Search results for: rejection simulation method
19801 Investigation of the Effect of Teaching Thinking and Research Lesson by Cooperative and Traditional Methods on Creativity of Sixth Grade Students
Authors: Faroogh Khakzad, Marzieh Dehghani, Elahe Hejazi
Abstract:
The present study investigates the effect of teaching a Thinking and Research lesson by cooperative and traditional methods on the creativity of sixth-grade students in Piranshahr province. The statistical society includes all the sixth-grade students of Piranshahr province. The sample of this studytable was selected by available sampling from among male elementary schools of Piranshahr. They were randomly assigned into two groups of cooperative teaching method and traditional teaching method. The design of the study is quasi-experimental with a control group. In this study, to assess students’ creativity, Abedi’s creativity questionnaire was used. Based on Cronbach’s alpha coefficient, the reliability of the factor flow was 0.74, innovation was 0.61, flexibility was 0.63, and expansion was 0.68. To analyze the data, t-test, univariate and multivariate covariance analysis were used for evaluation of the difference of means and the pretest and posttest scores. The findings of the research showed that cooperative teaching method does not significantly increase creativity (p > 0.05). Moreover, cooperative teaching method was found to have significant effect on flow factor (p < 0.05), but in innovation and expansion factors no significant effect was observed (p < 0.05).Keywords: cooperative teaching method, traditional teaching method, creativity, flow, innovation, flexibility, expansion, thinking and research lesson
Procedia PDF Downloads 32019800 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application
Authors: Hailu Dessalegn, T. Srinivas
Abstract:
We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6 nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974 nm with a flat top pass band at 1dB of 0.5205 nm and free spectral range of about 14.9 nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54 pm/V has been achieved with negligible tunability variation in the eight channel tunable optical filter proportional to the DC voltage applied in the structure, and it is capable of tuning up to 3.45 nm in each channel with a maximum loss difference of 0.22 dB in the tuning range and out of band rejection ratio of 35 dB, with a low channel crosstalk ≤ 30 dB.Keywords: optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer
Procedia PDF Downloads 43919799 Competitiveness of a Share Autonomous Electrical Vehicle Fleet Compared to Traditional Means of Transport: A Case Study for Transportation Network Companies
Authors: Maximilian Richter
Abstract:
Implementing shared autonomous electric vehicles (SAEVs) has many advantages. The main advantages are achieved when SAEVs are offered as on-demand services by a fleet operator. However, autonomous mobility on demand (AMoD) will be distributed nationwide only if a fleet operation is economically profitable for the operator. This paper proposes a microscopic approach to modeling two implementation scenarios of an AMoD fleet. The city of Zurich is used as a case study, with the results and findings being generalizable to other similar European and North American cities. The data are based on the traffic model of the canton of Zurich (Gesamtverkehrsmodell des Kantons Zürich (GVM-ZH)). To determine financial profitability, demand is based on the simulation results and combined with analyzing the costs of a SAEV per kilometer. The results demonstrate that depending on the scenario; journeys can be offered profitably to customers for CHF 0.3 up to CHF 0.4 per kilometer. While larger fleets allowed for lower price levels and increased profits in the long term, smaller fleets exhibit elevated efficiency levels and profit opportunities per day. The paper concludes with recommendations for how fleet operators can prepare themselves to maximize profit in the autonomous future.Keywords: autonomous vehicle, mobility on demand, traffic simulation, fleet provider
Procedia PDF Downloads 12819798 The Effect of Goal Setting on Psychological Status and Freestyle Swimming Performance in Young Competitive Swimmers
Authors: Sofiene Amara, Mohamed Ali Bahri, Sabri Gaied Chortane
Abstract:
The purpose of this study was to examine the effect of personal goal setting on psychological parameters (cognitive anxiety, somatic anxiety, and self-confidence) and the 50m freestyle performance. 30 young swimmers participated in this investigation, and was divided into three groups, the first group (G1, n = 10, 14 ± 0.7 years old) was prepared for the competition without a fixed target (method 1), the second group (G2, n = 10, 14 ± 0.9 years old) was oriented towards a vague goal 'Do your best' (method 2), while the third group (G3, n = 10, 14 ± 0, 5 years old) was invited to answer a goal that is difficult to reach according to a goal-setting interval (GST) (method 3). According to the statistical data of the present investigation, the cognitive and somatic anxiety scores in G1 and G3 were higher than in G2 (G1-G2, G3-G2: cognitive anxiety, P = 0.000, somatic anxiety: P = 0.000 respectively). On the other hand, the self-confidence score was lower in G1 compared with the other two groups (G1-G2, G3-G2: P = 0.02, P = 0.03 respectively). Our assessment also shows that the 50m freestyle time performance was improved better by method 3 (pre and post-Test: P = 0.006, -2.5sec, 7.83%), than by method 2 (pre and Post-Test: P = 0.03; -1sec; 3.24%), while, performance remained unchanged in G1 (P > 0.05). To conclude, the setting of a difficult goal by GST is more effective to improve the chronometric performance in the 50m freestyle, but at the same time increased the values of the cognitive and somatic anxiety. For this, the mental trainers and the staff technical, invited to develop models of mental preparation associated with this method of setting a goal to help swimmers on the psychological level.Keywords: cognitive anxiety, goal setting, performance of swimming freestyle, self-confidence, somatic anxiety
