Search results for: energy saving stove
5906 IAM Smart – A Sustainable Way to Reduce Plastics in Organizations
Authors: Krithika Kumaragurubaran, Mannu Thareja
Abstract:
Saving our planet Earth is the responsibility of every human being. Global warming and carbon emissions are killing our planet. We must adopt sustainable practices to give our future generations an equal opportunity to enjoy this planet Earth, our home. One of the most used unsustainable materials is plastic. Plastics are used everywhere. They are cheap, durable, strong, waterproof, non-corrosive with a long life. So longthat it makes plastic unsustainable. With this paper, we want to bring awareness on the usage of plastic in the organizations and how to reduce it by adopting sustainable practices powered by technology. We have taken a case study on the usage of photo ID cards, which are commonly used for authentication and authorization. These ID cards are used by employees or visitors to get access to the restricted areas inside the office buildings. The scale of these plastic cards can be in thousands for a bigger organization. This paper proposes smart alternatives to Identity and Access Management (IAM) which could replace the traditional method of using plastic ID cards. Further, the proposed solution is secure with multi-factor authentication (MFA), cost effective as there is no need to manage the supply chain of ID cards, provides instant IAM with self-service, and has the convenience of smart phone. Smart IAM is not only user friendly however also environment friendly.Keywords: sustainability, reduce plastic, IAM (Identity and Access Management), multi-factor authentication
Procedia PDF Downloads 1105905 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns
Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil
Abstract:
With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but finding the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling
Procedia PDF Downloads 835904 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns
Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil
Abstract:
With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions, and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling
Procedia PDF Downloads 815903 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns
Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md. Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil
Abstract:
With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser-machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling
Procedia PDF Downloads 845902 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification
Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui
Abstract:
Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.Keywords: EEG, ICA, SVM, wavelet
Procedia PDF Downloads 3845901 Serviceability of Fabric-Formed Concrete Structures
Authors: Yadgar Tayfur, Antony Darby, Tim Ibell, Mark Evernden, John Orr
Abstract:
Fabric form-work is a technique to cast concrete structures with a great advantage of saving concrete material of up to 40%. This technique is particularly associated with the optimized concrete structures that usually have smaller cross-section dimensions than equivalent prismatic members. However, this can make the structural system produced from these members prone to smaller serviceability safety margins. Therefore, it is very important to understand the serviceability issue of non-prismatic concrete structures. In this paper, an analytical computer-based model to optimize concrete beams and to predict load-deflection behaviour of both prismatic and non-prismatic concrete beams is presented. The model was developed based on the method of sectional analysis and integration of curvatures. Results from the analytical model were compared to load-deflection behaviour of a number of beams with different geometric and material properties from other researchers. The results of the comparison show that the analytical program can accurately predict the load-deflection response of concrete beams with medium reinforcement ratios. However, it over-estimates deflection values for lightly reinforced specimens. Finally, the analytical program acceptably predicted load-deflection behaviour of on-prismatic concrete beams.Keywords: fabric-formed concrete, continuous beams, optimisation, serviceability
Procedia PDF Downloads 3725900 Optimal Portfolio of Multi-service Provision based on Stochastic Model Predictive Control
Authors: Yifu Ding, Vijay Avinash, Malcolm McCulloch
Abstract:
As the proliferation of decentralized energy systems, the UK power system allows small-scale entities such as microgrids (MGs) to tender multiple energy services including energy arbitrage and frequency responses (FRs). However, its operation requires the balance between the uncertain renewable generations and loads in real-time and has to fulfill their provision requirements of contract services continuously during the time window agreed, otherwise it will be penalized for the under-delivered provision. To hedge against risks due to uncertainties and maximize the economic benefits, we propose a stochastic model predictive control (SMPC) framework to optimize its operation for the multi-service provision. Distinguished from previous works, we include a detailed economic-degradation model of the lithium-ion battery to quantify the costs of different service provisions, as well as accurately describe the changing dynamics of the battery. Considering a branch of load and generation scenarios and the battery aging, we formulate a risk-averse cost function using conditional value at risk (CVaR). It aims to achieve the maximum expected net revenue and avoids severe losses. The framework will be performed on a case study of a PV-battery grid-tied microgrid in the UK with real-life data. To highlight its performance, the framework will be compared with the case without the degradation model and the deterministic formulation.Keywords: model predictive control (MPC), battery degradation, frequency response, microgrids
Procedia PDF Downloads 1235899 Design and Synthesis of Fully Benzoxazine-Based Porous Organic Polymer Through Sonogashira Coupling Reaction for CO₂ Capture and Energy Storage Application
Authors: Mohsin Ejaz, Shiao-Wei Kuo
Abstract:
The growing production and exploitation of fossil fuels have placed human society in serious environmental issues. As a result, it's critical to design efficient and eco-friendly energy production and storage techniques. Porous organic polymers (POPs) are multi-dimensional porous network materials developed through the formation of covalent bonds between different organic building blocks that possess distinct geometries and topologies. POPs have tunable porosities and high surface area making them a good candidate for an effective electrode material in energy storage applications. Herein, we prepared a fully benzoxazine-based porous organic polymers (TPA–DHTP–BZ POP) through sonogashira coupling of dihydroxyterephthalaldehyde (DHPT) and triphenylamine (TPA) containing benzoxazine (BZ) monomers. Firstly, both BZ monomers (TPA-BZ-Br and DHTP-BZ-Ea) were synthesized by three steps, including Schiff base, reduction, and mannich condensation reaction. Finally, the TPA–DHTP–BZ POP was prepared through the sonogashira coupling reaction of brominated monomer (TPA-BZ-Br) and ethynyl monomer (DHTP-BZ-Ea). Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy confirmed the successful synthesis of monomers as well as POP. The porosity of TPA–DHTP–BZ POP was investigated by the N₂ absorption technique and showed a Brunauer–Emmett–Teller (BET) surface area of 196 m² g−¹, pore size 2.13 nm and pore volume of 0.54 cm³ g−¹, respectively. The TPA–DHTP–BZ POP experienced thermal ring-opening polymerization, resulting in poly (TPA–DHTP–BZ) POP having strong inter and intramolecular hydrogen bonds formed by phenolic groups and Mannich bridges, thereby enhancing CO₂ capture and supercapacitive performance. The poly(TPA–DHTP–BZ) POP demonstrated a remarkable CO₂ capture of 3.28 mmol g−¹ and a specific capacitance of 67 F g−¹ at 0.5 A g−¹. Thus, poly(TPA–DHTP–BZ) POP could potentially be used for energy storage and CO₂ capture applications.Keywords: porous organic polymer, benzoxazine, sonogashira coupling, CO₂, supercapacitor
Procedia PDF Downloads 735898 Performance and Nutritional Evaluation of Moringa Leaves Dried in a Solar-Assisted Heat Pump Dryer Integrated with Thermal Energy Storage
Authors: Aldé Belgard Tchicaya Loemba, Baraka Kichonge, Thomas Kivevele, Juma Rajabu Selemani
Abstract:
Plants used for medicinal purposes are extremely perishable, owing to moisture-enhanced enzymatic and microorganism activity, climate change, and improper handling and storage. Experiments have shown that drying the medicinal plant without affecting the active nutrients and controlling the moisture content as much as possible can extend its shelf life. Different traditional and modern drying techniques for preserving medicinal plants have been developed, with some still being improved in Sub-Saharan Africa. However, many of these methods fail to address the most common issues encountered when drying medicinal plants, such as nutrient loss, long drying times, and a limited capacity to dry during the evening or cloudy hours. Heat pump drying is an alternate drying method that results in no nutritional loss. Furthermore, combining a heat pump dryer with a solar energy storage system appears to be a viable option for all-weather drying without affecting the nutritional values of dried products. In this study, a solar-assisted heat pump dryer integrated with thermal energy storage is developed for drying moringa leaves. The study also discusses the performance analysis of the developed dryer as well as the proximate analysis of the dried moringa leaves. All experiments were conducted from 11 a.m. to 4 p.m. to assess the dryer's performance in “daytime mode”. Experiment results show that the drying time was significantly reduced, and the dryer demonstrated high performance in preserving all of the nutrients. In 5 hours of the drying process, the moisture content was reduced from 75.7 to 3.3%. The average COP value was 3.36, confirming the dryer's low energy consumption. The findings also revealed that after drying, the content of protein, carbohydrates, fats, fiber, and ash greatly increased.Keywords: heat pump dryer, efficiency, moringa leaves, proximate analysis
Procedia PDF Downloads 825897 Predictive Modelling Approaches in Food Processing and Safety
Authors: Amandeep Sharma, Digvaijay Verma, Ruplal Choudhary
Abstract:
Food processing is an activity across the globe that help in better handling of agricultural produce, including dairy, meat, and fish. The operations carried out in the food industry includes raw material quality authenticity; sorting and grading; processing into various products using thermal treatments – heating, freezing, and chilling; packaging; and storage at the appropriate temperature to maximize the shelf life of the products. All this is done to safeguard the food products and to ensure the distribution up to the consumer. The approaches to develop predictive models based on mathematical or statistical tools or empirical models’ development has been reported for various milk processing activities, including plant maintenance and wastage. Recently AI is the key factor for the fourth industrial revolution. AI plays a vital role in the food industry, not only in quality and food security but also in different areas such as manufacturing, packaging, and cleaning. A new conceptual model was developed, which shows that smaller sample size as only spectra would be required to predict the other values hence leads to saving on raw materials and chemicals otherwise used for experimentation during the research and new product development activity. It would be a futuristic approach if these tools can be further clubbed with the mobile phones through some software development for their real time application in the field for quality check and traceability of the product.Keywords: predictive modlleing, ann, ai, food
Procedia PDF Downloads 825896 Analysis of Electric Mobility in the European Union: Forecasting 2035
Authors: Domenico Carmelo Mongelli
Abstract:
The context is that of great uncertainty in the 27 countries belonging to the European Union which has adopted an epochal measure: the elimination of internal combustion engines for the traction of road vehicles starting from 2035 with complete replacement with electric vehicles. If on the one hand there is great concern at various levels for the unpreparedness for this change, on the other the Scientific Community is not preparing accurate studies on the problem, as the scientific literature deals with single aspects of the issue, moreover addressing the issue at the level of individual countries, losing sight of the global implications of the issue for the entire EU. The aim of the research is to fill these gaps: the technological, plant engineering, environmental, economic and employment aspects of the energy transition in question are addressed and connected to each other, comparing the current situation with the different scenarios that could exist in 2035 and in the following years until total disposal of the internal combustion engine vehicle fleet for the entire EU. The methodologies adopted by the research consist in the analysis of the entire life cycle of electric vehicles and batteries, through the use of specific databases, and in the dynamic simulation, using specific calculation codes, of the application of the results of this analysis to the entire EU electric vehicle fleet from 2035 onwards. Energy balance sheets will be drawn up (to evaluate the net energy saved), plant balance sheets (to determine the surplus demand for power and electrical energy required and the sizing of new plants from renewable sources to cover electricity needs), economic balance sheets (to determine the investment costs for this transition, the savings during the operation phase and the payback times of the initial investments), the environmental balances (with the different energy mix scenarios in anticipation of 2035, the reductions in CO2eq and the environmental effects are determined resulting from the increase in the production of lithium for batteries), the employment balances (it is estimated how many jobs will be lost and recovered in the reconversion of the automotive industry, related industries and in the refining, distribution and sale of petroleum products and how many will be products for technological innovation, the increase in demand for electricity, the construction and management of street electric columns). New algorithms for forecast optimization are developed, tested and validated. Compared to other published material, the research adds an overall picture of the energy transition, capturing the advantages and disadvantages of the different aspects, evaluating the entities and improvement solutions in an organic overall picture of the topic. The results achieved allow us to identify the strengths and weaknesses of the energy transition, to determine the possible solutions to mitigate these weaknesses and to simulate and then evaluate their effects, establishing the most suitable solutions to make this transition feasible.Keywords: engines, Europe, mobility, transition
Procedia PDF Downloads 625895 Incorporating Moving Authority Limits Into Driving Advice
Authors: Peng Zhou, Peter Pudney
Abstract:
Driver advice systems are used by many rail operators to help train drivers to improve timekeeping while minimising energy use. These systems typically operate independently of the safeworking system, because information on how far the train is allowed to travel -the “limit of authority"- is usually not available as real-time data that can be used when generating driving advice. This is not an issue when there is sufficient separation between trains. But on systems with low headways, driving advice could conflict with safeworking requirements. We describe a method for generating driving advice that takes into account a moving limit of authority that is communicated to the train in real-time. We illustrate the method with four simulated examples using data from the Zhengzhou Metro. The method will allow driver advice systems to be used more effectively on railways with low headways.Keywords: railway transportation, energy efficient train operation, optimal train control, safe separation
Procedia PDF Downloads 95894 The Role of Marketing Information System on Decision-Making: An Applied Study on Algeria Telecoms Mobile "MOBILIS"
Authors: Benlakhdar Mohamed Larbi, Yagoub Asma
Abstract:
Purpose: This study aims at highlighting the significance and importance of utilizing marketing information system (MKIS) on decision-making, by clarifying the need for quick and efficient decision-making due to time saving and preventing of duplication of work. Design, methodology, approach: The study shows the roles of each part of MKIS for developing marketing strategy, which present a real challenge to individuals and institutions in an era characterized by uncertainty and clarifying the importance of each part separately, depending on decision type and the nature of the situation. The empirical research method was evaluated by specialized experts, conducted by means of questionnaires. Correlation analysis was employed to test the validity of the procedure. Results: The empirical study findings confirmed positive relationships between the level of utilizing and adopting ‘decision support system and marketing intelligence’ and the success of an organizational decision-making, and provide the organization with a competitive advantage as it allows the organization to solve problems. Originality/value: The study offer better understanding of performance- increasing market share as an organizational decision making based on marketing information system.Keywords: database, marketing research, marketing intelligence, decision support system, decision-making
Procedia PDF Downloads 3305893 Cu Voids Detection of Electron Beam Inspection at the 5nm Node
Authors: Byungsik Moon
Abstract:
Electron beam inspection (EBI) has played an important role in detecting defects during the Fab process. The study focused on capturing buried Cu metal voids for 5nm technology nodes in Qualcomm Snapdragon mass production. This paper illustrates a case study where Cu metal voids can be detected without side effects with optimized EBI scanning conditions. The voids were buried in the VIA and not detected effectively by bright field inspection. EBI showed higher detectability, about 10 times that of bright fields, and a lower landing energy of EBI can avoid film damage. A comparison of detectability between EBI and bright field inspection was performed, and TEM confirmed voids that were detected by EBI. Therefore, a much higher detectability of buried Cu metal voids can be achieved without causing film damage.Keywords: electron beam inspection, EBI, landing energy, Cu metal voids, bright field inspection
