Search results for: web 2.0 applications
3487 Library on the Cloud: Universalizing Libraries Based on Virtual Space
Authors: S. Vanaja, P. Panneerselvam, S. Santhanakarthikeyan
Abstract:
Cloud Computing is a latest trend in Libraries. Entering in to cloud services, Librarians can suit the present information handling and they are able to satisfy needs of the knowledge society. Libraries are now in the platform of universalizing all its information to users and they focus towards clouds which gives easiest access to data and application. Cloud computing is a highly scalable platform promising quick access to hardware and software over the internet, in addition to easy management and access by non-expert users. In this paper, we discuss the cloud’s features and its potential applications in the library and information centers, how cloud computing actually works is illustrated in this communication and how it will be implemented. It discuss about what are the needs to move to cloud, process of migration to cloud. In addition to that this paper assessed the practical problems during migration in libraries, advantages of migration process and what are the measures that Libraries should follow during migration in to cloud. This paper highlights the benefits and some concerns regarding data ownership and data security on the cloud computing.Keywords: cloud computing, cloud-service, cloud based-ILS, cloud-providers, discovery service, IaaS, PaaS, SaaS, virtualization, Web scale access
Procedia PDF Downloads 6583486 Digital Platform of Crops for Smart Agriculture
Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye
Abstract:
In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.Keywords: prediction, machine learning, artificial intelligence, digital agriculture
Procedia PDF Downloads 793485 Technology Maps in Energy Applications Based on Patent Trends: A Case Study
Authors: Juan David Sepulveda
Abstract:
This article reflects the current stage of progress in the project “Determining technological trends in energy generation”. At first it was oriented towards finding out those trends by employing such tools as the scientometrics community had proved and accepted as effective for getting reliable results. Because a documented methodological guide for this purpose could not be found, the decision was made to reorient the scope and aim of this project, changing the degree of interest in pursuing the objectives. Therefore it was decided to propose and implement a novel guide from the elements and techniques found in the available literature. This article begins by explaining the elements and considerations taken into account when implementing and applying this methodology, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.Keywords: energy, technology mapping, patents, univariate analysis
Procedia PDF Downloads 4753484 The Effect of Using LDOCE on Iranian EFL Learners’ Pronunciation Accuracy
Authors: Mohammad Hadi Mahmoodi, Elahe Saedpanah
Abstract:
Since pronunciation is among those factors that can have strong effects on EFL learners’ successful communication, instructional programs with accurate pronunciation purposes seem to be a necessity in any L2 teaching context. The widespread use of smart mobile phones brings with itself various educational applications, which can assist foreign language learners in learning and speaking another language other than their L1. In line with this supportive innovation, the present study investigated the role of LDOCE (Longman Dictionary of Contemporary English), a mobile application, on improving Iranian EFL learners’ pronunciation accuracy. To this aim, 40 EFL learners studying English at the intermediate level participated in the current study. This was an experimental research with two groups of 20 students in an experimental and a control group. The data were collected through the administration of a pronunciation pretest before the instruction and a post-test after the treatment. In addition, the assessment was based on the pupils’ recorded voices while reading the selected words. The results of the independent samples t-test indicated that using LDOCE significantly affected Iranian EFL learners' pronunciation accuracy with those in the experimental group outperforming their control group counterparts.Keywords: LDOCE, EFL learners, pronunciation accuracy, CALL, MALL
Procedia PDF Downloads 5453483 Flexible Cities: A Multisided Spatial Application of Tracking Livability of Urban Environment
Authors: Maria Christofi, George Plastiras, Rafaella Elia, Vaggelis Tsiourtis, Theocharis Theocharides, Miltiadis Katsaros
Abstract:
