Search results for: resilience optimization model
16854 A New Categorization of Image Quality Metrics Based on a Model of Human Quality Perception
Authors: Maria Grazia Albanesi, Riccardo Amadeo
Abstract:
This study presents a new model of the human image quality assessment process: the aim is to highlight the foundations of the image quality metrics proposed in literature, by identifying the cognitive/physiological or mathematical principles of their development and the relation with the actual human quality assessment process. The model allows to create a novel categorization of objective and subjective image quality metrics. Our work includes an overview of the most used or effective objective metrics in literature, and, for each of them, we underline its main characteristics, with reference to the rationale of the proposed model and categorization. From the results of this operation, we underline a problem that affects all the presented metrics: the fact that many aspects of human biases are not taken in account at all. We then propose a possible methodology to address this issue.Keywords: eye-tracking, image quality assessment metric, MOS, quality of user experience, visual perception
Procedia PDF Downloads 41416853 3D Hybrid Multiphysics Lattice Boltzmann Model for Studying the Flow Behavior of Emulsions in Structured Rectangular Microchannels
Authors: Luma Al-Tamimi, Hassan Farhat, Wessam Hasan
Abstract:
A three-dimensional (3D) hybrid quasi-steady thermal lattice Boltzmann model is developed to couple the effects of surfactant, temperature, interfacial tension, and contact angle. This 3D model is an extended scheme of a previously introduced two-dimensional (2D) hybrid lattice Boltzmann model. The 3D model is used to study the combined multi-physics effects on emulsion systems flowing in rectangular microchannels with and without confinements, where the suspended phase is made of droplets, plugs, or a mixture of both. The simulation results show that emulsion systems with plugs as the suspended phase are more efficient than with droplets, whereas mixed systems that form large plugs through coalescence have even greater efficiency. The 3D contact angle model generates matching results to those of the 2D model, which were validated with experiments. Furthermore, the effects of various confinements on adhering single drop systems are investigated for delineating their influence on the power required for transporting the suspended phase through the channel. It is shown that the deeper the constriction is, the lower the system efficiency. Increasing the surfactant concentration or fluid temperature in a channel with confinement carries a substantial positive effect on oil droplet transportation.Keywords: lattice Boltzmann method, thermal, contact angle, surfactants, high viscosity ratio, porous media
Procedia PDF Downloads 17616852 Optimization Of Biogas Production Using Co-digestion Feedstocks Via Anaerobic Technologhy
Authors: E Tolufase
Abstract:
The demand, high costs and health implications of using energy derived from hydrocarbon compound have necessitated the continuous search for alternative source of energy. The World energy market is facing some challenges viz: depletion of fossil fuel reserves, population explosion, lack of energy security, economic and urbanization growth and also, in Nigeria some rural areas still depend largely on wood, charcoal, kerosene, petrol among others, as the sources of their energy. To overcome these short falls in energy supply and demand, as well as taking into consideration the risks from global climate change due to effect of greenhouse gas emissions and other pollutants from fossil fuels’ combustion, brought a lot of attention on efficiently harnessing the renewable energy sources. A very promising among the renewable energy resources for a clean energy technology for power production, vehicle and domestic usage is biogas. Therefore, optimization of biogas yield and quality is imperative. Hence, this study investigated yield and quality of biogas using low cost bio-digester and combination of various feed stocks referred to as co-digestion. Batch/Discontinuous Bio-digester type was used because it was cheap, easy, plausible and appropriate for different substrates used to get the desired results. Three substrates were used; cow dung, chicken droppings and lemon grass digested in five separate 21 litre digesters, A, B, C, D, and E and the gas collection system was designed using locally available materials. For single digestion we had; cow dung, chicken droppings, lemon grass, in Bio-digesters A, B, and C respectively, the co-digested three substrates in different mixed ratio 7:1:2 in digester D and E in ratio 5:3:2. The respective feed-stocks materials were collected locally, digested and analyzed in accordance with standard procedures. They were pre-fermented for a period of 10 days before being introduced into