Procedia PDF Downloads 755892 Effects of Bipolar Plate Coating Layer on Performance Degradation of High-Temperature Proton Exchange Membrane Fuel Cell
Authors: Chen-Yu Chen, Ping-Hsueh We, Wei-Mon Yan
Abstract:
Over the past few centuries, human requirements for energy have been met by burning fossil fuels. However, exploiting this resource has led to global warming and innumerable environmental issues. Thus, finding alternative solutions to the growing demands for energy has recently been driving the development of low-carbon and even zero-carbon energy sources. Wind power and solar energy are good options but they have the problem of unstable power output due to unpredictable weather conditions. To overcome this problem, a reliable and efficient energy storage sub-system is required in future distributed-power systems. Among all kinds of energy storage technologies, the fuel cell system with hydrogen storage is a promising option because it is suitable for large-scale and long-term energy storage. The high-temperature proton exchange membrane fuel cell (HT-PEMFC) with metallic bipolar plates is a promising fuel cell system because an HT-PEMFC can tolerate a higher CO concentration and the utilization of metallic bipolar plates can reduce the cost of the fuel cell stack. However, the operating life of metallic bipolar plates is a critical issue because of the corrosion phenomenon. As a result, in this work, we try to apply different coating layer on the metal surface and to investigate the protection performance of the coating layers. The tested bipolar plates include uncoated SS304 bipolar plates, titanium nitride (TiN) coated SS304 bipolar plates and chromium nitride (CrN) coated SS304 bipolar plates. The results show that the TiN coated SS304 bipolar plate has the lowest contact resistance and through-plane resistance and has the best cell performance and operating life among all tested bipolar plates. The long-term in-situ fuel cell tests show that the HT-PEMFC with TiN coated SS304 bipolar plates has the lowest performance decay rate. The second lowest is CrN coated SS304 bipolar plate. The uncoated SS304 bipolar plate has the worst performance decay rate. The performance decay rates with TiN coated SS304, CrN coated SS304 and uncoated SS304 bipolar plates are 5.324×10⁻³ % h⁻¹, 4.513×10⁻² % h⁻¹ and 7.870×10⁻² % h⁻¹, respectively. In addition, the EIS results indicate that the uncoated SS304 bipolar plate has the highest growth rate of ohmic resistance. However, the ohmic resistance with the TiN coated SS304 bipolar plates only increases slightly with time. The growth rate of ohmic resistances with TiN coated SS304, CrN coated SS304 and SS304 bipolar plates are 2.85×10⁻³ h⁻¹, 3.56×10⁻³ h⁻¹, and 4.33×10⁻³ h⁻¹, respectively. On the other hand, the charge transfer resistances with these three bipolar plates all increase with time, but the growth rates are all similar. In addition, the effective catalyst surface areas with all bipolar plates do not change significantly with time. Thus, it is inferred that the major reason for the performance degradation is the elevated ohmic resistance with time, which is associated with the corrosion and oxidation phenomena on the surface of the stainless steel bipolar plates.Keywords: coating layer, high-temperature proton exchange membrane fuel cell, metallic bipolar plate, performance degradation
Procedia PDF Downloads 2815891 Procedural Protocol for Dual Energy Computed Tomography (DECT) Inversion
Authors: Rezvan Ravanfar Haghighi, S. Chatterjee, Pratik Kumar, V. C. Vani, Priya Jagia, Sanjiv Sharma, Susama Rani Mandal, R. Lakshmy
Abstract:
The dual energy computed tomography (DECT) aims at noting the HU(V) values for the sample at two different voltages V=V1, V2 and thus obtain the electron densities (ρe) and effective atomic number (Zeff) of the substance. In the present paper, we aim to obtain a numerical algorithm by which (ρe, Zeff) can be obtained from the HU(100) and HU(140) data, where V=100, 140 kVp. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques.With the idea to develop the inversion algorithm for low Zeff materials, as is the case with non calcified coronary artery plaque, we prepare aqueous samples whose calculated values of (ρe, Zeff) lie in the range (2.65×1023≤ ρe≤ 3.64×1023 per cc ) and (6.80≤ Zeff ≤ 8.90). We fill the phantom with these known samples and experimentally determine HU(100) and HU(140) for the same pixels. Knowing that the HU(V) values are related to the attenuation coefficient of the system, we present an algorithm by which the (ρe, Zeff) is calibrated with respect to (HU(100), HU(140)). The calibration is done with a known set of 20 samples; its accuracy is checked with a different set of 23 known samples. We find that the calibration gives the ρe with an accuracy of ± 4% while Zeff is found within ±1% of the actual value, the confidence being 95%.In this inversion method (ρe, Zeff) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (ρe, Zeff) does not interfere with each other. It is found that this algorithm can be used for prediction of chemical characteristic (ρe, Zeff) of unknown scanned materials with 95% confidence level, by inversion of the DECT data.Keywords: chemical composition, dual-energy computed tomography, inversion algorithm
Procedia PDF Downloads 4385890 Li2o Loss of Lithium Niobate Nanocrystals during High-Energy Ball-Milling
Authors: Laura Kocsor, Laszlo Peter, Laszlo Kovacs, Zsolt Kis
Abstract:
The aim of our research is to prepare rare-earth-doped lithium niobate (LiNbO3) nanocrystals, having only a few dopant ions in the focal point of an exciting laser beam. These samples will be used to achieve individual addressing of the dopant ions by light beams in a confocal microscope setup. One method for the preparation of nanocrystalline materials is to reduce the particle size by mechanical grinding. High-energy ball-milling was used in several works to produce nano lithium niobate. Previously, it was reported that dry high-energy ball-milling of lithium niobate in a shaker mill results in the partial reduction of the material, which leads to a balanced formation of bipolarons and polarons yielding gray color together with oxygen release and Li2O segregation on the open surfaces. In the present work we focus on preparing LiNbO3 nanocrystals by high-energy ball-milling using a Fritsch Pulverisette 7 planetary mill. Every ball-milling process was carried out in zirconia vial with zirconia balls of different sizes (from 3 mm to 0.1 mm), wet grinding with water, and the grinding time being less than an hour. Gradually decreasing the ball size to 0.1 mm, an average particle size of about 10 nm could be obtained determined by dynamic light scattering and verified by scanning electron microscopy. High-energy ball-milling resulted in sample darkening evidenced by optical absorption spectroscopy measurements indicating that the material underwent partial reduction. The unwanted lithium oxide loss decreases the Li/Nb ratio in the crystal, strongly influencing the spectroscopic properties of lithium niobate. Zirconia contamination was found in ground samples proved by energy-dispersive X-ray spectroscopy measurements; however, it cannot be explained based on the hardness properties of the materials involved in the ball-milling process. It can be understood taking into account the presence of lithium hydroxide formed the segregated lithium oxide and water during the ball-milling process, through chemically induced abrasion. The quantity of the segregated Li2O was measured by coulometric titration. During the wet milling process in the planetary mill, it was found that the lithium oxide loss increases linearly in the early phase of the milling process, then a saturation of the Li2O loss can be seen. This change goes along with the disappearance of the relatively large particles until a relatively narrow size distribution is achieved in accord with the dynamic light scattering measurements. With the 3 mm ball size and 1100 rpm rotation rate, the mean particle size achieved is 100 nm, and the total Li2O loss is about 1.2 wt.% of the original LiNbO3. Further investigations have been done to minimize the Li2O segregation during the ball-milling process. Since the Li2O loss was observed to increase with the growing total surface of the particles, the influence of ball-milling parameters on its quantity has also been studied.Keywords: high-energy ball-milling, lithium niobate, mechanochemical reaction, nanocrystals
Procedia PDF Downloads 1355889 Energy Management System Based on Voltage Fluctuations Minimization for Droop-Controlled Islanded Microgrid
Authors: Zahra Majd, Mohsen Kalantar
Abstract:
Power management and voltage regulation is one of the most important issues in microgrid (MG) control and scheduling. This paper proposes a multiobjective scheduling formulation that consists of active power costs, voltage fluctuations summation, and technical constraints of MG. Furthermore, load flow and reserve constraints are considered to achieve proper voltage regulation. A modified Jacobian matrix is presented for calculating voltage variations and Mont Carlo simulation is used for generating and reducing scenarios. To convert the problem to a mixed integer linear program, a linearization procedure for nonlinear equations is presented. The proposed model is applied to a typical low-voltage MG and two different cases are investigated. The results show the effectiveness of the proposed model.Keywords: microgrid, energy management system, voltage fluctuations, modified Jacobian matrix
Procedia PDF Downloads 915888 Pragmatic Analysis of the Effectiveness of a Power Conditioning Device (DC-DC Converters) in a Simple Photovoltaics System
Authors: Asowata Osamede
Abstract:
Solar radiation provides the largest renewable energy potential on earth and photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduce dependence on fossil fuels. The aim of this paper is to evaluate the efficiency of power conditioning devices with a focus on the Buck and Boost DC-DC converters (12 V, 24 V and 48 V) in a basic off grid PV system with a varying load profile. This would assist in harnessing more of the available solar energy. The practical setup consists of a PV panel that is set to an orientation angle of 0º N, with corresponding tilt angles. Preliminary results, which include data analysis showing the power loss in the system and efficiency, indicate that the 12V DC-DC converter coupled with the load profile had the highest efficiency for a latitude of 26º S throughout the year.Keywords: poly-crystalline PV panels, DC-DC converters, tilt and orientation angles, direct solar radiation, load profile
Procedia PDF Downloads 1625887 A Variable Incremental Conductance MPPT Algorithm Applied to Photovoltaic Water Pumping System
Authors: Sarah Abdourraziq, Rachid Elbachtiri
Abstract:
The use of solar energy as a source for pumping water is one of the promising areas in the photovoltaic (PV) application. The energy of photovoltaic pumping systems (PVPS) can be widely improved by employing an MPPT algorithm. This will lead consequently to maximize the electrical motor speed of the system. This paper presents a modified incremental conductance (IncCond) MPPT algorithm with direct control method applied to a standalone PV pumping system. The influence of the algorithm parameters on system behavior is investigated and compared with the traditional (INC) method. The studied system consists of a PV panel, a DC-DC boost converter, and a PMDC motor-pump. The simulation of the system by MATLAB-SIMULINK is carried out. Simulation results found are satisfactory.Keywords: photovoltaic pumping system (PVPS), incremental conductance (INC), MPPT algorithm, boost converter
Procedia PDF Downloads 4005886 A Failure Criterion for Unsupported Boreholes in Poorly Cemented Granular Formations
Authors: Sam S. Hashemi
Abstract:
The breakage of bonding between sand particles and their dislodgment from the borehole wall are among the main factors resulting in a borehole failure in poorly cemented granular formations. The grain debonding usually precedes the borehole failure and it can be considered as a sign that the onset of the borehole collapse is imminent. Detecting the bonding breakage point and introducing an appropriate failure criterion will play an important role in borehole stability analysis. To study the influence of different factors on the initiation of sand bonding breakage at the borehole wall, a series of laboratory tests was designed and conducted on poorly cemented sand samples. The total absorbed strain energy per volume of material up to the point of the observed particle debonding was computed. The results indicated that the particle bonding breakage point at the borehole wall was reached both before and after the peak strength of the thick-walled hollow cylinder specimens depending on the stress path and cement content. Three different cement contents and two borehole sizes were investigated to study the influence of the bonding strength and scale on the particle dislodgment. Test results showed that the stress path has a significant influence on the onset of the sand bonding breakage. It was shown that for various stress paths, there is a near linear relationship between the absorbed energy and the normal effective mean stress.Keywords: borehole stability, experimental studies, poorly cemented sands, total absorbed strain energy
