Search results for: network coding signature
2611 Orthogonal Basis Extreme Learning Algorithm and Function Approximation
Abstract:
A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.Keywords: neural network, orthogonal basis extreme learning, function approximation
Procedia PDF Downloads 5392610 Protection and Immune Responses of DNA Vaccines Targeting Virulence Factors of Streptococcus iniae in Nile Tilapia (Oreochromis niloticus)
Authors: Pattanapon Kayansamruaj, Ha Thanh Dong, Nopadon Pirarat, Channarong Rodkhum
Abstract:
Streptococcus iniae (SI) is a devastating pathogenic bacteria causing heavy mortality in farmed fish. The application of commercialized bacterin vaccine has been reported failures as the outbreaks of the new serotype of SI were emerged in farms after vaccination and subsequently caused severe losses. In the present study, we attempted to develop effective DNA vaccines against SI infection using Nile tilapia (Oreochromis niloticus) as an animal model. Two monovalent DNA vaccines were constructed by the insertion of coding sequences of cell wall-associated virulence factors-encoding genes, comprised of eno (α-enolase) and mtsB (hydrophobic membrane protein), into cytomegalovirus expression vector (pCI-neo). In the animal trial, 30-g Nile tilapia were injected intramuscularly with 15 µg of each vaccine (mock vaccine group was injected by naked pCI-neo) and maintained for 35 days prior challenging with pathogenic SI at the dosage of 107 CFU/fish. At 13 days post-challenge, the relative percent survival of pEno, pMtsB and mock vaccine were 57%, 45% and 27%, respectively. The expression levels of immune responses-associated genes, namely, IL1β, TNF-α, TGF-β, COX2, IL-6, IL-12 and IL-13, were investigated from the spleen of experimental animal at 7 days post-vaccination (PV) and 7 days post-challenge (PC) using quantitative RT-PCR technique. Generally, at 7 days PV, the pEno vaccinated group exhibited highest level of up-regulation (1.7 to 2.9 folds) of every gene, but TGF-β, comparing to pMtsB and mock vaccine groups. However, at 7 days PC, pEno group showed significant up-regulation (1.4 to 8.5 folds) of immune-related genes as similar as mock vaccine group, while pMtsB group had lowest level of up-regulation (0.7 to 3.3 folds). Summarily, this study indicated that the pEno and pMtsB vaccines could elicit the immune responses of the fish and the magnitude of gene expression at 7 days PV was also consistent with the protection level conferred by the vaccine.Keywords: gene expression, DNA vaccine, Nile tilapia, Streptococcus iniae
Procedia PDF Downloads 3322609 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 1202608 A Realist Review of Interventions Targeting Maternal Health in Low- and Middle-income Countries
Authors: Julie Mariam Abraham, G. J. Melendez-Torres
Abstract:
Background. Maternal mortality is disproportionately higher in low- and middle- income countries (LMICs) compared to other parts of the world. At the current pace of progress, the Sustainable Development Goals for maternal mortality rate will not be achieved by 2030. A variety of factors influence the increased risk of maternal complications in LMICs. These are exacerbated by socio-economic and political factors, including poverty, illiteracy, and gender inequality. This paper aims to use realist synthesis to identify the contexts, mechanisms, and outcomes (CMOs) of maternal health interventions conducted in LMICs to inform evidence-based practice for future maternal health interventions. Methods. In May 2022, we searched four electronic databases for systematic reviews of maternal health interventions in LMICs published in the last five years. We used open and axial coding of CMOs to develop an explanatory framework for intervention effectiveness. Results. After eligibility screening and full-text analysis, 44 papers were included. The intervention strategies and measured outcomes varied within reviews. Healthcare system level contextual factors were the most frequently reported, and infrastructural capacity was the most reported context. The most prevalent mechanism was increased knowledge and awareness. Discussion. Health system infrastructure must be considered in interventions to ensure effective implementation and sustainability. Healthcare-seeking behaviours are embedded within social and cultural norms, environmental conditions, family influences, and provider attitudes. Therefore, effective engagement with communities and families is important to create new norms surrounding pregnancy and delivery. Future research should explore community mobilisation and involvement to enable tailored interventions with optimal contextual fit.Keywords: maternal mortality, service delivery and organisation, realist synthesis, sustainable development goals, overview of reviews