the digesters. They were digested for a retention period of 28 days, the physiochemical parameters namely; pressure, temperature, pH, volume of the gas collector system and volume of biogas produced were all closely monitored and recorded daily. The values of pH and temperature ranged 6.0 - 8.0, and 220C- 350C respectively. For the single substrate, bio-digester A(Cow dung only) produced biogas of total volume 0.1607m3(average volume of 0.0054m3 daily),while B (Chicken droppings ) produced 0.1722m3 (average of 0.0057m3 daily) and C (lemon grass) produced 0.1035m3 (average of 0.0035m3 daily). For the co-digested substrates in bio-digester D the total biogas produced was 0.2007m³ (average volume of 0.0067m³ daily) and bio-digester E produced 0.1991m³ (average volume of 0.0066m³ daily) It’s obvious from the results, that combining different substrates gave higher yields than when a singular feed stock was used and also mixing ratio played some roles in the yield improvement. Bio-digesters D and E contained the same substrates but mixed with different ratios, but higher yield was noticed in D with mixing ratio of 7:1:2 than in E with ratio 5:3:2.Therefore, co-digestion of substrates and mixing proportions are important factors for biogas production optimization.Keywords: anaerobic, batch, biogas, biodigester, digestion, fermentation, optimization
Procedia PDF Downloads 3016851 Study of the Removal Efficiency of Azo-Dyes Using Xanthan as Sequestering Agent
Authors: Cedillo Ortiz Cesar Isaac, Marañón-Ruiz Virginia-Francisca, Lozano-Alvarez Juan Antonio, Jáuregui-Rincón Juan, Roger Chiu Zarate
Abstract:
Introduction: The contamination of water with the azo-dye is a problem worldwide as although wastewater contaminate is treated in a municipal sewage system, still contain a considerable amount of dyes. In the present, there are different processes denominated tertiary method in which it is possible to lower the concentration of the dye. One of these methods is by adsorption onto various materials which can be organic or inorganic materials. The xanthan is a biomaterial as removal agents to decrease the dye content in aqueous solution. The Zimm-Bragg model described the experimental isotherms obtained when this biopolymer was used in the removal of textile dyes. Nevertheless, it was not established if a possible correlation between dye structure and removal efficiency exists. In this sense, the principal objective of this report is to propose a qualitative relationship between the structure of three azo-dyes (Congo Red (CR), Methyl Red (MR) and Methyl Orange (MO)) and their removal efficiency from aqueous environment when xanthan are used as dye sequestering agents. Methods: The dyes were subjected to different pH and ionic strength values to obtain the conditions of maximum dye removal. Afterward, these conditions were used to perform the adsorption isotherm as was reported in the previous study in our group. The Zimm-Bragg model was used to describe the experimental data and the parameters of nucleation (Ku) and cooperativity (U) were obtained by optimization using the R statistical software. The spectra from UV-Visible (aqueous solution), Infrared absorption and Raman spectroscopies (dry samples) were obtained from the biopolymer-dye complex. Results: The removal percent with xanthan in each dye are as follows: with CR had 99.98 % when the pH is 12 and ionic strength is 10.12, with MR had 84.79 % when the pH is 9.5 and ionic strength is 43 and finally the MO had 30 % in pH 4 and 72. It can be seen that when xanthan is used to remove the dyes, exists a lower dependence between structure and removal efficiency. This may be due to the different tendency to form aggregates of each dye. This aggregation capacity and the charge of each dye resulting from the pH and ionic strength values of aqueous solutions are key factors in the dye removal. The experimental isotherm of MR was only that adequately described by Zimm-Bragg model. Because with the CR had the 100 % of remove thus is very difficult obtain de experimental isotherm and finally MO had results fluctuating and therefore was impossible get the accurate data. Conclusions: The study of the removal of three dyes with xanthan as dye sequestering agents suggests that aggregation capacity of dyes and the charge resulting from structural characteristics such as molecular weight and functional groups have a relationship with the removal efficiency. Acknowledgements: We are gratefully acknowledged support for this project by Consejo Nacional de Ciencia y Tecnología, México (CONACyT, Grant No. 632694.)Keywords: adsorption, azo dyes, xanthan gum, Zimm Bragg theory
Procedia PDF Downloads 28216850 Generating Product Description with Generative Pre-Trained Transformer 2
Authors: Minh-Thuan Nguyen, Phuong-Thai Nguyen, Van-Vinh Nguyen, Quang-Minh Nguyen
Abstract:
Research on automatically generating descriptions for e-commerce products is gaining increasing attention in recent years. However, the generated descriptions of their systems are often less informative and attractive because of lacking training datasets or the limitation of these approaches, which often use templates or statistical methods. In this paper, we explore a method to generate production descriptions by using the GPT-2 model. In addition, we apply text paraphrasing and task-adaptive pretraining techniques to improve the qualify of descriptions generated from the GPT-2 model. Experiment results show that our models outperform the baseline model through automatic evaluation and human evaluation. Especially, our methods achieve a promising result not only on the seen test set but also in the unseen test set.Keywords: GPT-2, product description, transformer, task-adaptive, language model, pretraining
Procedia PDF Downloads 19916849 Predicting Depth of Penetration in Abrasive Waterjet Cutting of Polycrystalline Ceramics
Authors: S. Srinivas, N. Ramesh Babu
Abstract:
This paper presents a model to predict the depth of penetration in polycrystalline ceramic material cut by abrasive waterjet. The proposed model considered the interaction of cylindrical jet with target material in upper region and neglected the role of threshold velocity in lower region. The results predicted with the proposed model are validated with the experimental results obtained with Silicon Carbide (SiC) blocks.Keywords: abrasive waterjet cutting, analytical modeling, ceramics, micro-cutting and inter-grannular cracking
Procedia PDF Downloads 30616848 Sustainability in Tourism and Hospitality Industry in China: Best Practices and Challenges
Authors: Mkhitaryan Davit
Abstract:
The tourism and hospitality industry plays a significant role in China's economy, but it also poses environmental, social, and economic challenges. This paper examines the concept of sustainability within the context of China's tourism and hospitality industry, exploring best practices from 26 Hotels in 15 cities and identifying key challenges. Drawing upon a comprehensive review of existing literature, case studies, and interviews with industry experts, the paper highlights successful sustainability initiatives implemented by various stakeholders, including government bodies, businesses, and non-governmental organizations. Additionally, it discusses the barriers and obstacles hindering the widespread adoption of sustainable practices in the sector, such as lack of awareness, financial constraints, and regulatory issues. The findings provide insights for policymakers, industry practitioners, and researchers to develop strategies and solutions for promoting sustainable tourism and hospitality practices in China, ultimately contributing to the long-term viability and resilience of the industry.Keywords: sustainability, waste management, renewable energy, hospitality
Procedia PDF Downloads 5516847 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus
Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati
Abstract:
Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost
Procedia PDF Downloads 8516846 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing
Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger
Abstract:
This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles
Procedia PDF Downloads 4616845 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow
Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng
Abstract:
The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.Keywords: area-based traffic, car-following model, micro-simulation, stochastic modeling
Procedia PDF Downloads 14816844 A Bathtub Curve from Nonparametric Model
Authors: Eduardo C. Guardia, Jose W. M. Lima, Afonso H. M. Santos
Abstract:
This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models.Keywords: bathtub curve, failure analysis, lifetime estimation, parameter estimation, Weibull distribution
Procedia PDF Downloads 44616843 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory
Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol
Abstract:
This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory
Procedia PDF Downloads 30316842 Document Analysis for Modelling iTV Advertising towards Impulse Purchase
Authors: Azizah Che Omar
Abstract:
The study provides a systematic literature review which analyzed the literature for the purpose of looking for concepts, theories, approaches and guidelines in order to propose a conceptual design model of interactive television advertising toward impulse purchase (iTVAdIP). An extensive review of literature was purposely carried out to understand the concepts of interactive television (iTV). Therefore, some elements; iTV guidelines, advertising theories, persuasive approaches, and the impulse purchase elements were analyzed to reach the scope of this work. The extensive review was also a necessity to achieve the objective of this study, which was to determine the concept of iTVAdIP design model. Through systematic review analysis, this study discovered that all the previous models did not emphasize the conceptual design model of interactive television advertising. As a result, the finding showed that the concept of the proposed model should contain the iTV guidelines, advertising theory, persuasive approach and impulse purchase elements. In addition, a summary diagram for the development of the proposed model is depicted to provide clearer understanding towards the concepts of conceptual design model of iTVAdIP.Keywords: impulse purchase, interactive television advertising, human computer interaction, advertising theories
Procedia PDF Downloads 37216841 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning
Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag
Abstract:
The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling
Procedia PDF Downloads 9216840 Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite
Authors: Hari Singh, Abhishek Kamboj, Sudhir Kumar
Abstract:
This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts Grey Relational Analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole.Keywords: metal matrix composite, drilling, optimization, step drill, surface roughness, burr height, hole diameter error
Procedia PDF Downloads 32216839 Efficacy of Technology for Successful Learning Experience; Technology Supported Model for Distance Learning: Case Study of Botho University, Botswana
Authors: Ivy Rose Mathew
Abstract:
The purpose of this study is to outline the efficacy of technology and the opportunities it can bring to implement a successful delivery model in Distance Learning. Distance Learning has proliferated over the past few years across the world. Some of the current challenges faced by current students of distance education include lack of motivation, a sense of isolation and a need for greater and improved communication. Hence the author proposes a creative technology supported model for distance learning exactly mirrored on the traditional face to face learning that can be adopted by distance learning providers. This model suggests the usage of a range of technologies and social networking facilities, with the aim of creating a more engaging and sustaining learning environment to help overcome the isolation often noted by distance learners. While discussing the possibilities, the author also highlights the complexity and practical challenges of implementing such a model. Design/methodology/approach: Theoretical issues from previous research related to successful models for distance learning providers will be considered. And also the analysis of a case study from one of the largest private tertiary institution in Botswana, Botho University will be included. This case study illustrates important aspects of the distance learning delivery model and provides insights on how curriculum development is planned, quality assurance is done, and learner support is assured for successful distance learning experience. Research limitations/implications: While some of the aspects of this study may not be applicable to other contexts, a number of new providers of distance learning can adapt the key principles of this delivery model.Keywords: distance learning, efficacy, learning experience, technology supported model
Procedia PDF Downloads 24816838 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective
Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli
Abstract:
In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks
Procedia PDF Downloads 8516837 On the Use of Analytical Performance Models to Design a High-Performance Active Queue Management Scheme
Authors: Shahram Jamali, Samira Hamed
Abstract:
One of the open issues in Random Early Detection (RED) algorithm is how to set its parameters to reach high performance for the dynamic conditions of the network. Although original RED uses fixed values for its parameters, this paper follows a model-based approach to upgrade performance of the RED algorithm. It models the routers queue behavior by using the Markov model and uses this model to predict future conditions of the queue. This prediction helps the proposed algorithm to make some tunings over RED's parameters and provide efficiency and better performance. Widespread packet level simulations confirm that the proposed algorithm, called Markov-RED, outperforms RED and FARED in terms of queue stability, bottleneck utilization and dropped packets count.Keywords: active queue management, RED, Markov model, random early detection algorithm
Procedia PDF Downloads 54116836 Singularization: A Technique for Protecting Neural Networks
Authors: Robert Poenaru, Mihail Pleşa
Abstract:
In this work, a solution that addresses the protection of pre-trained neural networks is developed: Singularization. This method involves applying permutations to the weight matrices of a pre-trained model, introducing a form of structured noise that obscures the original model’s architecture. These permutations make it difficult for an attacker to reconstruct the original model, even if the permuted weights are obtained. Experimental benchmarks indicate that the application of singularization has a profound impact on model performance, often degrading it to the point where retraining from scratch becomes necessary to recover functionality, which is particularly effective for securing intellectual property in neural networks. Moreover, unlike other approaches, singularization is lightweight and computationally efficient, which makes it well suited for resource-constrained environments. Our experiments also demonstrate that this technique performs efficiently in various image classification tasks, highlighting its broad applicability and practicality in real-world scenarios.Keywords: machine learning, ANE, CNN, security
Procedia PDF Downloads 1816835 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms
Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani
Abstract:
This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.Keywords: tunnel fire, flame length, ANN, genetic algorithm
Procedia PDF Downloads 64716834 Dogs Chest Homogeneous Phantom for Image Optimization
Authors: Maris Eugênia Dela Rosa, Ana Luiza Menegatti Pavan, Marcela De Oliveira, Diana Rodrigues De Pina, Luis Carlos Vulcano
Abstract:
In medical veterinary as well as in human medicine, radiological study is essential for a safe diagnosis in clinical practice. Thus, the quality of radiographic image is crucial. In last year’s there has been an increasing substitution of image acquisition screen-film systems for computed radiology equipment (CR) without technical charts adequacy. Furthermore, to carry out a radiographic examination in veterinary patient is required human assistance for restraint this, which can compromise image quality by generating dose increasing to the animal, for Occupationally Exposed and also the increased cost to the institution. The image optimization procedure and construction of radiographic techniques are performed with the use of homogeneous phantoms. In this study, we sought to develop a homogeneous phantom of canine chest to be applied to the optimization of these images for the CR system. In carrying out the simulator was created a database with retrospectives chest images of computed tomography (CT) of the Veterinary Hospital of the Faculty of Veterinary Medicine and Animal Science - UNESP (FMVZ / Botucatu). Images were divided into four groups according to the animal weight employing classification by sizes proposed by Hoskins & Goldston. The thickness of biological tissues were quantified in a 80 animals, separated in groups of 20 animals according to their weights: (S) Small - equal to or less than 9.0 kg, (M) Medium - between 9.0 and 23.0 kg, (L) Large – between 23.1 and 40.0kg and (G) Giant – over 40.1 kg. Mean weight for group (S) was 6.5±2.0 kg, (M) 15.0±5.0 kg, (L) 32.0±5.5 kg and (G) 50.0 ±12.0 kg. An algorithm was developed in Matlab in order to classify and quantify biological tissues present in CT images and convert them in simulator materials. To classify tissues presents, the membership functions were created from the retrospective CT scans according to the type of tissue (adipose, muscle, bone trabecular or cortical and lung tissue). After conversion of the biologic tissue thickness in equivalent material thicknesses (acrylic simulating soft tissues, bone tissues simulated by aluminum and air to the lung) were obtained four different homogeneous phantoms, with (S) 5 cm of acrylic, 0,14 cm of aluminum and 1,8 cm of air; (M) 8,7 cm of acrylic, 0,2 cm of aluminum and 2,4 cm of air; (L) 10,6 cm of acrylic, 0,27 cm of aluminum and 3,1 cm of air and (G) 14,8 cm of acrylic, 0,33 cm of aluminum and 3,8 cm of air. The developed canine homogeneous phantom is a practical tool, which will be employed in future, works to optimize veterinary X-ray procedures.Keywords: radiation protection, phantom, veterinary radiology, computed radiography
Procedia PDF Downloads 41816833 Review of Cyber Security in Oil and Gas Industry with Cloud Computing Perspective: Taxonomy, Issues and Future Direction
Authors: Irfan Mohiuddin, Ahmad Al Mogren
Abstract:
In recent years, cloud computing has earned substantial attention in the Oil and Gas Industry and provides services in all the phases of the industry lifecycle. Oil and gas supply infrastructure, in particular, is more vulnerable to accidental, natural and intentional threats because of its widespread distribution. Numerous surveys have been conducted on cloud security and privacy. However, to the best of our knowledge, hardly any survey is carried out that reviews cyber security in all phases with a cloud computing perspective. Moreover, a distinctive classification is performed for all the cloud-based cyber security measures based on the cloud component in use. The classification approach will enable researchers to identify the required technique used to enhance the security in specific cloud components. Also, the limitation of each component will allow the researchers to design optimal algorithms. Lastly, future directions are given to point out the imminent challenges that can pave the way for researchers to further enhance the resilience to cyber security threats in the oil and gas industry.Keywords: cyber security, cloud computing, safety and security, oil and gas industry, security threats, oil and gas pipelines
Procedia PDF Downloads 14416832 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis
Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas
Abstract:
Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum
Procedia PDF Downloads 16316831 Comparative Review of Models for Forecasting Permanent Deformation in Unbound Granular Materials
Authors: Shamsulhaq Amin
Abstract:
Unbound granular materials (UGMs) are pivotal in ensuring long-term quality, especially in the layers under the surface of flexible pavements and other constructions. This study seeks to better understand the behavior of the UGMs by looking at popular models for predicting lasting deformation under various levels of stresses and load cycles. These models focus on variables such as the number of load cycles, stress levels, and features specific to materials and were evaluated on the basis of their ability to accurately predict outcomes. The study showed that these factors play a crucial role in how well the models work. Therefore, the research highlights the need to look at a wide range of stress situations to more accurately predict how much the UGMs bend or shift. The research looked at important factors, like how permanent deformation relates to the number of times a load is applied, how quickly this phenomenon happens, and the shakedown effect, in two different types of UGMs: granite and limestone. A detailed study was done over 100,000 load cycles, which provided deep insights into how these materials behave. In this study, a number of factors, such as the level of stress applied, the number of load cycles, the density of the material, and the moisture present were seen as the main factors affecting permanent deformation. It is vital to fully understand these elements for better designing pavements that last long and handle wear and tear. A series of laboratory tests were performed to evaluate the mechanical properties of materials and acquire model parameters. The testing included gradation tests, CBR tests, and Repeated load triaxial tests. The repeated load triaxial tests were crucial for studying the significant components that affect deformation. This test involved applying various stress levels to estimate model parameters. In addition, certain model parameters were established by regression analysis, and optimization was conducted to improve outcomes. Afterward, the material parameters that were acquired were used to construct graphs for each model. The graphs were subsequently compared to the outcomes obtained from the repeated load triaxial testing. Additionally, the models were evaluated to determine if they demonstrated the two inherent deformation behaviors of materials when subjected to repetitive load: the initial phase, post-compaction, and the second phase volumetric changes. In this study, using log-log graphs was key to making the complex data easier to understand. This method made the analysis clearer and helped make the findings easier to interpret, adding both precision and depth to the research. This research provides important insight into picking the right models for predicting how these materials will act under expected stress and load conditions. Moreover, it offers crucial information regarding the effect of load cycle and permanent deformation as well as the shakedown effect on granite and limestone UGMs.Keywords: permanent deformation, unbound granular materials, load cycles, stress level
Procedia PDF Downloads 4316830 A Model for Reverse-Mentoring in Education
Authors: Sabine A. Zauchner-Studnicka
Abstract:
As the term indicates, reverse-mentoring flips the classical roles of mentoring: In school, students take over the role of mentors for adults, i.e. teachers or parents. Originally reverse-mentoring stems from US enterprises, which implemented this innovative method in order to benefit from the resources of skilled younger employees for the enhancement of IT competences of senior colleagues. However, reverse-mentoring in schools worldwide is rare. Based on empirical studies and theoretical approaches, in this article an implementation model for reverse-mentoring is developed in order to bring the significant potential reverse-mentoring has for education into practice.Keywords: reverse-mentoring, innovation in education, implementation model, school education