The rapidly expanding urban areas of the world constitute a challenge of how we need to make the transition to "the next urbanization", which will be defined by new analytical tools and new sources of data. This paper is about the production of a spatial application, the ‘FUMapp’, where space and its initiative will be available literally, in meters, but also abstractly, at a sensed level. While existing spatial applications typically focus on illustrations of the urban infrastructure, the suggested application goes beyond the existing: It investigates how our environment's perception adapts to the alterations of the built environment through a dataset construction of biophysical measurements (eye-tracking, heart beating), and physical metrics (spatial characteristics, size of stimuli, rhythm of mobility). It explores the intersections between architecture, cognition, and computing where future design can be improved and identifies the flexibility and livability of the ‘available space’ of specific examined urban paths.Keywords: biophysical data, flexibility of urban, livability, next urbanization, spatial application
Procedia PDF Downloads 1423482 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 3463481 ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning
Authors: Arun Sanjel, Greg Speegle
Abstract:
Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives.Keywords: program synthesis, distributed computing, reinforcement learning, unit testing, DISC
Procedia PDF Downloads 1033480 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)
Authors: Javad Abdi, Azam Famil Khalili
Abstract:
Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning
Procedia PDF Downloads 4333479 Detecting Paraphrases in Arabic Text
Authors: Amal Alshahrani, Allan Ramsay
Abstract:
Paraphrasing is one of the important tasks in natural language processing; i.e. alternative ways to express the same concept by using different words or phrases. Paraphrases can be used in many natural language applications, such as Information Retrieval, Machine Translation, Question Answering, Text Summarization, or Information Extraction. To obtain pairs of sentences that are paraphrases we create a system that automatically extracts paraphrases from a corpus, which is built from different sources of news article since these are likely to contain paraphrases when they report the same event on the same day. There are existing simple standard approaches (e.g. TF-IDF vector space, cosine similarity) and alignment technique (e.g. Dynamic Time Warping (DTW)) for extracting paraphrase which have been applied to the English. However, the performance of these approaches could be affected when they are applied to another language, for instance Arabic language, due to the presence of phenomena which are not present in English, such as Free Word Order, Zero copula, and Pro-dropping. These phenomena will affect the performance of these algorithms. Thus, if we can analysis how the existing algorithms for English fail for Arabic then we can find a solution for Arabic. The results are promising.Keywords: natural language processing, TF-IDF, cosine similarity, dynamic time warping (DTW)
Procedia PDF Downloads 3843478 Identification of Failures Occurring on a System on Chip Exposed to a Neutron Beam for Safety Applications
Authors: S. Thomet, S. De-Paoli, F. Ghaffari, J. M. Daveau, P. Roche, O. Romain
Abstract:
In this paper, we present a hardware module dedicated to understanding the fail reason of a System on Chip (SoC) exposed to a particle beam. Impact of Single-Event Effects (SEE) on processor-based SoCs is a concern that has increased in the past decade, particularly for terrestrial applications with automotive safety increasing requirements, as well as consumer and industrial domains. The SEE created by the impact of a particle on an SoC may have consequences that can end to instability or crashes. Specific hardening techniques for hardware and software have been developed to make such systems more reliable. SoC is then qualified using cosmic ray Accelerated Soft-Error Rate (ASER) to ensure the Soft-Error Rate (SER) remains in mission profiles. Understanding where errors are occurring is another challenge because of the complexity of operations performed in an SoC. Common techniques to monitor an SoC running under a beam are based on non-intrusive debug, consisting of recording the program counter and doing some consistency checking on the fly. To detect and understand SEE, we have developed a module embedded within the SoC that provide support for recording probes, hardware watchpoints, and a memory mapped register bank dedicated to software usage. To identify CPU failure modes and the most important resources to probe, we have carried out a fault injection campaign on the RTL model of the SoC. Probes are placed on generic CPU registers and bus accesses. They highlight the propagation of errors and allow identifying the failure modes. Typical resulting errors are bit-flips in resources creating bad addresses, illegal instructions, longer than expected loops, or incorrect bus accesses. Although our module is processor agnostic, it has been interfaced to a RISC-V by probing some of the processor registers. Probes are then recorded in a ring buffer. Associated hardware watchpoints are allowing to do some control, such as start or stop event recording or halt the processor. Finally, the module is also providing a bank of registers where the firmware running