Procedia PDF Downloads 822607 Determination of the Walkability Comfort for Urban Green Space Using Geographical Information System
Authors: Muge Unal, Cengiz Uslu, Mehmet Faruk Altunkasa
Abstract:
Walkability relates to the ability of the places to connect people with varied destinations within a reasonable amount of time and effort, and to offer visual interest in journeys throughout the network. So, the good quality of the physical environment and arrangement of walkway and sidewalk appear to be more crucial in influencing the pedestrian route choice. Also, proximity, connectivity, and accessibility are significant factor for walkability in terms of an equal opportunity for using public spaces. As a result, there are two important points for walkability. Firstly, the place should have a well-planned street network for accessible and secondly facilitate the pedestrian need for comfort. In this respect, this study aims to examine the both physical and bioclimatic comfort levels of the current condition of pedestrian route with reference to design criteria of a street to access the urban green spaces. These aspects have been identified as the main indicators for walkable streets such as continuity, materials, slope, bioclimatic condition, walkway width, greenery, and surface. Additionally, the aim was to identify the factors that need to be considered in future guidelines and policies for planning and design in urban spaces especially streets. Adana city was chosen as a study area. Adana is a province of Turkey located in south-central Anatolia. This study workflow can be summarized in four stages: (1) environmental and physical data were collected by referred to literature and used in a weighted criteria method to determine the importance level of these data , (2) environmental characteristics of pedestrian routes gained from survey studies are evaluated to hierarchies these criteria of the collected information, (3) and then each pedestrian routes will have a score that provides comfortable access to the park, (4) finally, the comfortable routes to park will be mapped using GIS. It is hoped that this study will provide an insight into future development planning and design to create a friendly and more comfort street environment for the users.Keywords: comfort level, geographical information system (GIS), walkability, weighted criteria method
Procedia PDF Downloads 3152606 Intelligent Cooperative Integrated System for Road Safety and Road Infrastructure Maintenance
Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras
Abstract:
This paper presents the architecture of the “Intelligent cooperative integrated system for road safety and road infrastructure maintenance towards 2020” (ODOS2020) advanced infrastructure, which implements a number of cooperative ITS applications based on Internet of Things and Infrastructure-to-Vehicle (V2I) technologies with the purpose to enhance the active road safety level of vehicles through the provision of a fully automated V2I environment. The primary objective of the ODOS2020 project is to contribute to increased road safety but also to the optimization of time for maintenance of road infrastructure. The integrated technological solution presented in this paper addresses all types of vehicles and requires minimum vehicle equipment. Thus, the ODOS2020 comprises a low-cost solution, which is one of its main benefits. The system architecture includes an integrated notification system to transmit personalized information on road, traffic, and environmental conditions, in order for the drivers to receive real-time and reliable alerts concerning upcoming critical situations. The latter include potential dangers on the road, such as obstacles or road works ahead, extreme environmental conditions, etc., but also informative messages, such as information on upcoming tolls and their charging policies. At the core of the system architecture lies an integrated sensorial network embedded in special road infrastructures (strips) that constantly collect and transmit wirelessly information about passing vehicles’ identification, type, speed, moving direction and other traffic information in combination with environmental conditions and road wear monitoring and predictive maintenance data. Data collected from sensors is transmitted by roadside infrastructure, which