Procedia PDF Downloads 25016829 Steady State Modeling and Simulation of an Industrial Steam Boiler
Authors: Amina Lyria Deghal Cheridi, Abla Chaker, Ahcene Loubar
Abstract:
Relap5 system code is one among powerful tools, which is used in the area of design and safety evaluation. This work aims to simulate the behavior of a radiant steam boiler at the steady-state conditions using Relap5 code system. To perform this study, a detailed Relap5 model is built including all the parts of the steam boiler. The control and regulation systems are also considered. To reproduce the most important parameters and phenomena with an acceptable accuracy and fidelity, a strong qualification work is undertaken concerning the facility nodalization. It consists of making a comparison between the code results and the plant available data in steady-state operation mode. Therefore, the model qualification results at the steady-state are in good agreement with the steam boiler experimental data. The steam boiler Relap5 model has proved satisfactory; and the model was capable of predicting the main thermal-hydraulic steady-state conditions of the steam boiler.Keywords: industrial steam boiler, model qualification, natural circulation, relap5/mod3.2, steady state simulation
Procedia PDF Downloads 27416828 Development of 3D Neck Muscle to Analyze the Effect of Active Muscle Contraction in Whiplash Injury
Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert
Abstract:
Whiplash Injuries are mostly experienced in car accidents. Symptoms of whiplash are commonly reported in studies, neck pain and headaches are two most common symptoms observed. The whiplash Injury mechanism is poorly understood. In present study, hybrid neck muscle model were developed with a combination of solid tetrahedral elements and 1D beam elements. Solid tetrahedral elements represents passive part of the muscle whereas, 1D beam elements represents active part. To simulate the active behavior of the muscle, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Some important muscles were then inserted into THUMS (Total Human Model for Safety) THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.Keywords: finite element model, muscle activation, THUMS, whiplash injury mechanism
Procedia PDF Downloads 33516827 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network
Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem
Abstract:
This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting
Procedia PDF Downloads 23316826 Hydraulic Characteristics of Mine Tailings by Metaheuristics Approach
Authors: Akhila Vasudev, Himanshu Kaushik, Tadikonda Venkata Bharat
Abstract:
A large number of mine tailings are produced every year as part of the extraction process of phosphates, gold, copper, and other materials. Mine tailings are high in water content and have very slow dewatering behavior. The efficient design of tailings dam and economical disposal of these slurries requires the knowledge of tailings consolidation behavior. The large-strain consolidation theory closely predicts the self-weight consolidation of these slurries as the theory considers the conservation of mass and momentum conservation and considers the hydraulic conductivity as a function of void ratio. Classical laboratory techniques, such as settling column test, seepage consolidation test, etc., are expensive and time-consuming for the estimation of hydraulic conductivity variation with void ratio. Inverse estimation of the constitutive relationships from the measured settlement versus time curves is explored. In this work, inverse analysis based on metaheuristics techniques will be explored for predicting the hydraulic conductivity parameters for mine tailings from the base excess pore water pressure dissipation curve and the initial conditions of the mine tailings. The proposed inverse model uses particle swarm optimization (PSO) algorithm, which is based on the social behavior of animals searching for food sources. The finite-difference numerical solution of the forward analytical model is integrated with the PSO algorithm to solve the inverse problem. The method is tested on synthetic data of base excess pore pressure dissipation curves generated using the finite difference method. The effectiveness of the method is verified using base excess pore pressure dissipation curve obtained from a settling column experiment and further ensured through comparison with available predicted hydraulic conductivity parameters.Keywords: base excess pore pressure, hydraulic conductivity, large strain consolidation, mine tailings
Procedia PDF Downloads 13716825 A Performance Model for Designing Network in Reverse Logistic
Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi
Abstract:
In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.Keywords: reverse logistics, network design, performance model, open loop configuration
Procedia PDF Downloads 435