Procedia PDF Downloads 2095885 Sustainable Electricity Generation Mix for Kenya from 2015 to 2035
Authors: Alex Maina, Mwenda Makathimo, Adwek George, Charles Opiyo
Abstract:
This research entails the simulation of three possible power scenarios for Kenya from 2015 to 2035 using the Low Emissions Analysis Platform (LEAP). These scenarios represent the unfolding future electricity generation that will fully satisfy the demand while considering the following: energy security, power generation cost and impacts on the environment. These scenarios are Reference Scenario (RS), Nuclear Scenario (NS) and More Renewable Scenario (MRS). The findings obtained reveals that the most sustainable scenario while comparing the costs was found to be the coal scenario with a Net Present Value (NPV) of $30,052.67 million though it has the highest Green House Gases (GHGs) emissions. However, the More Renewable Scenario (MRS) had the least GHGs emissions but was found to be a most expensive scenario to implement with an NPV of $30,733.07 million.Keywords: energy security, Kenya, low emissions analysis platform, net-present value, greenhouse gases
Procedia PDF Downloads 945884 Development of Quality Assessment Tool to Gauge Fire Response Activities of Emergency Personnel in Denmark
Authors: Jennifer E. Lynette
Abstract:
The purpose of this study is to develop a nation-wide assessment tool to gauge the quality and efficiency of response activities by emergency personnel to fires in Denmark. Current fire incident reports lack detailed information that can lead to breakthroughs in research and improve emergency response efforts. Information generated from the report database is analyzed and assessed for efficiency and quality. By utilizing information collection gaps in the incident reports, an improved, indepth, and streamlined quality gauging system is developed for use by fire brigades. This study pinpoints previously unrecorded factors involved in the response phases of a fire. Variables are recorded and ranked based on their influence to event outcome. By assessing and measuring these data points, quality standards are developed. These quality standards include details of the response phase previously overlooked which individually and cumulatively impact the overall success of a fire response effort. Through the application of this tool and implementation of associated quality standards at Denmark’s fire brigades, there is potential to increase efficiency and quality in the preparedness and response phases, thereby saving additional lives, property, and resources.Keywords: emergency management, fire, preparedness, quality standards, response
Procedia PDF Downloads 3265883 Theoretical and Experimental Investigation of Binder-free Trimetallic Phosphate Nanosheets
Authors: Iftikhar Hussain, Muhammad Ahmad, Xi Chen, Li Yuxiang
Abstract:
Transition metal phosphides and phosphates are newly emerged electrode material candidates in energy storage devices. For the first time, we report uniformly distributed, interconnected, and well-aligned two-dimensional nanosheets made from trimetallic Zn-Co-Ga phosphate (ZCGP) electrode materials with preserved crystal phase. It is found that the ZCGP electrode material exhibits about 2.85 and 1.66 times higher specific capacity than mono- and bimetallic phosphate electrode materials at the same current density. The trimetallic ZCGP electrode exhibits superior conductivity, lower internal resistance (IR) drop, and high Coulombic efficiency compared to mono- and bimetallic phosphate. The charge storage mechanism is studied for mono- bi- and trimetallic electrode materials, which illustrate the diffusion-dominated battery-type behavior. By means of density functional theory (DFT) calculations, ZCGP shows superior metallic conductivity due to the modified exchange splitting originating from 3d-orbitals of Co atoms in the presence of Zn and Ga. Moreover, a hybrid supercapacitor (ZCGP//rGO) device is engineered, which delivered a high energy density (ED) of 40 W h kg⁻¹ and a high-power density (PD) of 7,745 W kg⁻¹, lighting 5 different colors of light emitting diodes (LEDs). These outstanding results confirm the promising battery-type electrode materials for energy storage applications.Keywords: trimetallic phosphate, nanosheets, DFT calculations, hybrid supercapacitor, binder-free, synergistic effect
Procedia PDF Downloads 2105882 Microwave Assisted Solvent-free Catalytic Transesterification of Glycerol to Glycerol Carbonate
Authors: Wai Keng Teng, Gek Cheng Ngoh, Rozita Yusoff, Mohamed Kheireddine Aroua
Abstract:
As a by-product of the biodiesel industries, glycerol has been vastly generated which surpasses the market demand. It is imperative to develop an efficient glycerol valorization processes in minimizing the net energy requirement and intensifying the biodiesel production. In this study, base-catalyzed transesterification of glycerol with dimethyl carbonate using microwave irradiation as heating method to produce glycerol carbonate was conducted by varing grades of glycerol i.e. 70%, 86% and 99% purity that obtained from biodiesel plant. Metal oxide catalysts were used with varying operating parameters including reaction time, DMC/glycerol molar ratio, catalyst weight %, temperature and stirring speed. From the study on the effect of different operating parameters; it was found that the type of catalyst used has the most significant effect on the transesterification reaction. Admist the metal oxide catalysts examined, CaO gave the best performance. This study indicates the feasibility of producing glycerol carbonate using different grade of glycerol in both conventional thermal activation and microwave irradiation with CaO as catalyst. Microwave assisted transesterification (MAT) of glycerol into glycerol carbonate has demostrated itself as an energy efficient route by achieving 94.3% yield of GC at 65°C, 5 minutes reaction time, 1 wt% CaO and DMC/glycerol molar ratio of 2. The advantages of MAT transesterification route has made the direct utilization of bioglycerol from biodiesel production without the need of purification. This has marked a more economical and less-energy intensive glycerol carbonate synthesis route.Keywords: base-catalyzed transesterification, glycerol, glycerol carbonate, microwave irradiation