supports a variety of communication technologies such as ITS-G5 (IEEE-802.11p) wireless network and Internet connectivity through cellular networks (3G, LTE). All information could be forwarded to both vehicles and Traffic Management Centers (TMC) operators, either directly through the ITS-G5 network, or to smart devices with Internet connectivity, through cloud-based services. Therefore, through its functionality, the system could send personalized notifications/information/warnings and recommendations for upcoming events to both road users and TMC operators. In the course of the ODOS2020 project pilot operation has been conducted to allow drivers of both C-ITS equipped and non-equipped vehicles to experience the provided added value services. For non-equipped vehicles, the provided information is transmitted to a smartphone application. Finally, the ODOS2020 system and infrastructure is appropriate for installation on both urban, rural, and highway environments. The paper presents the various parts of the system architecture and concludes by outlining the various challenges that had to be overcome during its design, development, and deployment in a real operational environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).Keywords: infrastructure to vehicle, intelligent transportation systems, internet of things, road safety
Procedia PDF Downloads 1272605 Encoding the Design of the Memorial Park and the Family Network as the Icon of 9/11 in Amy Waldman's the Submission
Authors: Masami Usui
Abstract:
After 9/11, the American literary scene was confronted with new perspectives that enabled both writers and readers to recognize the hidden aspects of their political, economic, legal, social, and cultural phenomena. There appeared an argument over new and challenging multicultural aspects after 9/11 and this argument is presented by a tension of space related to 9/11. In Amy Waldman’s the Submission (2011), designing both the memorial park and the family network has a significant meaning in establishing the progress of understanding from multiple perspectives. The most intriguing and controversial topic of racism is reflected in the Submission, where one young architect’s blind entry to the competition for the memorial of Ground Zero is nominated, yet he is confronted with strong objections and hostility as soon as he turns out to be a Muslim named Mohammad Khan. This ‘Khan’ issue, immediately enlarged into a social controversial issue on American soil, causes repeated acts of hostility to Muslim women by ignorant citizens all over America. His idea of the park is to design a new concept of tracing the cultural background of the open space. Against his will, his name is identified as the ‘ingredient’ of the networking of the resistant community with his supporters: on the other hand, the post 9/11 hysteria and victimization is presented in such family associations as the Angry Family Members and Grieving Family Members. These rapidly expanding networks, whether political or not, constructed by the internet, embody the contemporary societal connection and representation. The contemporary quest for the significance of human relationships is recognized as a quest for global peace. Designing both the memorial park and the communication networks strengthens a process of facing the shared conflicts and healing the survivors’ trauma. The tension between the idea and networking of the Garden for the memorial site and the collapse of Ground Zero signifies the double mission of the site: to establish the space to ease the wounded and to remember the catastrophe. Reading the design of these icons of 9/11 in the Submission means that decoding the myth of globalization and its representations in this century.Keywords: American literature, cultural studies, globalization, literature of catastrophe
Procedia PDF Downloads 5382604 Investigation of Delivery of Triple Play Service in GE-PON Fiber to the Home Network
Authors: Anurag Sharma, Dinesh Kumar, Rahul Malhotra, Manoj Kumar
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 7392603 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 982602 Cognitive Relaying in Interference Limited Spectrum Sharing Environment: Outage Probability and Outage Capacity
Authors: Md Fazlul Kader, Soo Young Shin
Abstract:
In this paper, we consider a cognitive relay network (CRN) in which the primary receiver (PR) is protected by peak transmit power $\bar{P}_{ST}$ and/or peak interference power Q constraints. In addition, the interference effect from the primary transmitter (PT) is considered to show its impact on the performance of the CRN. We investigate the outage probability (OP) and outage capacity (OC) of the CRN by deriving closed-form expressions over Rayleigh fading channel. Results show that both the OP and OC improve by increasing the cooperative relay nodes as well as when the PT is far away from the SR.Keywords: cognitive relay, outage, interference limited, decode-and-forward (DF)
Procedia PDF Downloads 5132601 Real-Time Demonstration of Visible Light Communication Based on Frequency-Shift Keying Employing a Smartphone as the Receiver
Authors: Fumin Wang, Jiaqi Yin, Lajun Wang, Nan Chi
Abstract:
In this article, we demonstrate a visible light communication (VLC) system over 8 meters free space transmission based on a commercial LED and a receiver in connection with an audio interface of a smart phone. The signal is in FSK modulation format. The successful experimental demonstration validates the feasibility of the proposed system in future wireless communication network.Keywords: visible light communication, smartphone communication, frequency shift keying, wireless communication
Procedia PDF Downloads 3992600 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence
Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács
Abstract:
The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility
Procedia PDF Downloads 1232599 MicroRNA in Bovine Corpus Luteum during Early Pregnancy
Authors: Rreze Gecaj, Corina Schanzenbach, Benedikt Kirchner, Michael Pfaffl, Bajram Berisha
Abstract:
The maintenance of corpus lutem (CL) during early pregnancy in cattle is a critical and multifarious process. A luteotrophic mechanism originating from the embryo is widely accepted as the triggering signal for the CL maintenance. In the cattle, it is the interferon-tau (IFNT) secretion form conceptus that prevents CL regression and ensures progesterone production for the establishment of pregnancy. In addition to endocrine and paracrine signals, microRNA (miRNA) can also support CL sustainability during early pregnancy. MiRNA are small non-coding nucleic acids that regulate gene expression post-transcriptionally and are shown to be involved in the modulation of CL function. However, the examination of miRNAs in corpus luteum function at the early pregnancy still remains largely uncovered. This study aims at profiling the expression of miRNA in CL during the early pregnancy in cattle by comparing it with the CL form late cycle and with the regressed CL. Corpora lutea were assigned in two different groups during the cycle (C13 group, late CL: days 13-18 and C18, regressed CL group: day >18) and during the early pregnancy (group P: 1-2 month). The estrous cycle was determined by macroscopic examination and to age the fetus crown-rump length measurement was applied. A total of 9 corpora lutea from individual animals were included in the study, three corpora lutea for each group. MiRNAs population was profiled using small RNA next-generation sequencing and biologically significant miRNAs were evaluated for their differential expression using the DESeq2-methodology. We show that 6 differentially expressed miRNAs (bta-mir-2890, -2332, -2441-3p, -148b, -1248 and -29c) are common to both comparisons, P vs C13 and P vs C18. While for each stage individually we have identified unique miRNAs differentially expressed only for the given comparison. bta-miR-23a and -769 were unique miRNAs differentially expressed in P vs C13, whereas forty-four unique miRNAs were identified as differentially expressed in P vs C18. These data confirm that miRNAs are highly abundant in luteal tissue during early pregnancy and potentially regulate the CL maintenance at this stage of fetus development.Keywords: bovine, corpus luteum, microRNA, pregnancy, RNA-Seq
Procedia PDF Downloads 2612598 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces
Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur
Abstract:
In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.Keywords: aerodynamic, bi-dimensional, vegetation, synergistic
Procedia PDF Downloads 2722597 Effectiveness of Metacognitive Skills in Comprehension Instruction for Elementary Students
Authors: Mahdi Taheri Asl
Abstract:
Using a variety of strategies to read text plays an important role to make students strategic independent, strategic, and metacognitive readers. Given the importance of comprehension instruction (CI), it is essential to support the fostering comprehension skills at elementary age students, particularly those who struggle with or dislike reading. One of the main components of CI is activating metacognitive skills, which double function of elementary students. Thus, it’s important to evaluate the implemented comprehension interventions to inform reading specialist and teachers. There has been limited review research in the area of CI, so the conduction review research is required. The purpose of this review is to examine the effectiveness of metacognitive reading strategies in a regular classroom environment with elementary aged students. We develop five inclusion criteria to identify researches relevant to our research. First, the article had to be published in a peer-reviewed journal from 2000 to 2023. second, the study had to include participants in elementary school it could include of special education students. Third, the intervention needed to be involved with metacognitive strategies. Fourth, the articles had to use experimental or quasi experimental design. The last one needed to include measurement of reading performance in pre and post intervention. We used computer data-based site like Eric, PsychoINFO, and google scholar to search for articles that met these criteria. we used the following search terms: comprehension instruction, meta cognitive strategies, and elementary school. The next step was to do an ancestral search that get in reviewing the relevant studies cited in the articles that were found in the database search. We identified 30studies in the initial searches. After coding agreement, we synthesized 13 with respect to the participant, setting, research design, dependent variables, measures, the intervention used by instructors, and general outcomes. The finding show metacognitive strategies were effective to empower student’s comprehension skills. It also showed that linguistic instruction will be effective if got mixed with metacognitive strategies. The research provides a useful view into reading intervention. Despite the positive effect of metacognitive instruction on students’ comprehension skills, it is not widely used in classroom.Keywords: comprehension instruction, metacogntion, metacognitive skills, reading intervention
Procedia PDF Downloads 752596 Development of Monitoring Blood Bank Center Based PIC Microcontroller Using CAN Communication
Authors: Kaiwan S. Ismael, Ergun Ercelebi, Majeed Nader
Abstract:
This paper describes the design and implementation of a hardware setup for online monitoring of 24 refrigerators inside blood bank center using the microcontroller and CAN bus for communications between each node. Due to the security of locations in the blood bank hall and difficulty of monitoring of each refrigerator separately, this work proposes a solution to monitor all the blood bank refrigerators in one location. CAN-bus system is used because it has many applications and advantages, especially for this system due to easy in use, low cost, providing a reduction in wiring, fast to repair and easily expanding the project without a problem.Keywords: control area network (CAN), monitoring blood bank center, PIC microcontroller, MPLAB IDE
Procedia PDF Downloads 4872595 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach
Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi
Abstract:
Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems
Procedia PDF Downloads 2942594 Study on the Impact of Default Converter on the Quality of Energy Produced by DFIG Based Wind Turbine
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB/Simulink software illustrate the quality of the power generated at the default.Keywords: doubly fed induction generator (DFIG), wind energy, PWM inverter, modeling
Procedia PDF Downloads 3202593 Seamless Mobility in Heterogeneous Mobile Networks
Authors: Mohab Magdy Mostafa Mohamed
Abstract:
The objective of this paper is to introduce a vertical handover (VHO) algorithm between wireless LANs (WLANs) and LTE mobile networks. The proposed algorithm is based on the fuzzy control theory and takes into consideration power level, subscriber velocity, and target cell load instead of only power level in traditional algorithms. Simulation results show that network performance in terms of number of handovers and handover occurrence distance is improved.Keywords: vertical handover, fuzzy control theory, power level, speed, target cell load
Procedia PDF Downloads 3572592 Winning Consumers and Influencing Them Using Social Media: A Cross Generational Impact Case Study
Authors: J. Garfield, B. O'Hare, V. Bell
Abstract:
The use of social media is continuing to grow and is now widely used for product and service advertising. This research investigated the social media usage across all age ranges in the United Kingdom to determine the impact on purchasing habits. A questionnaire was distributed to people of different ages and with different experiences of social media usage. The results showed that Facebook continues to be the most popular social media network. Respondents in the younger age group were more likely to be influenced by brand marketing and advertising, but the study concluded that celebrity endorsements had little or no influence.Keywords: social media advertising, social networking sites, electronic word of mouth, celebrity endorsements
Procedia PDF Downloads 1362591 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 742590 Aromatic Medicinal Plant Classification Using Deep Learning
Authors: Tsega Asresa Mengistu, Getahun Tigistu
Abstract:
Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network
Procedia PDF Downloads 4452589 The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks
Authors: Ali Isapour, Ramin Nateghi
Abstract:
— Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D.Keywords: Markov parameters, realization, activation function, flexible neural network
Procedia PDF Downloads 1972588 Identification of Rare Mutations in Genes Involved in Monogenic Forms of Obesity and Diabetes in Obese Guadeloupean Children through Next-Generation Sequencing
Authors: Lydia Foucan, Laurent Larifla, Emmanuelle Durand, Christine Rambhojan, Veronique Dhennin, Jean-Marc Lacorte, Philippe Froguel, Amelie Bonnefond
Abstract:
In the population of Guadeloupe Island (472,124 inhabitants and 80% of subjects of African descent), overweight and obesity were estimated at 23% and 9% respectively among children. High prevalence of diabetes has been reported (~10%) in the adult population. Nevertheless, no study has investigated the contribution of gene mutations to childhood obesity in this population. We aimed to investigate rare genetic mutations in genes involved in monogenic obesity or diabetes in obese Afro-Caribbean children from Guadeloupe Island using next-generation sequencing. The present investigation included unrelated obese children, from a previous study on overweight conducted in Guadeloupe Island in 2013. We sequenced coding regions of 59 genes involved in monogenic obesity or diabetes. A total of 25 obese schoolchildren (with Z-score of body mass index [BMI]: 2.0 to 2.8) were screened for rare mutations (non-synonymous, splice-site, or insertion/deletion) in 59 genes. Mean age of the study population was 12.4 ± 1.1 years. Seventeen children (68%) had insulin-resistance (HOMA-IR > 3.16). A family history of obesity (mother or father) was observed in eight children and three of the accompanying parent presented with type 2 diabetes. None of the children had gonadotrophic abnormality or mental retardation. We detected five rare heterozygous mutations, in four genes involved in monogenic obesity, in five different obese children: MC4R p.Ile301Thr and SIM1 p.Val326Thrfs*43 mutations which were pathogenic; SIM1 p.Ser343Pro and SH2B1 p.Pro90His mutations which were likely pathogenic; and NTRK2 p.Leu140Phe that was of uncertain significance. In parallel, we identified seven carriers of mutation in ABCC8 or KCNJ11 (involved in monogenic diabetes), which were of uncertain significance (KCNJ11 p.Val13Met, KCNJ11 p.Val151Met, ABCC8 p.Lys1521Asn and ABCC8 p.Ala625Val). Rare pathogenic or likely pathogenic mutations, linked to severe obesity were detected in more than 15% of this Afro-Caribbean population at high risk of obesity and type 2 diabetes.Keywords: childhood obesity, MC4R, monogenic obesity, SIM1
Procedia PDF Downloads 1962587 SOTM: A New Cooperation Based Trust Management System for VANET
Authors: Amel Ltifi, Ahmed Zouinkhi, Mohamed Salim Bouhlel
Abstract:
Security and trust management in Vehicular Ad-hoc NETworks (VANET) is a crucial research domain which is the scope of many researches and domains. Although, the majority of the proposed trust management systems for VANET are based on specific road infrastructure, which may not be present in all the roads. Therefore, road security should be managed by vehicles themselves. In this paper, we propose a new Self Organized Trust Management system (SOTM). This system has the responsibility to cut with the spread of false warnings in the network through four principal components: cooperation, trust management, communication and security.Keywords: ative vehicle, cooperation, trust management, VANET
Procedia PDF Downloads 4392586 Identification of New Familial Breast Cancer Susceptibility Genes: Are We There Yet?