Procedia PDF Downloads 13419797 Aerodynamic Study of an Open Window Moving Bus with Passengers
Authors: Pawan Kumar Pant, Bhanu Gupta, S. R. Kale, S. V. Veeravalli
Abstract:
In many countries, buses are the principal means of transport, of which a majority are naturally ventilated with open windows. The design of this ventilation has little scientific basis and to address this problem a study has been undertaken involving both experiments and numerical simulations. The flow pattern inside and around of an open window bus with passengers has been investigated in detail. A full scale three-dimensional numerical simulation has been used for a) a bus with closed windows and b) with open windows. In either simulation, the bus had 58 seated passengers. The bus dimensions used were 2500 mm wide × 2500 mm high (exterior) × 10500 mm long and its speed was set at 40 km/h. In both cases, the flow separates at the top front edge forming a vortex and reattaches close to the mid-length. This attached flow separates once more as it leaves the bus. However, the strength and shape of the vortices at the top front and wake region is different for both cases. The streamline pattern around the bus is also different for the two cases. For the bus with open windows, the dominant airflow inside the bus is from the rear to the front of the bus and air velocity at the face level of the passengers was found to be 1/10th of the free stream velocity. These findings are in good agreement with flow visualization experiments performed in a water channel at 10 m/s, and with smoke/tuft visualizations in a wind tunnel with a free-stream velocity of approximately 40 km/h on a 1:25 scaled Perspex model.Keywords: air flow, moving bus, open windows, vortex, wind tunnel
Procedia PDF Downloads 24219796 The Prediction of Reflection Noise and Its Reduction by Shaped Noise Barriers
Authors: I. L. Kim, J. Y. Lee, A. K. Tekile
Abstract:
In consequence of the very high urbanization rate of Korea, the number of traffic noise damages in areas congested with population and facilities is steadily increasing. The current environmental noise levels data in major cities of the country show that the noise levels exceed the standards set for both day and night times. This research was about comparative analysis in search for optimal soundproof panel shape and design factor that can minimize sound reflection noise. In addition to the normal flat-type panel shape, the reflection noise reduction of swelling-type, combined swelling and curved-type, and screen-type were evaluated. The noise source model Nord 2000, which often provides abundant information compared to models for the similar purpose, was used in the study to determine the overall noise level. Based on vehicle categorization in Korea, the noise levels for varying frequency from different heights of the sound source (directivity heights of Harmonize model) have been calculated for simulation. Each simulation has been made using the ray-tracing method. The noise level has also been calculated using the noise prediction program called SoundPlan 7.2, for comparison. The noise level prediction was made at 15m (R1), 30 m (R2) and at middle of the road, 2m (R3) receiving the point. By designing the noise barriers by shape and running the prediction program by inserting the noise source on the 2nd lane to the noise barrier side, among the 6 lanes considered, the reflection noise slightly decreased or increased in all noise barriers. At R1, especially in the cases of the screen-type noise barriers, there was no reduction effect predicted in all conditions. However, the swelling-type showed a decrease of 0.7~1.2 dB at R1, performing the best reduction effect among the tested noise barriers. Compared to other forms of noise barriers, the swelling-type was thought to be the most suitable for reducing the reflection noise; however, since a slight increase was predicted at R2, further research based on a more sophisticated categorization of related design factors is necessary. Moreover, as swellings are difficult to produce and the size of the modules are smaller than other panels, it is challenging to install swelling-type noise barriers. If these problems are solved, its applicable region will not be limited to other types of noise barriers. Hence, when a swelling-type noise barrier is installed at a downtown region where the amount of traffic is increasing every day, it will both secure visibility through the transparent walls and diminish any noise pollution due to the reflection. Moreover, when decorated with shapes and design, noise barriers will achieve a visual attraction than a flat-type one and thus will alleviate any psychological hardships related to noise, other than the unique physical soundproofing functions of the soundproof panels.Keywords: reflection noise, shaped noise barriers, sound proof panel, traffic noise
Procedia PDF Downloads 51019795 Numerical Analysis of Wire Laser Additive Manufacturing for Low Carbon Steels+
Authors: Juan Manuel Martinez Alvarez, Michele Chiumenti
Abstract:
This work explores the benefit of the thermo-metallurgical simulation to tackle the Wire Laser Additive Manufacturing (WLAM) of low-carbon steel components. The Finite Element Analysis is calibrated by process monitoring via thermal imaging and thermocouples measurements, to study the complex thermo-metallurgical behavior inherent to the WLAM process of low carbon steel parts.A critical aspect is the analysis of the heterogeneity in the resulting microstructure. This heterogeneity depends on both the thermal history and the residual stresses experienced during the WLAM process. Because of low carbon grades are highly sensitive to quenching, a high-gradient microstructure often arises due to the layer-by-layer metal deposition in WLAM. The different phases have been identified by scanning electron microscope. A clear influence of the heterogeneities on the final mechanical performance has been established by the subsequent mechanical characterization. The thermo-metallurgical analysis has been used to determine the actual thermal history and the corresponding thermal gradients during the printing process. The correlation between the thermos-mechanical evolution, the printing parameters and scanning sequence has been established. Therefore, an enhanced printing strategy, including optimized process window has been used to minimize the microstructure heterogeneity at ArcelorMittal.Keywords: additive manufacturing, numerical simulation, metallurgy, steel
Procedia PDF Downloads 7619794 Predicting Root Cause of a Fire Incident through Transient Simulation
Authors: Mira Ezora Zainal Abidin, Siti Fauzuna Othman, Zalina Harun, M. Hafiz M. Pikri
Abstract:
In a fire incident involving a Nitrogen storage tank that over-pressured and exploded, resulting in a fire in one of the units in a refinery, lack of data and evidence hampered the investigation to determine the root cause. Instrumentation and fittings were destroyed in the fire. To make it worst, this incident occurred during the COVID-19 pandemic, making collecting and testing evidence delayed. In addition to that, the storage tank belonged to a third-party company which requires legal agreement prior to the refinery getting approval to test the remains. Despite all that, the investigation had to be carried out with stakeholders demanding answers. The investigation team had to devise alternative means to support whatever little evidence came out as the most probable root cause. International standards, practices, and previous incidents on similar tanks were referred. To narrow down to just one root cause from 8 possible causes, transient simulations were conducted to simulate the overpressure scenarios to prove and eliminate the other causes, leaving one root cause. This paper shares the methodology used and details how transient simulations were applied to help solve this. The experience and lessons learned gained from the event investigation and from numerous case studies via transient analysis in finding the root cause of the accident leads to the formulation of future mitigations and design modifications aiming at preventing such incidents or at least minimize the consequences from the fire incident.Keywords: fire, transient, simulation, relief
Procedia PDF Downloads 10019793 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation
Authors: Yaping Zhao
Abstract:
In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density
Procedia PDF Downloads 50719792 The Effect of Conservative Tillage on Physical Properties of Soil and Yield of Rainfed Wheat
Authors: Abolfazl Hedayatipoor, Mohammad Younesi Alamooti
Abstract:
In order to study the effect of conservative tillage on a number of physical properties of soil and the yield of rainfed wheat, an experiment in the form of a randomized complete block design (RCBD) with three replications was conducted in a field in Aliabad County, Iran. The study treatments included: T1) Conventional method, T2) Combined moldboard plow method, T3) Chisel-packer method, and T4) Direct planting method. During early October, the study soil was prepared based on these treatments in a field which was used for rainfed wheat farming in the previous year. The apparent specific gravity of soil, weighted mean diameter (WMD) of soil aggregates, soil mechanical resistance, and soil permeability were measured. Data were analyzed in MSTAT-C. Results showed that the tillage practice had no significant effect on grain yield (p < 0.05). Soil permeability was 10.9, 16.3, 15.7 and 17.9 mm/h for T1, T2, T3 and T4, respectively.Keywords: rainfed agriculture, conservative tillage, energy consumption, wheat
Procedia PDF Downloads 21319791 Quality by Design in the Optimization of a Fast HPLC Method for Quantification of Hydroxychloroquine Sulfate
Authors: Pedro J. Rolim-Neto, Leslie R. M. Ferraz, Fabiana L. A. Santos, Pablo A. Ferreira, Ricardo T. L. Maia-Jr., Magaly A. M. Lyra, Danilo A F. Fonte, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim
Abstract:
Initially developed as an antimalarial agent, hydroxychloroquine (HCQ) sulfate is often used as a slow-acting antirheumatic drug in the treatment of disorders of connective tissue. The United States Pharmacopeia (USP) 37 provides a reversed-phase HPLC method for quantification of HCQ. However, this method was not reproducible, producing asymmetric peaks in a long analysis time. The asymmetry of the peak may cause an incorrect calculation of the concentration of the sample. Furthermore, the analysis time is unacceptable, especially regarding the routine of a pharmaceutical industry. The aiming of this study was to develop a fast, easy and efficient method for quantification of HCQ sulfate by High Performance Liquid Chromatography (HPLC) based on the Quality by Design (QbD) methodology. This method was optimized in terms of peak symmetry using the surface area graphic as the Design of Experiments (DoE) and the tailing factor (TF) as an indicator to the Design Space (DS). The reference method used was that described at USP 37 to the quantification of the drug. For the optimized method, was proposed a 33 factorial design, based on the QbD concepts. The DS was created with the TF (in a range between 0.98 and 