Procedia PDF Downloads 2875881 Experimental Investigation on the Role of Thermoacoustics on Soot Formation
Authors: Sambit Supriya Dash, Rahul Ravi R, Vikram Ramanan, Vinayak Malhotra
Abstract:
Combustion in itself is a complex phenomenon that involves the interaction and interplay of multiple phenomena, the combined effect of which gives rise to the common flame that we see and use in our daily life applications from cooking to propelling our vehicles to space. The most important thing that goes unnoticed about these flames is the effect of the various phenomena from its surrounding environment that affects its behavior and properties. These phenomena cause a variety of energy interactions that lead to various types of energy transformations which in turn affect the flame behavior. This paper focuses on experimentally investigating the effect of one such phenomenon, which is the acoustics or sound energy on diffusion flames. The subject in itself is extensively studied upon as thermo-acoustics globally, whereas the current work focuses on studying its effect on soot formation on diffusion flames. The said effect is studied in this research work by the use of a butane as fuel, fitted with a nozzle that houses 3 arrays consisting of 4 holes each that are placed equidistant to each other and the resulting flame impinged with sound from two independent and similar sound sources that are placed equidistant from the centre of the flame. The entire process is systematically video graphed using a 60 fps regular CCD and analysed for variation in flame heights and flickering frequencies where the fuel mass flow rate is maintained constant and the configuration of entrainment holes and frequency of sound are varied, whilst maintaining constant ambient atmospheric conditions. The current work establishes significant outcomes on the effect of acoustics on soot formation; it is noteworthy that soot formation is the main cause of pollution and a major cause of inefficiency of current propulsion systems. This work is one of its kinds, and its outcomes are widely applicable to commercial and domestic appliances that utilize combustion for energy generation or propulsion and help us understand them better, so that we can increase their efficiency and decrease pollution.Keywords: thermoacoustics, entrainment, propulsion system, efficiency, pollution
Procedia PDF Downloads 1615880 Study of White Salted Noodles Air Dehydration Assisted by Microwave as Compared to Conventional Air Dried Process
Authors: Chiun-C. R. Wang, I-Yu Chiu
Abstract:
Drying is the most difficult and critical step to control in the dried salted noodles production. Microwave drying has the specific advantage of rapid and uniform heating due to the penetration of microwaves into the body of the product. Microwave-assisted facility offers a quick and energy saving method during food dehydration as compares to the conventional air-dried method for the noodle preparation. Recently, numerous studies in the rheological characteristics of pasta or spaghetti were carried out with microwave–assisted and conventional air driers and many agricultural products were dried successfully. There is very few research associated with the evaluation of physicochemical characteristics and cooking quality of microwave-assisted air dried salted noodles. The purposes of this study were to compare the difference between conventional air and microwave-assisted air drying method on the physicochemical properties and eating quality of rice bran noodles. Three different microwave power including 0.5 KW, 0.75 KW and 1.0 KW installing with 50℃ hot air were applied for dehydration of rice bran noodles in this study. Three proportion of rice bran ranging in 0-20% were incorporated into salted noodles processing. The appearance, optimum cooking time, cooking yield and losses, textural profiles analysis, and sensory evaluation of rice bran noodles were measured in this study. The results indicated that high power (1.0 KW) microwave facility caused partially burnt and porous on the surface of rice bran noodles. However, no significant difference of noodle was appeared on the surface of noodles between low power (0.5 KW) microwave-assisted salted noodles and control set. The optimum cooking time of noodles was decreased as higher power microwave was applied or higher proportion of rice bran was incorporated in the preparation of salted noodles. The higher proportion of rice bran (20%) or higher power of microwave-assisted dried noodles obtained the higher color intensity and the higher cooking losses as compared with conventional air dried noodles. Meanwhile, the higher power of microwave-assisted air dried noodles indicated the larger air cell inside the noodles and appeared little burnt stripe on the surface of noodles. The firmness of cooked rice bran noodles slightly decreased in the cooked noodles which were dried by high power microwave-assisted method. The shearing force, tensile strength, elasticity and texture profiles of cooked rice noodles decreased with the progress of the proportion of rice bran. The results of sensory evaluation indicated conventional dried noodles obtained the higher springiness, cohesiveness and overall acceptability of cooked noodles than high power (1.0 KW) microwave-assisted dried noodles. However, low power (0.5 KW) microwave-assisted dried noodles showed the comparable sensory attributes and acceptability with conventional dried noodles. Moreover, the sensory attributes including firmness, springiness, cohesiveness decreased, but stickiness increased with the increases of rice bran proportion in the salted noodles. These results inferred that incorporation of lower proportion of rice bran and lower power microwave-assisted dried noodles processing could produce faster cooking time and more acceptable quality of cooked noodles as compared to conventional dried noodles.Keywords: white salted noodles, microwave-assisted air drying processing, cooking yield, appearance, texture profiles, scanning electrical microscopy, sensory evaluation