Authors: Ian Campbell, Gillian Mitchell, Paul James, Na Li, Ella Thompson
Abstract:
The genetic cause of the majority of multiple-case breast cancer families remains unresolved. Next generation sequencing has emerged as an efficient strategy for identifying predisposing mutations in individuals with inherited cancer. We are conducting whole exome sequence analysis of germ line DNA from multiple affected relatives from breast cancer families, with the aim of identifying rare protein truncating and non-synonymous variants that are likely to include novel cancer predisposing mutations. Data from more than 200 exomes show that on average each individual carries 30-50 protein truncating mutations and 300-400 rare non-synonymous variants. Heterogeneity among our exome data strongly suggest that numerous moderate penetrance genes remain to be discovered, with each gene individually accounting for only a small fraction of families (~0.5%). This scenario marks validation of candidate breast cancer predisposing genes in large case-control studies as the rate-limiting step in resolving the missing heritability of breast cancer. The aim of this study is to screen genes that are recurrently mutated among our exome data in a larger cohort of cases and controls to assess the prevalence of inactivating mutations that may be associated with breast cancer risk. We are using the Agilent HaloPlex Target Enrichment System to screen the coding regions of 168 genes in 1,000 BRCA1/2 mutation-negative familial breast cancer cases and 1,000 cancer-naive controls. To date, our interim analysis has identified 21 genes which carry an excess of truncating mutations in multiple breast cancer families versus controls. Established breast cancer susceptibility gene PALB2 is the most frequently mutated gene (13/998 cases versus 0/1009 controls), but other interesting candidates include NPSR1, GSN, POLD2, and TOX3. These and other genes are being validated in a second cohort of 1,000 cases and controls. Our experience demonstrates that beyond PALB2, the prevalence of mutations in the remaining breast cancer predisposition genes is likely to be very low making definitive validation exceptionally challenging.Keywords: predisposition, familial, exome sequencing, breast cancer
Procedia PDF Downloads 4972585 The Impact of the Media in the Implementation of Qatar’s Foreign Policy on the Public Opinion of the People of the Middle East (2011-2023)
Authors: Negar Vkilbashi, Hassan Kabiri
Abstract:
Modern diplomacy, in its general form, refers to the people and not the governments, and diplomacy tactics are more addressed to the people than to the governments. Media diplomacy and cyber diplomacy are also one of the sub-branches of public diplomacy and, in fact, the role of media in the process of influencing public opinion and directing foreign policy. Mass media, including written, radio and television, theater, satellite, internet, and news agencies, transmit information and demands. What the Qatari government tried to implement in the countries of the region during the Arab Spring and after was through its important media, Al Jazeera. The embargo on Qatar began in 2017, when Saudi Arabia, the United Arab Emirates, Bahrain, and Egypt imposed a land, sea, and air blockade against the country. The media tool constitutes the cornerstone of soft power in the field of foreign policy, which Qatari leaders have consistently resorted to over the past two decades. Undoubtedly, the role it played in covering the events of the Arab Spring has created geopolitical tensions. The United Arab Emirates and other neighboring countries sometimes criticize Al Jazeera for providing a platform for the Muslim Brotherhood, Hamas, and other Islamists to promote their ideology. In 2011, at the same time as the Arab Spring, Al Jazeera reached the peak of its popularity. Al Jazeera's live coverage of protests in Tunisia, Egypt, Yemen, Libya, and Syria helped create a unified narrative of the Arab Spring, with audiences tuning in every Friday to watch simultaneous protests across the Middle East. Al Jazeera operates in three groups: First, it is a powerful base in the hands of the government so that it can direct and influence Arab public opinion. Therefore, this network has been able to benefit from the unlimited financial support of the Qatar government to promote its desired policies and culture. Second, it has provided an attractive platform for politicians and scientific and intellectual elites, thus attracting their support and defense from the government and its rulers. Third, during the last years of Prince Hamad's reign, the Al Jazeera network formed a deterrent weapon to counter the media and political struggle campaigns. The importance of the research is that this network covers a wide range of people in the Middle East and, therefore, has a high influence on the decision-making of countries. On the other hand, Al Jazeera is influential as a tool of public diplomacy and soft power in Qatar's foreign policy, and by studying it, the results of its effectiveness in the past years can be examined. Using a qualitative method, this research analyzes the impact of the media on the implementation of Qatar's foreign policy on the public opinion of the people of the Middle East. Data collection has been done by the secondary method, that is, reading related books, magazine articles, newspaper reports and articles, and analytical reports of think tanks. The most important findings of the research are that Al Jazeera plays an important role in Qatar's foreign policy in Qatar's public diplomacy. So that, in 2011, 2017 and 2023, it played an important role in Qatar's foreign policy in various crises. Also, the people of Arab countries use Al-Jazeera as their first reference.Keywords: Al Jazeera, Qatar, media, diplomacy