1.2) in order to demonstrate the ideal analytical conditions. Changes were made in the composition of the USP mobile-phase (USP-MP): USP-MP: Methanol (90:10 v/v, 80:20 v/v and 70:30 v/v), in the flow (0.8, 1.0 and 1.2 mL) and in the oven temperature (30, 35, and 40ºC). The USP method allowed the quantification of drug in a long time (40-50 minutes). In addition, the method uses a high flow rate (1,5 mL.min-1) which increases the consumption of expensive solvents HPLC grade. The main problem observed was the TF value (1,8) that would be accepted if the drug was not a racemic mixture, since the co-elution of the isomers can become an unreliable peak integration. Therefore, the optimization was suggested in order to reduce the analysis time, aiming a better peak resolution and TF. For the optimization method, by the analysis of the surface-response plot it was possible to confirm the ideal setting analytical condition: 45 °C, 0,8 mL.min-1 and 80:20 USP-MP: Methanol. The optimized HPLC method enabled the quantification of HCQ sulfate, with a peak of high resolution, showing a TF value of 1,17. This promotes good co-elution of isomers of the HCQ, ensuring an accurate quantification of the raw material as racemic mixture. This method also proved to be 18 times faster, approximately, compared to the reference method, using a lower flow rate, reducing even more the consumption of the solvents and, consequently, the analysis cost. Thus, an analytical method for the quantification of HCQ sulfate was optimized using QbD methodology. This method proved to be faster and more efficient than the USP method, regarding the retention time and, especially, the peak resolution. The higher resolution in the chromatogram peaks supports the implementation of the method for quantification of the drug as racemic mixture, not requiring the separation of isomers.Keywords: analytical method, hydroxychloroquine sulfate, quality by design, surface area graphic
Procedia PDF Downloads 64319790 Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements
Authors: Jixiao Tao, Xiaoqiao He
Abstract:
The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements.Keywords: Bistable, finite element method, geometrical nonlinearity, quadrilateral plate elements
Procedia PDF Downloads 22419789 Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4
Authors: Farmesk Abubaker, Francesco Tortorici, Marco Capogni, Concetta Sutera, Vincenzo Bellini
Abstract:
This project concerns with the detection efficiency of the portable triple-to-double coincidence ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry.Keywords: Birks constant, defocusing parameter, GEANT4 code, TDCR parameter
Procedia PDF Downloads 15219788 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils
Authors: A. Rifa’i, Y. Takeshita, M. Komatsu
Abstract:
The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system has ever built to avoid such a problem, but puddles still didn’t stop appearing after rain. Permeability parameter needs to be determined by using more simple procedure to find exact method of solution. The instrument modelling were proposed according to the development of field permeability testing instrument. This experiment used proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow. The procedure were carried out from unsaturated until saturated soil condition. Volumetric water content (θ) were being monitored by soil moisture measurement device. The results were relationship between k and θ which drawn by numerical approach Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr= 68 %) until 9.98 x 10-4 cm/sec (Sr= 82 %). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.Keywords: constant discharge method, in situ permeability test, sandy soil, unsaturated conditions
Procedia PDF Downloads 38919787 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method
Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić
Abstract:
This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.Keywords: dry stone masonry structures, dynamic load, finite-discrete element method, static load
Procedia PDF Downloads 41919786 Combining the Fictitious Stress Method and Displacement Discontinuity Method in Solving Crack Problems in Anisotropic Material
Authors: Bahatti̇n Ki̇mençe, Uğur Ki̇mençe
Abstract:
In this study, the purpose of obtaining the influence functions of the displacement discontinuity in an anisotropic elastic medium is to produce the boundary element equations. A Displacement Discontinuous Method formulation (DDM) is presented with the aim of modeling two-dimensional elastic fracture problems. This formulation is found by analytical integration of the fundamental solution along a straight-line crack. With this purpose, Kelvin's fundamental solutions for anisotropic media on an infinite plane are used to form dipoles from singular loads, and the various combinations of the said dipoles are used to obtain the influence functions of displacement discontinuity. This study introduces a technique for coupling Fictitious Stress Method (FSM) and DDM; the reason for applying this technique to some examples is to demonstrate the effectiveness of the proposed coupling method. In this study, displacement discontinuity equations are obtained by using dipole solutions calculated with known singular force solutions in an anisotropic medium. The displacement discontinuities method obtained from the solutions of these equations and the fictitious stress methods is combined and compared with various examples. In this study, one or more crack problems with various geometries in rectangular plates in finite and infinite regions, under the effect of tensile stress with coupled FSM and DDM in the anisotropic environment, were examined, and the effectiveness of the coupled method was demonstrated. Since crack problems can be modeled more easily with DDM, it has been observed that the use of DDM has increased recently. In obtaining the displacement discontinuity equations, Papkovitch functions were used in Crouch, and harmonic functions were chosen to satisfy various boundary conditions. A comparison is made between two indirect boundary element formulations, DDM, and an extension of FSM, for solving problems involving cracks. Several numerical examples are presented, and the outcomes are contrasted to existing analytical or reference outs.Keywords: displacement discontinuity method, fictitious stress method, crack problems, anisotropic material
