning. The role of teacher feedback is to trigger learners’ noticing of errors and direct the writing process. Recently L2 learners are seemingly using computerized applications which provide corrective feedback (CF) at different stages of writing (i.e., during and after writing). This study aimed principally to answer the question, “Is noticing likely to be maximized when feedback on erroneous output is electronically provided either during or after the composing stage, or does teacher annotated feedback have a stronger effect?”. Seventy-five participants were randomly distributed into four groups representing four conditions. These include receiving automated feedback at the composing stage, automated feedback after writing, teacher feedback, and no feedback. Findings demonstrate the impact of CF on writing and the intensity of noticing certain language areas at different writing stages and from different feedback sources.Keywords: written corrective feedback, error correction, noticing, automated written corrective feedback, L2 acquisition
Procedia PDF Downloads 96