Procedia PDF Downloads 822584 In Vivo Investigation of microRNA Expression and Function at the Mammalian Synapse by AGO-APP
Authors: Surbhi Surbhi, Andrea Erni, Gunter Meister, Harold Cremer, Christophe Beclin
Abstract:
MicroRNAs (miRNAs) are short 20-23 nucleotide long non-coding RNAs; there are 2605 miRNA in humans and 1936 miRNA in mouse in total (miRBase). The nervous system expresses the most abundant miRNA and most diverse. MiRNAs play a role in many steps during neurogenesis, like cell proliferation, differentiation, neural patterning, axon pathfinding, etc. Moreover, in vitro studies suggested a role in the regulation of local translation at the synapse, thus controlling neuronal plasticity. However, due to the specific structure of miRNA molecules, an in-vivo confirmation of the general role of miRNAs in the control of neuronal plasticity is still pending. For example, their small size and their high level of sequence homology make difficult the analysis of their cellular and sub-cellular localization in-vivo by in-situ hybridization. Moreover, it was found that only 40% of the expressed miRNA molecules in a cell are included in RNA-Induced Silencing Complexes (RISC) and, therefore, involved in inhibitory interactions while the rest is silent. Definitively, the development of new tools is needed to have a better understanding of the cellular function of miRNAs, in particular their role in neuronal plasticity. Here we describe a new technique called in-vivo AGO-APP designed to investigate miRNA expression and function in-vivo. This technique is based on the expression of a small peptide derived from the human RISC-complex protein TNRC6B, called T6B, which binds all known Argonaute (Ago) proteins with high affinity allowing the efficient immunoprecipitation of AGO-bound miRNAs. We have generated two transgenic mouse lines conditionally expressing T6B either ubiquitously in the cell or targeted at the synapse. A comparison of the repertoire of miRNAs immuno-precipitated from mature neurons of both mouse lines will provide us with a list of miRNAs showing a specific activity at the synapse. The physiological role of these miRNAs will be subsequently addressed through gain and loss of function experiments.Keywords: RNA-induced silencing complexes, TNRC6B, miRNA, argonaute, synapse, neuronal plasticity, neurogenesis
Procedia PDF Downloads 1392583 Deep Learning Based Polarimetric SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry
Procedia PDF Downloads 982582 Investigation of Wind Farm Interaction with Ethiopian Electric Power’s Grid: A Case Study at Ashegoda Wind Farm
Authors: Fikremariam Beyene, Getachew Bekele
Abstract:
Ethiopia is currently on the move with various projects to raise the amount of power generated in the country. The progress observed in recent years indicates this fact clearly and indisputably. The rural electrification program, the modernization of the power transmission system, the development of wind farm is some of the main accomplishments worth mentioning. As it is well known, currently, wind power is globally embraced as one of the most important sources of energy mainly for its environmentally friendly characteristics, and also that once it is installed, it is a source available free of charge. However, integration of wind power plant with an existing network has many challenges that need to be given serious attention. In Ethiopia, a number of wind farms are either installed or are under construction. A series of wind farm is planned to be installed in the near future. Ashegoda Wind farm (13.2°, 39.6°), which is the subject of this study, is the first large scale wind farm under construction with the capacity of 120 MW. The first phase of 120 MW (30 MW) has been completed and is expected to be connected to the grid soon. This paper is concerned with the investigation of the wind farm interaction with the national grid under transient operating condition. The main concern is the fault ride through (FRT) capability of the system when the grid voltage drops to exceedingly low values because of short circuit fault and also the active and reactive power behavior of wind turbines after the fault is cleared. On the wind turbine side, a detailed dynamic modelling of variable speed wind turbine of a 1 MW capacity running with a squirrel cage induction generator and full-scale power electronics converters is done and analyzed using simulation software DIgSILENT PowerFactory. On the Ethiopian electric power corporation side, after having collected sufficient data for the analysis, the grid network is modeled. In the model, a fault ride-through (FRT) capability of the plant is studied by applying 3-phase short circuit on the grid terminal near the wind farm. The results show that the Ashegoda wind farm can ride from voltage deep within a short time and the active and reactive power performance of the wind farm is also promising.Keywords: squirrel cage induction generator, active and reactive power, DIgSILENT PowerFactory, fault ride-through capability, 3-phase short circuit
Procedia PDF Downloads 179