Procedia PDF Downloads 7919785 Hydrological-Economic Modeling of Two Hydrographic Basins of the Coast of Peru
Authors: Julio Jesus Salazar, Manuel Andres Jesus De Lama
Abstract:
There are very few models that serve to analyze the use of water in the socio-economic process. On the supply side, the joint use of groundwater has been considered in addition to the simple limits on the availability of surface water. In addition, we have worked on waterlogging and the effects on water quality (mainly salinity). In this paper, a 'complex' water economy is examined; one in which demands grow differentially not only within but also between sectors, and one in which there are limited opportunities to increase consumptive use. In particular, high-value growth, the growth of the production of irrigated crops of high value within the basins of the case study, together with the rapidly growing urban areas, provides a rich context to examine the general problem of water management at the basin level. At the same time, the long-term aridity of nature has made the eco-environment in the basins located on the coast of Peru very vulnerable, and the exploitation and immediate use of water resources have further deteriorated the situation. The presented methodology is the optimization with embedded simulation. The wide basin simulation of flow and water balances and crop growth are embedded with the optimization of water allocation, reservoir operation, and irrigation scheduling. The modeling framework is developed from a network of river basins that includes multiple nodes of origin (reservoirs, aquifers, water courses, etc.) and multiple demand sites along the river, including places of consumptive use for agricultural, municipal and industrial, and uses of running water on the coast of Peru. The economic benefits associated with water use are evaluated for different demand management instruments, including water rights, based on the production and benefit functions of water use in the urban agricultural and industrial sectors. This work represents a new effort to analyze the use of water at the regional level and to evaluate the modernization of the integrated management of water resources and socio-economic territorial development in Peru. It will also allow the establishment of policies to improve the process of implementation of the integrated management and development of water resources. The input-output analysis is essential to present a theory about the production process, which is based on a particular type of production function. Also, this work presents the Computable General Equilibrium (CGE) version of the economic model for water resource policy analysis, which was specifically designed for analyzing large-scale water management. As to the platform for CGE simulation, GEMPACK, a flexible system for solving CGE models, is used for formulating and solving CGE model through the percentage-change approach. GEMPACK automates the process of translating the model specification into a model solution program.Keywords: water economy, simulation, modeling, integration
Procedia PDF Downloads 15819784 A Novel Combination Method for Computing the Importance Map of Image
Authors: Ahmad Absetan, Mahdi Nooshyar
Abstract:
The importance map is an image-based measure and is a core part of the resizing algorithm. Importance measures include image gradients, saliency and entropy, as well as high level cues such as face detectors, motion detectors and more. In this work we proposed a new method to calculate the importance map, the importance map is generated automatically using a novel combination of image edge density and Harel saliency measurement. Experiments of different type images demonstrate that our method effectively detects prominent areas can be used in image resizing applications to aware important areas while preserving image quality.Keywords: content-aware image resizing, visual saliency, edge density, image warping
Procedia PDF Downloads 58519783 Impact of a Training Course in Cardiopulmonary Resuscitation for Primary Care Professionals
Authors: Luiz Ernani Meira Jr., Antônio Prates Caldeira, Gilson Gabriel Viana Veloso, Jackson Andrade
Abstract:
Background: In Brazil, primary health care (PHC) system has developed with multidisciplinary teams in facilities located in peripheral areas, as the entrance doors for all patients. So, professionals must be prepared to deal with patients with simple and complex problems. Objective: To evaluate the knowledge and the skills of physicians and nurses of PHC on cardiorespiratory arrest (CRA) and cardiopulmonary resuscitation (CPR) before and after training in Basic Life Support. Methods: This is a before-and-after study developed in a Simulation Laboratory in Montes Claros, Brazil. We included physicians and nurses randomly chosen from PHC services. Written tests on CRA and CPR were carried out and performances in a CPR simulation were evaluated, based on the American Heart Association recommendations. Training practices were performed using special manikins. Statistical analysis included Wilcoxon’s test to compare before and after scores. Results: Thirty-two professionals were included. Only 38% had previous courses and updates on emergency care. Most of professionals showed poor skills to attend to CRA in a simulated situation. Subjects showed an increased in knowledge and skills about CPR after training (p-value=0.003). Conclusion: Primary health care professionals must be continuously trained to assist urgencies and emergencies, like CRA.Keywords: primary health care, professional training, cardiopulmonary resuscitation, cardiorespiratory, emergency