Procedia PDF Downloads 4945879 Construction Port Requirements for Floating Wind Turbines
Authors: Alan Crowle, Philpp Thies
Abstract:
As the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating Offshore Wind Turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning that it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment; inter-array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of the size of substructures, the height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land-based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost-effective equipment which can be assembled in port and towed to the site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment onshore means minimizing highly weather-dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi-submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed, however, the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.Keywords: floating wind, port, marine construction, offshore renewables
Procedia PDF Downloads 2915878 Contrastive Analysis of Parameters Registered in Training Rowers and the Impact on the Olympic Performance
Authors: Gheorghe Braniste
Abstract:
The management of the training process in sports is closely related to the awareness of the close connection between performance and the morphological, functional and psychological characteristics of the athlete's body. Achieving high results in Olympic sports is influenced, on the one hand, by the genetically determined characteristics of the body and, on the other hand, by the morphological, functional and motor abilities of the athlete. Taking into account the importance of properly understanding the evolutionary specificity of athletes to assess their competitive potential, this study provides a comparative analysis of the parameters that characterize the growth and development of the level of adaptation of sweeping rowers, considering the growth interval between 12 and 20 years. The study established that, in the multi-annual training process, the bodies of the targeted athletes register significant adaptive changes while analyzing parameters of the morphological, functional, psychomotor and sports-technical spheres. As a result of the influence of physical efforts, both specific and non-specific, there is an increase in the adaptability of the body, its transfer to a much higher level of functionality within the parameters, useful and economical adaptive reactions influenced by environmental factors, be they internal or external. The research was carried out for 7 years, on a group of 28 athletes, following their evolution and recording the specific parameters of each age stage. In order to determine the level of physical, morpho-functional, psychomotor development and technical training of rowers, the screening data were applied at the State University of Physical Education and Sports in the Republic of Moldova. During the research, measurements were made on the waist, in the standing and sitting position, arm span, weight, circumference and chest perimeter, vital capacity of the lungs, with the subsequent determination of the vital index (tolerance level to oxygen deficiency in venous blood in Stange and Genchi breath-taking tests that characterize the level of oxygen saturation, absolute and relative strength of the hand and back, calculation of body mass and morphological maturity indices (Kettle index), body surface area (body gait), psychomotor tests (Romberg test), test-tepping 10 s., reaction to a moving object, visual and auditory-motor reaction, recording of technical parameters of rowing on a competitive distance of 200 m. At the end of the study it was found that highly performance is sports is to be associated on the one hand with the genetically determined characteristics of the body and, on the other hand, with favorable adaptive reactions and energy saving, as well as morphofunctional changes influenced by internal and external environmental factors. The importance of the results obtained at the end of the study was positively reflected in obtaining the maximum level of training of athletes in order to demonstrate performance in large-scale competitions and mostly in the Olympic Games.Keywords: olympics, parameters, performance, peak
Procedia PDF Downloads 1235877 Investigation of Nutritional Values, Sensorial, Flesh Productivity of Parapenaus longirostris between Populations in the Sea of Marmara and in the Northern Aegean Sea
Authors: Onur Gönülal, Zafer Ceylan, Gülgün F. Unal Sengor
Abstract:
The differences of Parapenaus longirostris caught from The North Aegean Sea and the Marmara Sea on proximate composition, sensorial analysis (for raw and cooked samples), flesh productivity of the samples were investigated. The moisture, protein, lipid, ash, carbohydrate, energy contents of shrimp caught from The North Aegean Sea were 74.92 ± 0.1, 20.32 ± 0.16, 2.55 ± 0.1, 2.13 ± 0.08, 0.08, 110.1 kcal/100g, respectively. The moisture, protein, lipid, ash, carbohydrate, energy contents of shrimp caught from Marmara Sea were 76.9 ± 0.02, 19.06 ± 0.03, 2.22 ± 0.08, 1.51 ± 0.04, 0.33, 102.77 kcal/100g, respectively. The protein, lipid, ash and energy values of the Northern Aegean Sea shrimp were higher than The Marmara Sea shrimp. On the other hand, The moisture, carbohydrate values of the Northern Aegean Sea shrimp were lower than the other one. Sensorial analysis was done for raw and cooked samples. Among all properties for raw samples, flesh color, shrimp connective tissue, shrimp body parameters were found different each other according to the result of the panel. According to the result of the cooked shrimp samples among all properties, cooked odour, flavours, texture were found to be different from each other, as well. Especially, flavours and textural properties of cooked shrimps of the Northern Aegean Sea were higher than the Marmara Sea shrimp. Flesh productivity of Northern Aegean Sea shrimp was found as 46.42 %, while that of the Marmara Sea shrimp was found as 47.74 %.Keywords: shrimp, biological differences, proximate value, sensory, Parapenaus longirostris, flesh productivity
Procedia PDF Downloads 279