on the SoC can log information. Typical usage is for operating system context switch recording. The module is connected to a dedicated debug bus and is interfaced to a remote controller via a debugger link. Thus, a remote controller can interact with the monitoring module without any intrusiveness on the SoC. Moreover, in case of CPU unresponsiveness, or system-bus stall, the recorded information can still be recovered, providing the fail reason. A preliminary version of the module has been integrated into a test chip currently being manufactured at ST in 28-nm FDSOI technology. The module has been triplicated to provide reliable information on the SoC behavior. As the primary application domain is automotive and safety, the efficiency of the module will be evaluated by exposing the test chip under a fast-neutron beam by the end of the year. In the meantime, it will be tested with alpha particles and electromagnetic fault injection (EMFI). We will report in the paper on fault-injection results as well as irradiation results.Keywords: fault injection, SoC fail reason, SoC soft error rate, terrestrial application
Procedia PDF Downloads 2293477 Privacy-Preserving Location Sharing System with Client/Server Architecture in Mobile Online Social Network
Authors: Xi Xiao, Chunhui Chen, Xinyu Liu, Guangwu Hu, Yong Jiang
Abstract:
Location sharing is a fundamental service in mobile Online Social Networks (mOSNs), which raises significant privacy concerns in recent years. Now, most location-based service applications adopt client/server architecture. In this paper, a location sharing system, named CSLocShare, is presented to provide flexible privacy-preserving location sharing with client/server architecture in mOSNs. CSLocShare enables location sharing between both trusted social friends and untrusted strangers without the third-party server. In CSLocShare, Location-Storing Social Network Server (LSSNS) provides location-based services but do not know the users’ real locations. The thorough analysis indicates that the users’ location privacy is protected. Meanwhile, the storage and the communication cost are saved. CSLocShare is more suitable and effective in reality.Keywords: mobile online social networks, client/server architecture, location sharing, privacy-preserving
Procedia PDF Downloads 3283476 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix
Authors: Natia Jalagonia, Tinatin Kuchukhidze
Abstract:
Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculatedKeywords: synthesis, PMHS, membrane, electrolyte
Procedia PDF Downloads 2563475 Removal of Per- and Polyfluoroalkyl Substances (PFASs) Contaminants from the Aqueous Phase Using Chitosan Beads
Authors: Rahim Shahrokhi, Junboum Park
Abstract:
Per- and Polyfluoroalkyl Substances (PFASs) are environmentally persistent halogenated hydrocarbons that have been widely used in many industrial and commercial applications. Recently, contaminating the soil and groundwater due to the ubiquity of PFAS in environments has raised great concern. Adsorption technology is one of the most promising methods for PFAS removal. Chitosan is a biopolymer substance with abundant amine and hydroxyl functional groups, which render it a good adsorbent. This study has tried to enhance the adsorption capacity of chitosan by grafting more amine functional groups on its surface for the removal of two long (PFOA and PFOS) and two short-chain (PFBA, PFBS) PFAS substances from the aqueous phase. A series of batch adsorption tests have been performed to evaluate the adsorption capacity of the used sorbent. Also, the sorbent was analyzed by SEM, FT-IR, zeta potential, and XRD tests. The results demonstrated that both chitosan beads have good potential for adsorbing short and long-chain PFAS from the aqueous phase.Keywords: PFAS, chitosan beads, adsorption, grafted chitosan
Procedia PDF Downloads 623474 Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors
Authors: Naima Boudieb, Mohamed Loucif Seaid, Imad Rati, Imane Benammane
Abstract:
The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications.Keywords: energy storage, supercapacitors, SIE, VC, PANI, poly(3, 4-ethylenedioxythiophene, PEDOT, polystyrene sulfonate
Procedia PDF Downloads 623473 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform
Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung
Abstract:
Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing
Procedia PDF Downloads 2243472 A Multi Sensor Monochrome Video Fusion Using Image Quality Assessment
Authors: M. Prema Kumar, P. Rajesh Kumar
Abstract:
The increasing interest in image fusion (combining images of two or more modalities such as infrared and visible light radiation) has led to a need for accurate and reliable image assessment methods. This paper gives a novel approach of merging the information content from several videos taken from the same scene in order to rack up a combined video that contains the finest information coming from different source videos. This process is known as video fusion which helps in providing superior quality (The term quality, connote measurement on the particular application.) image than the source images. In this technique different sensors (whose redundant information can be reduced) are used for various cameras that are imperative for capturing the required images and also help in reducing. In this paper Image fusion technique based on multi-resolution singular value decomposition (MSVD) has been used. The image fusion by MSVD is almost similar to that of wavelets. The idea behind MSVD is to replace the FIR filters in wavelet transform with singular value decomposition (SVD). It is computationally very simple and is well suited for real time applications like in remote sensing and in astronomy.Keywords: multi sensor image fusion, MSVD, image processing, monochrome video
Procedia PDF Downloads 5703471 In-Vitro and Antibacterial Studies for Silicate-Phosphate Glasses Formed with Biosynthesized Silica
Authors: Damandeep Kaur, O.P. Pandey, M.S. Reddy
Abstract:
In the present research, bio-synthesisation of silica particles has been carried out successfully. For this purpose, agriculture waste rice husk (RH) has been utilized. Among several types of agriculture waste, RH is considered to be cost-effective and easily accessible. In the present investigation, a chemical approach has been followed to extract silica nanoparticles. X-Ray Diffraction (XRD) patterns indicated the amorphous nature of silica at lower temperature range. Silica and other mineral contents have been found using energy dispersive spectroscopy (EDS). Morphological and structural studies have been carried out with the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Transmission (FTIR) spectroscopy. Further, extracted silica from RH has been used for preparation of the glasses. The appearance of broad humps in XRD patterns confirmed the amorphous nature of prepared glasses. These glasses exhibited enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria. The as-synthesized glass samples can be further used for physical and structural studies for drug loading applications.Keywords: rice husk, biosynthesized silica, bioactive glasses, antibacterial studies
Procedia PDF Downloads 1133470 Mitigation of Electromagnetic Interference Generated by GPIB Control-Network in AC-DC Transfer Measurement System
Authors: M. M. Hlakola, E. Golovins, D. V. Nicolae
Abstract:
The field of instrumentation electronics is undergoing an explosive growth, due to its wide range of applications. The proliferation of electrical devices in a close working proximity can negatively influence each other’s performance. The degradation in the performance is due to electromagnetic interference (EMI). This paper investigates the negative effects of electromagnetic interference originating in the General Purpose Interface Bus (GPIB) control-network of the ac-dc transfer measurement system. Remedial measures of reducing measurement errors and failure of range of industrial devices due to EMI have been explored. The ac-dc transfer measurement system was analyzed for the common-mode (CM) EMI effects. Further investigation of coupling path as well as more accurate identification of noise propagation mechanism has been outlined. To prevent the occurrence of common-mode (ground loops) which was identified between the GPIB system control circuit and the measurement circuit, a microcontroller-driven GPIB switching isolator device was designed, prototyped, programmed and validated. This mitigation technique has been explored to reduce EMI effectively.Keywords: CM, EMI, GPIB, ground loops
Procedia PDF Downloads 2873469 Closing the Gap: Efficient Voxelization with Equidistant Scanlines and Gap Detection
Authors: S. Delgado, C. Cerrada, R. S. Gómez
Abstract:
This research introduces an approach to voxelizing the surfaces of triangular meshes with efficiency and accuracy. Our method leverages parallel equidistant scan-lines and introduces a Gap Detection technique to address the limitations of existing approaches. We present a comprehensive study showcasing the method's effectiveness, scalability, and versatility in different scenarios. Voxelization is a fundamental process in computer graphics and simulations, playing a pivotal role in applications ranging from scientific visualization to virtual reality. Our algorithm focuses on enhancing the voxelization process, especially for complex models and high resolutions. One of the major challenges in voxelization in the Graphics Processing Unit (GPU) is the high cost of discovering the same voxels multiple times. These repeated voxels incur in costly memory operations with no useful information. Our scan-line-based method ensures that each voxel is detected exactly once when processing the triangle, enhancing performance without compromising the quality of the voxelization. The heart of our approach lies in the use of parallel, equidistant scan-lines to traverse the interiors of triangles. This minimizes redundant memory operations and avoids revisiting the same voxels, resulting in a significant performance