Procedia PDF Downloads 31919782 Speedup Breadth-First Search by Graph Ordering
Abstract:
Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.Keywords: breadth-first search, BFS, graph ordering, graph algorithm
Procedia PDF Downloads 14119781 Development of Hydrophilic Materials for Nanofiltration Membrane Achieving Dual Resistance to Fouling and Chlorine
Authors: Xi Quan Cheng, Yan Chao Xu, Xu Jiang, Lu Shao, Cher Hon Lau
Abstract:
A hydrophilic thin-film-composite (TFC) nanofiltration (NF) membrane has been developed through the interfacial polymerization (IP) of amino-functional polyethylene glycol (PEG) and trimesoyl chloride. The selective layer is formed on a polyethersulfone (PES) support that is characterized using FTIR, XPS and SEM, and is dependent on monomer immersion duration, and the concentration of monomers and additives. The higher hydrophilicity alongside the larger pore size of the PEG-based selective layer is the key to a high water flux of 66.0 L m-2 h-1 at 5.0 bar. With mean pore radius of 0.42 nm and narrow pore size distribution, the MgSO4 rejections of the PEG based PA TFC NF membranes can reach up to 80.2 %. The hydrophilic PEG based membranes shows positive charged since the isoelectric points range from pH=8.9 to pH=9.1 and the rejection rates for different salts of the novel membranes are in the order of R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4). The pore sizes and water permeability of these membranes are tailored by varying the molecular weight and molecular architecture of amino-functional PEG. Due to the unique structure of the selective layer of the PEG based membranes consisting of saturated aliphatic construction unit (CH2-CH2-O), the membranes demonstrate dual resistance to fouling and chlorine. The membranes maintain good salt rejections and high water flux of PEG based membranes after treatment by 2000 ppm NaClO for 24 hours. Interestingly, the PEG based membranes exhibit excellent fouling resistance with a water flux recovery of 90.2 % using BSA as a model molecule. More importantly, the hydrophilic PEG based NF membranes have been exploited to separate several water soluble antibiotics (such as tobramycin, an aminoglycoside antibiotic applied in the treatment of various types of bacterial infections), showing excellent performance in concentration or removal of antibioics.Keywords: nanofiltration, antibiotic separation, hydrophilic membrane, high flux
Procedia PDF Downloads 31919780 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach
Authors: Sujoy Das, M. M. Ghosh
Abstract:
The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity
Procedia PDF Downloads 37519779 Variation of Airfoil Pressure Profile Due to Confined Air Streams: Application in Gas-Oil Separators
Authors: Amir Hossein Haji, Nabeel Al-Rawahi, Gholamreza Vakili-Nezhaad
Abstract:
An innovative design has been examined for a gas-oil separator based on pressure reduction over an airfoil surface. The primary motivations are to shorten the release trajectory of the bubbles by minimizing the thickness of the oil layer as well as improving uniform pressure reduction zones. Restricted airflow over an airfoil is investigated for its effect on the pressure drop enhancement and the maximum attainable attack angle prior to the stall condition. Aerodynamic separation is delayed based on numerical simulation of Wortmann FX 63137 Airfoil in a confined domain using FLUENT 6.3.26. The proposed set up results in higher pressure drop compared with the free stream case. With the aim of optimum power consumption we have pursued further restriction to an air jet case over the airfoil. Then, a curved strip model is suggested for the air jet which can be applied as an analysis/design tool for the best performance conditions. Pressure reduction is shown to be inversely proportional to the curvature of the upper airfoil profile. This reduction occurs within the tracking zones where the air jet is effectively attached to the airfoil surface. The zero slope condition is suggested to estimate the onset of these zones after which the minimum curvature should be searched. The corresponding zero slope curvature is applied for estimation of the maximum pressure drop which shows satisfactory agreement with the simulation results.Keywords: airfoil, air jet, curved fluid flow, gas-oil separator
Procedia PDF Downloads 47919778 Effect of Wettability Alteration in Low Salt Water Injection Modeling
Authors: H. Vahdani
Abstract:
By the adsorption of polar compounds and/or the deposition of organic material, the wettability of originally water-wet reservoir rock can be altered. The degree of alteration is determined by the interaction of the oil constituents, the mineral surface, and the brine chemistry. Recently improving oil recovery by tuning wettability alteration is believed as a new recovery method. Various researchers have demonstrated that low salt water injection has a significant impact on oil recovery. It has been shown, for instance, that additional oil can be produced from reservoir rock by managing the injection water. Large wettability sensitivity has been observed, indicating that the oil/water capillary pressure profiles play a major role during low saline water injection simulation. Although the exact physics on how this alteration occurs is still a research topic; however, it has been reported that some of its effect can be captured by a relative permeability shift from an oil-wet system to a water-wet system. Modeling of low salt water injection mainly is based on the theory of wettability alteration and is hence strongly dependent on the wettability of the reservoir. In this article, combination of different wettabilities has been simulated and it is observed that the highest recoveries were from the cases were the reservoir initially was water-wet, and the lowest recoveries was from the cases were the reservoir initially was considered oil-wet. However for the cases where the reservoir initially was oil-wet, the effect of low-salinity waterflooding was the largest.Keywords: low salt water injection, wettability alteration, modelling, relative permeability
Procedia PDF Downloads 50019777 The Internet and Transformation of Epistemic Communities: An Exploratory Review of Communication Research between 2002 and 2022
Authors: Dayei Oh, Feeza Vasudeva, Narges Azizi Fard
Abstract:
Drawing on the Foucauldian conception of episteme, epistemic communities refer to a community in which members share common frames of epistemic reference, delineating the proper construction of social realities for their members. One of the most cited definitions of epistemic communities is a group of professionals possessing acknowledged expertise and proficiency in a specific field, influencing policymaking and governance. More recently, the advancement of the Internet has changed the way society produces, disseminates, and consumes knowledge. Against this backdrop, this literature review explores the ways in which online epistemic communities are studied in communication scholarship between 2002 and 2022. Examining 92 peer-reviewed journal articles from the Web of Science database, three research objectives have been addressed: (1) geographical contexts, platforms, and methods that are studied in communication research, (2) different types of epistemic communities, and (3) prevailing themes and concepts that are related to the research of the chosen epistemic communities. This research demonstrates increasing scholarly attention towards the lay public as prominent online epistemic communities along with more conventional epistemic communities such as academia and journalists, hinting at how the Internet provides epistemic capacities for negotiating the boundaries of epistemic authority and competencies between experts and lay people. Through qualitative reading of these papers, the findings show that communication research tends to approach epistemic communities of the political left and right asymmetrically: The right-wing epistemic communities are studied in connection with mis/disinformation, conspiracy theories, populist rejection of authoritative epistemologies, whereas the left-wing communities are studied as emancipatory epistemic struggles and activism against Western, colonial, white, and male-centric knowledge systems. This points to a grave need for communication and multidisciplinary scholarship to investigate such uncharted characters of right- and left-wing epistemic communities.Keywords: communication research, internet, knowledge, online epistemic communities
Procedia PDF Downloads 6119776 High-Frequency Full-Bridge Isolated DC-DC Converter for Fuel Cell Power Generation Systems
Authors: Nabil A. Ahmed
Abstract:
DC-DC converters are necessary to interface low-voltage fuel cell power generation systems to a higher voltage DC bus system. A system and method for generating a regulated output power from fuel cell power generation systems is proposed in this paper, this includes a soft-switching isolated DC-DC converter to reduce the idling and circulating currents. The system incorporates a high-frequency center tap transformer link DC-DC converter using secondary-side soft switching control. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS) in the primary side of the high-frequency transformer. Therefore, no extra resonant components are required for ZVS. The inherent soft-switching capability allows high power density, efficient power conversion, and compact packaging. A prototype rated at 6.5 kW is proposed and simulated. Simulation results confirmed a wide range of soft-switching operation and consequently high conversion efficiency will be achieved.Keywords: secondary-side, phase-shift, high-frequency transformer, zero voltage, zero current, soft switching operation, switching losses
Procedia PDF Downloads 31419775 Formation Flying Design Applied for an Aurora Borealis Monitoring Mission
Authors: Thais Cardoso Franco, Caio Nahuel Sousa Fagonde, Willer Gomes dos Santos
Abstract:
Aurora Borealis is an optical phenomenon composed of luminous events observed in the night skies in the polar regions resulting from disturbances in the magnetosphere due to the impact of solar wind particles with the Earth's upper atmosphere, channeled by the Earth's magnetic field, which causes atmospheric molecules to become excited and emit electromagnetic spectrum, leading to the display of lights in the sky. However, there are still different implications of this phenomenon under study: high intensity auroras are often accompanied by geomagnetic storms that cause blackouts on Earth and impair the transmission of signals from the Global Navigation Satellite Systems (GNSS). Auroras are also known to occur on other planets and exoplanets, so the activity is an indication of active space weather conditions that can aid in learning about the planetary environment. In order to improve understanding of the phenomenon, this research aims to design a satellite formation flying solution for collecting and transmitting data for monitoring aurora borealis in northern hemisphere, an approach that