boost. Moreover, our method's computational efficiency is complemented by its simplicity and portability. Written as a single compute shader in Graphics Library Shader Language (GLSL), it is highly adaptable to various rendering pipelines and hardware configurations. To validate our method, we conducted extensive experiments on a diverse set of models from the Stanford repository. Our results demonstrate not only the algorithm's efficiency, but also its ability to produce 26 tunnel free accurate voxelizations. The Gap Detection technique successfully identifies and addresses gaps, ensuring consistent and visually pleasing voxelized surfaces. Furthermore, we introduce the Slope Consistency Value metric, quantifying the alignment of each triangle with its primary axis. This metric provides insights into the impact of triangle orientation on scan-line based voxelization methods. It also aids in understanding how the Gap Detection technique effectively improves results by targeting specific areas where simple scan-line-based methods might fail. Our research contributes to the field of voxelization by offering a robust and efficient approach that overcomes the limitations of existing methods. The Gap Detection technique fills a critical gap in the voxelization process. By addressing these gaps, our algorithm enhances the visual quality and accuracy of voxelized models, making it valuable for a wide range of applications. In conclusion, "Closing the Gap: Efficient Voxelization with Equidistant Scan-lines and Gap Detection" presents an effective solution to the challenges of voxelization. Our research combines computational efficiency, accuracy, and innovative techniques to elevate the quality of voxelized surfaces. With its adaptable nature and valuable innovations, this technique could have a positive influence on computer graphics and visualization.Keywords: voxelization, GPU acceleration, computer graphics, compute shaders
Procedia PDF Downloads 703468 N-Type GaN Thinning for Enhancing Light Extraction Efficiency in GaN-Based Thin-Film Flip-Chip Ultraviolet (UV) Light Emitting Diodes (LED)
Authors: Anil Kawan, Soon Jae Yu, Jong Min Park
Abstract:
GaN-based 365 nm wavelength ultraviolet (UV) light emitting diodes (LED) have various applications: curing, molding, purification, deodorization, and disinfection etc. However, their usage is limited by very low output power, because of the light absorption in the GaN layers. In this study, we demonstrate a method utilizing removal of 365 nm absorption layer buffer GaN and thinning the n-type GaN so as to improve the light extraction efficiency of the GaN-based 365 nm UV LED. The UV flip chip LEDs of chip size 1.3 mm x 1.3 mm were fabricated using GaN epilayers on a sapphire substrate. Via-hole n-type contacts and highly reflective Ag metal were used for efficient light extraction. LED wafer was aligned and bonded to AlN carrier wafer. To improve the extraction efficiency of the flip chip LED, sapphire substrate and absorption layer buffer GaN were removed by using laser lift-off and dry etching, respectively. To further increase the extraction efficiency of the LED, exposed n-type GaN thickness was reduced by using inductively coupled plasma etching.Keywords: extraction efficiency, light emitting diodes, n-GaN thinning, ultraviolet
Procedia PDF Downloads 4243467 Estimating Marine Tidal Power Potential in Kenya
Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema
Abstract:
The rapidly diminishing fossil fuel reserves, their exorbitant cost and the increasingly apparent negative effect of fossil fuels to climate changes is a wake-up call to explore renewable energy. Wind, bio-fuel and solar power have already become staples of Kenyan electricity mix. The potential of electric power generation from marine tidal currents is enormous, with oceans covering more than 70% of the earth. However, attempts to harness marine tidal energy in Kenya, has yet to be studied thoroughly due to its promising, cyclic, reliable and predictable nature and the vast energy contained within it. The high load factors resulting from the fluid properties and the predictable resource characteristics make marine currents particularly attractive for power generation and advantageous when compared to others. Global-level resource assessments and oceanographic literature and data have been compiled in an analysis of the technology-specific requirements for tidal energy technologies and the physical resources. Temporal variations in resource intensity as well as the differences between small-scale applications are considered.Keywords: tidal power, renewable energy, energy assessment, Kenya
Procedia PDF Downloads 5683466 Clustering Performance Analysis using New Correlation-Based Cluster Validity Indices
Authors: Nathakhun Wiroonsri
Abstract:
There are various cluster validity measures used for evaluating clustering results. One of the main objectives of using these measures is to seek the optimal unknown number of clusters. Some measures work well for clusters with different densities, sizes and shapes. Yet, one of the weaknesses that those validity measures share is that they sometimes provide only one clear optimal number of clusters. That number is actually unknown and there might be more than one potential sub-optimal option that a user may wish to choose based on different applications. We develop two new cluster validity indices based on a correlation between an actual distance between a pair of data points and a centroid distance of clusters that the two points are located in. Our proposed indices constantly yield several peaks at different numbers of clusters which overcome the weakness previously stated. Furthermore, the introduced correlation can also be used for evaluating the quality of a selected clustering result. Several experiments in different scenarios, including the well-known iris data set and a real-world marketing application, have been conducted to compare the proposed validity indices with several well-known ones.Keywords: clustering algorithm, cluster validity measure, correlation, data partitions, iris data set, marketing, pattern recognition
Procedia PDF Downloads 1023465 CRISPR Technology: A Tool in the Potential Cure for COVID-19 Virus
Authors: Chijindu Okpalaoka, Charles Chinedu Onuselogu
Abstract:
COVID-19, humanity's coronavirus disease caused by SARS-CoV-2, was first detected in late 2019 in Wuhan, China. COVID-19 lacked an established conventional pharmaceutical therapy, and as a result, the outbreak quickly became an epidemic affecting the entire World. Only a qPCR assay is reliable for diagnosing COVID-19. Clustered, regularly interspaced short palindromic repeats (CRISPR) technology is being researched for speedy and specific identification of COVID-19, among other therapeutic techniques. Apart from its therapeutic capabilities, the CRISPR technique is being evaluated to develop antiviral therapies; nevertheless, no CRISPR-based medication has been approved for human use to date. Prophylactic antiviral CRISPR in living being cells, a Cas 13-based approach against coronavirus, has been developed. While this method can be evolved into a treatment approach, it may face substantial obstacles in human clinical trials for licensure. This study discussed the potential applications of CRISPR-based techniques for developing a speedy and accurate feasible treatment alternative for the COVID-19 virus.Keywords: COVID-19, CRISPR technique, Cas13, SARS-CoV-2, prophylactic antiviral
Procedia PDF Downloads 1233464 Voice and Head Controlled Intelligent Wheelchair
Authors: Dechrit Maneetham
Abstract:
The aim of this paper was to design a void and head controlled electric power wheelchair (EPW). A novel activate the control system for quadriplegics with voice, head and neck mobility. Head movement has been used as a control interface for people with motor impairments in a range of applications. Acquiring measurements from the module is simplified through a synchronous a motor. Axis measures the two directions namely x and y. At the same time, patients can control the motorized wheelchair using voice signals (forward, backward, turn left, turn right, and stop) given by it self. The model of a dc motor is considered as a speed control by selection of a PID parameters using genetic algorithm. An experimental set-up constructed, which consists of micro controller as controller, a DC motor driven EPW and feedback elements. This paper is tuning methods of parameter for a pulse width modulation (PWM) control system. A speed controller has been designed successfully for closed loop of the dc motor so that the motor runs very closed to the reference speed and angle. Intelligent wheelchair can be used to ensure the person’s voice and head are attending the direction of travel asserted by a conventional, direction and speed control.Keywords: wheelchair, quadriplegia, rehabilitation , medical devices, speed control
Procedia PDF Downloads 5363463 Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application
Authors: Arafat A. A. Shabaneh
Abstract:
Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications.Keywords: Cascaded fiber Bragg gratings, Strain sensor, Remote sensing, Wavelength shift
Procedia PDF Downloads 1993462 Gender Differences in Emotional Intelligence in a Middle Eastern Population
Authors: Said S. Aldhafri, Marwa N. Alrajhi
Abstract:
This study examines gender differences in emotional intelligence levels in the Sultanate of Oman, an Arabic country in the Middle East. As a collective culture, the Omani culture rears children differently based on the Islamic beliefs and the Arabic culture. Gender differences across the different dimensions of emotional intelligence are possible within this collective culture. Emotional intelligences reflect the ability to understand and act upon one’s and others’ emotions. The sample of the study consisted of 338 (50.6% were females) adults from different regions in Oman. The participants completed a 25-item emotional intelligence scale, using 5-point Likert type responses. The results showed that the total scores of the scale as well as the scores from the five dimensions (self management, self motivation, social skills, empathy, and self-awareness) all have good reliability coefficients. Using independent sample t-tests, the findings show that female adults scored higher than male adults. The differences were all statistically significant across the five dimensions of emotional intelligence. The findings are discussed from a cultural perspective and applications for the development of emotional intelligence skills are outlined.Keywords: emotional intelligence, gender, Arab, Oman