allows studying the event with multipoint data collection in a reduced time interval, in order to allow analysis from the beginning of the phenomenon until its decline. To this end, the ideal number of satellites, the spacing between them, as well as the ideal topology to be used will be analyzed. From an orbital study, approaches from different altitudes, eccentricities and inclinations will also be considered. Given that at large relative distances between satellites in formation, controllers tend to fail, a study on the efficiency of nonlinear adaptive control methods from the point of view of position maintenance and propellant consumption will be carried out. The main orbital perturbations considered in the simulation: non-homogeneity terrestrial, atmospheric drag, gravitational action of the Sun and the Moon, accelerations due to solar radiation pressure and relativistic effects.Keywords: formation flying, nonlinear adaptive control method, aurora borealis, adaptive SDRE method
Procedia PDF Downloads 4519774 City-Wide Simulation on the Effects of Optimal Appliance Scheduling in a Time-of-Use Residential Environment
Authors: Rudolph Carl Barrientos, Juwaln Diego Descallar, Rainer James Palmiano
Abstract:
Household Appliance Scheduling Systems (HASS) coupled with a Time-of-Use (TOU) pricing scheme, a form of Demand Side Management (DSM), is not widely utilized in the Philippines’ residential electricity sector. This paper’s goal is to encourage distribution utilities (DUs) to adopt HASS and TOU by analyzing the effect of household schedulers on the electricity price and load profile in a residential environment. To establish this, a city based on an implemented survey is generated using Monte Carlo Analysis (MCA). Then, a Binary Particle Swarm Optimization (BPSO) algorithm-based HASS is developed considering user satisfaction, electricity budget, appliance prioritization, energy storage systems, solar power, and electric vehicles. The simulations were assessed under varying levels of user compliance. Results showed that the average electricity cost, peak demand, and peak-to-average ratio (PAR) of the city load profile were all reduced. Therefore, the deployment of the HASS and TOU pricing scheme is beneficial for both stakeholders.Keywords: appliance scheduling, DSM, TOU, BPSO, city-wide simulation, electric vehicle, appliance prioritization, energy storage system, solar power
Procedia PDF Downloads 10419773 Coarse Grid Computational Fluid Dynamics Fire Simulations
Authors: Wolfram Jahn, Jose Manuel Munita
Abstract:
While computational fluid dynamics (CFD) simulations of fire scenarios are commonly used in the design of buildings, less attention has been given to the use of CFD simulations as an operational tool for the fire services. The reason of this lack of attention lies mainly in the fact that CFD simulations typically take large periods of time to complete, and their results would thus not be available in time to be of use during an emergency. Firefighters often face uncertain conditions when entering a building to attack a fire. They would greatly benefit from a technology based on predictive fire simulations, able to assist their decision-making process. The principal constraint to faster CFD simulations is the fine grid necessary to solve accurately the physical processes that govern a fire. This paper explores the possibility of overcoming this constraint and using coarse grid CFD simulations for fire scenarios, and proposes a methodology to use the simulation results in a meaningful way that can be used by the fire fighters during an emergency. Data from real scale compartment fire tests were used to compare CFD fire models with different grid arrangements, and empirical correlations were obtained to interpolate data points into the grids. The results show that the strongly predominant effect of the heat release rate of the fire on the fluid dynamics allows for the use of coarse grids with relatively low overall impact of simulation results. Simulations with an acceptable level of accuracy could be run in real time, thus making them useful as a forecasting tool for emergency response purposes.Keywords: CFD, fire simulations, emergency response, forecast
Procedia PDF Downloads 32319772 Oil Extraction from Sunflower Seed Using Green Solvent 2-Methyltetrahydrofuran and Isoamyl Alcohol
Authors: Sergio S. De Jesus, Aline Santana, Rubens Maciel Filho
Abstract:
The objective of this study was to choose and determine a green solvent system with similar extraction efficiencies as the traditional Bligh and Dyer method. Sunflower seed oil was extracted using Bligh and Dyer method with 2-methyltetrahydrofuran and isoamyl using alcohol ratios of 1:1; 2:1; 3:1; 1:2; 3:1. At the same time comparative experiments was performed with chloroform and methanol ratios of 1:1; 2:1; 3:1; 1:2; 3:1. Comparison study was done using 5 replicates (n=5). Statistical analysis was performed using Microsoft Office Excel (Microsoft, USA) to determine means and Tukey’s Honestly Significant Difference test for comparison between treatments (α = 0.05). The results showed that using classic method with methanol and chloroform presented the extraction oil yield with the values of 31-44% (w/w) and values of 36-45% (w/w) using green solvents for extractions. Among the two extraction methods, 2 methyltetrahydrofuran and isoamyl alcohol ratio 2:1 provided the best results (45% w/w), while the classic method using chloroform and methanol with ratio of 3:1 presented a extraction oil yield of 44% (w/w). It was concluded that the proposed extraction method using 2-methyltetrahydrofuran and isoamyl alcohol in this work allowed the same efficiency level as chloroform and methanol.Keywords: extraction, green solvent, lipids, sugarcane
Procedia PDF Downloads 388