Procedia PDF Downloads 4563461 Electron Density Analysis and Nonlinear Optical Properties of Zwitterionic Compound
Authors: A. Chouaih, N. Benhalima, N. Boukabcha, R. Rahmani, F. Hamzaoui
Abstract:
Zwitterionic compounds have received the interest of chemists and physicists due to their applications as nonlinear optical materials. Recently, zwitterionic compounds exhibiting high nonlinear optical activity have been investigated. In this context, the molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via intermolecular hydrogen bonds. The dimers are further linked by C–H...O hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine various nonlinear optical properties such as molecular electrostatic potential, polarizability, and hyperpolarizability of the title compound.Keywords: organic compounds, polarizability, hyperpolarizability, dipole moment
Procedia PDF Downloads 4143460 Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells
Authors: B. A. Berns, V. Romanovicz, M. M. de Camargo Forte, D. E. O. S. Carpenter
Abstract:
The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, There are some deficiencies in their operation, Mainly those that use ethanol as a hydrogen source that require a certain attention. Therefore, This research aimed to develop Nafion® composite membranes, Mixing clay minerals, Kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and at the same time to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, Protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and also the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, The protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, The Nafion® composite membranes were stable up to a temperature of 325ºC.Keywords: Polymer-matrix composites (PMCs), thermal properties, nanoclay, differential scanning calorimetry
Procedia PDF Downloads 3983459 Digital Signal Processor Implementation of a Novel Sinusoidal Pulse Width Modulation Algorithm Algorithm for a Reduced Delta Inverter
Authors: Asma Ben Rhouma, Mahmoud Hamouda
Abstract:
The delta inverter is considered as the reduced three-phase dc/ac converter topology. It contains only three two-quadrant power switches compared to six in the conventional one. This reduced power conversion topology is widely considered in many industrial applications, such as electric traction and large photovoltaic systems. This paper is focused on a new sinusoidal pulse width modulation algorithm (SPWM) developed for the delta inverter. As an unconventional inverter’s structure, irregular modulating functions waveforms of the SPWM switching technique are generated. The performances of the proposed SPWM technique was proven through computer simulations carried out on a delta inverter feeding a three-phase RL load. Digital Signal Processor (DSP) implementation of the novel SPWM algorithm have been realized on a laboratory prototype of the delta inverter feeding an RL load and a squirrel cage induction motor. Experimental results have highlighted its high performances under the proposed SPWM method.Keywords: delta inverter, SPWM, simulation, DSP implementation
Procedia PDF Downloads 1623458 Performance Analysis on the Smoke Management System of the Weiwuying Center for the Arts Using Hot Smoke Tests
Authors: K. H. Yang, T. C. Yeh, P. S. Lu, F. C. Yang, T. Y. Wu, W. J. Sung
Abstract:
In this study, a series of full-scale hot smoke tests has been conducted to validate the performances of the smoke management system in the WWY center for arts before grand opening. Totaled 19 scenarios has been established and experimented with fire sizes ranging from 2 MW to 10 MW. The measured ASET data provided by the smoke management system experimentation were compared with the computer-simulated RSET values for egress during the design phase. The experimental result indicated that this system could successfully provide a safety margin of 200% and ensure a safe evacuation in case of fire in the WWY project, including worst-cases and fail-safe scenarios. The methodology developed and results obtained in this project can provide a useful reference for future applications, such as for the large-scale indoor sports dome and arena, stadium, shopping malls, airport terminals, and stations or tunnels for railway and subway systems.Keywords: building hot smoke tests, performance-based smoke management system designs, full-scale experimental validation, tenable condition criteria
Procedia PDF Downloads 443