Search results for: multi variable decision making
9633 A Robust PID Load Frequency Controller of Interconnected Power System Using SDO Software
Authors: Pasala Gopi, P. Linga Reddy
Abstract:
The response of the load frequency control problem in an multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load. This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively. The response of the load frequency control problem in an multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variationsKeywords: load frequency control, pid controller tuning, step load perturbations, inter connected power system
Procedia PDF Downloads 6479632 Two-Phase Sampling for Estimating a Finite Population Total in Presence of Missing Values
Authors: Daniel Fundi Murithi
Abstract:
Missing data is a real bane in many surveys. To overcome the problems caused by missing data, partial deletion, and single imputation methods, among others, have been proposed. However, problems such as discarding usable data and inaccuracy in reproducing known population parameters and standard errors are associated with them. For regression and stochastic imputation, it is assumed that there is a variable with complete cases to be used as a predictor in estimating missing values in the other variable, and the relationship between the two variables is linear, which might not be realistic in practice. In this project, we estimate population total in presence of missing values in two-phase sampling. Instead of regression or stochastic models, non-parametric model based regression model is used in imputing missing values. Empirical study showed that nonparametric model-based regression imputation is better in reproducing variance of population total estimate obtained when there were no missing values compared to mean, median, regression, and stochastic imputation methods. Although regression and stochastic imputation were better than nonparametric model-based imputation in reproducing population total estimates obtained when there were no missing values in one of the sample sizes considered, nonparametric model-based imputation may be used when the relationship between outcome and predictor variables is not linear.Keywords: finite population total, missing data, model-based imputation, two-phase sampling
Procedia PDF Downloads 1349631 The Role of Personality Characteristics and Psychological Harassment Behaviors Which Employees Are Exposed on Work Alienation
Authors: Hasan Serdar Öge, Esra Çiftçi, Kazım Karaboğa
Abstract:
The main purpose of the research is to address the role of psychological harassment behaviors (mobbing) to which employees are exposed and personality characteristics over work alienation. Research population was composed of the employees of Provincial Special Administration. A survey with four sections was created to measure variables and reach out the basic goals of the research. Correlation and step-wise regression analyses were performed to investigate the separate and overall effects of sub-dimensions of psychological harassment behaviors and personality characteristic on work alienation of employees. Correlation analysis revealed significant but weak relationships between work alienation and psychological harassment and personality characteristics. Step-wise regression analysis revealed also significant relationships between work alienation variable and assault to personality, direct negative behaviors (sub dimensions of mobbing) and openness (sub-dimension of personality characteristics). Each variable was introduced into the model step by step to investigate the effects of significant variables in explaining the variations in work alienation. While the explanation ratio of the first model was 13%, the last model including three variables had an explanation ratio of 24%.Keywords: alienation, five-factor personality characteristics, mobbing, psychological harassment, work alienation
Procedia PDF Downloads 4129630 Solvent Effects on Anticancer Activities of Medicinal Plants
Authors: Jawad Alzeer
Abstract:
Natural products are well recognized as sources of drugs in several human ailments. To investigate the impact of variable extraction techniques on the cytotoxic effects of medicinal plant extracts, 5 well-known medicinal plants from Palestine were extracted with 90% ethanol, 80% methanol, acetone, coconut water, apple vinegar, grape vinegar or 5% acetic acid. The resulting extracts were screened for cytotoxic activities against three different cancer cell lines (B16F10, MCF-7, and HeLa) using a standard resazurin-based cytotoxicity assay and Nile Blue A as the positive control. Highly variable toxicities and tissue sensitivity were observed, depending upon the solvent used for extraction. Acetone consistently gave lower extraction yields but higher cytotoxicity, whereas other solvent systems gave much higher extraction yields with lower cytotoxicity. Interestingly, coconut water was found to offer a potential alternative to classical organic solvents; it gave consistently highest extraction yields, and in the case of S. officinalis L., highly toxic extracts towards MCF-7 cells derived from human breast cancer. These results demonstrate how the cytotoxicity of plant extracts can be inversely proportional to the yield, and that solvent selection plays an important role in both factors.Keywords: plant extract, natural products, anti cancer drug, cytotoxicity
Procedia PDF Downloads 4599629 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models
Authors: Yahia. Kourd, N. Guersi D. Lefebvre
Abstract:
In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor
Procedia PDF Downloads 6469628 The Correlation between Education, Food Intake, Exercise, and Medication Obedience with the Average of Blood Sugar in Indonesia
Authors: Aisyah Rahmatul Laily
Abstract:
Indonesia Ministry of Health is increasing their awareness on non communicable diseases. From the top ten causes of death, two of them are non communicable diseases. Diabetes Mellitus is one of the two non communicable diseases above that have the increasing number of patient from year to year. From that problem, this research is made to determine the correlation between education, food intake, exercise, and the medication obedience with the average of blood sugar. In this research, the researchers used observational and cross-sectional studies. The sample that used in this research were 50 patients in Puskesmas Gamping I Yogyakarta who have suffered from Diabetes Mellitus in long period. The researcher doing anamnesis by using questionnaire to collect the data, then analyzed it with Chi Square to determine the correlation between each variable. The dependent variable in this research is the average of blood sugar, whereas the independent variables are education, food intake, do exercise, and the obedience of medication. The result shows a relation between education and average blood sugar level (p=0.029), a relation between food intake and average blood sugar level (p=0.009), and a relation between exercise and average blood sugar level (p=0.023). There is also a relation between the medication obedience with the average of blood sugar (p=0,002). The conclusion is that the positive correlations exist between education and average blood sugar level, between food intake and average blood sugar level, and between medication obedience and average blood sugar level.Keywords: average of blood sugar, education, exercise, food intake, medication obedience
Procedia PDF Downloads 2799627 Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization
Authors: Misganaw Abebe Baye, Ji-Woo Park, Beom-Soo Kang
Abstract:
The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product.Keywords: dimpling, multi-point dieless forming, reliability-based robust optimization, shape error, variation, wrinkling
Procedia PDF Downloads 2579626 Locus of Control and Student Performance in an Introductory Economics Course
Authors: Ahmad A. Kader
Abstract:
In the Principles of Microeconomics course taught during the Fall Semester of 2019, 158 out of 179 students participated in the completion of one questionnaire and a survey describing their demographic and academic profiles. The questionnaire includes the 29 items of the Rotter Locus of Control Scale and is intended to show the influence of locus of control orientation on student performance. The survey covers variables that have been tested and recognized in economic education literature, which include GPA, gender, age, course level, race, class standing, whether the course was required or elective, employment, whether a high school economics course was taken, and attendance. Regression results of the economic education variables show that GPA, whether the course was required or elective, and attendance are all significant in their influence on student grades. Adding the locus of control to the regression equation, the results show that the locus of control variable has a negative and significant effect on student grades. Also, the adjusted R-squared value increased markedly with the addition of the locus of control to the regression equation. Dividing the sample by a median split of 11 equally size groups of the locus of control variable of internal and external student orientation, the t-test result shows that internally oriented students significantly outperform externally oriented students as reflected by their grades. The implication of these results for educators is discussed in the paper.Keywords: locus of control, student performance, economic education, educational psychology
Procedia PDF Downloads 199625 Understanding the Lived Experiences of Children and Young People Using Client Preference Tools in Mental Health Therapy: A Systematic Literature Review
Authors: Charlotte Zamani
Abstract:
Children's and young people’s (CYP’s) perspectives on using client preference tools are central to understanding youth mental health therapy engagement. This systematic literature review attempts to understand the meanings of CYP using preference tools that may allow greater connection with the therapeutic process. Following a systematic search using PRISMA guidelines, seven studies were identified that reported qualitative feedback on preferred treatment options or activities within therapy. The data were analysed using interpretative phenomenological analysis (IPA). Three group experiential themes were found: ‘Tailor my support’, ‘My autonomy leads to greater engagement’ and ‘Preferences facilitate my authentic self’. CYP is broadly divided into those who thrive in decision-making and those who require more support. Being offered a choice in therapy delivery provides easier access and means more freedom for CYP. Preferences in therapy appeared to enable greater self-knowledge and a deeper connection to the therapeutic process. The therapist is integral in using preference tools in therapy. Youth feedback is currently limited, yet essential and ethical in order to understand critical factors of CYP engagement and for future research.Keywords: child and adolescent, client preferences, mental health therapy, qualitative
Procedia PDF Downloads 199624 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 1019623 Regression Analysis of Travel Indicators and Public Transport Usage in Urban Areas
Authors: Mehdi Moeinaddini, Zohreh Asadi-Shekari, Muhammad Zaly Shah, Amran Hamzah
Abstract:
Currently, planners try to have more green travel options to decrease economic, social and environmental problems. Therefore, this study tries to find significant urban travel factors to be used to increase the usage of alternative urban travel modes. This paper attempts to identify the relationship between prominent urban mobility indicators and daily trips by public transport in 30 cities from various parts of the world. Different travel modes, infrastructures and cost indicators were evaluated in this research as mobility indicators. The results of multi-linear regression analysis indicate that there is a significant relationship between mobility indicators and the daily usage of public transport.Keywords: green travel modes, urban travel indicators, daily trips by public transport, multi-linear regression analysis
Procedia PDF Downloads 5549622 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China
Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li
Abstract:
Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.Keywords: heterogeneity, homogeneous unit, multiscale, shale
Procedia PDF Downloads 4579621 Narrative Study to Resilience and Adversity's Response
Authors: Yun Hang Stanley Cheung
Abstract:
In recent years, many educators and entrepreneurs have often suggested that students’ and workers’ ability of the adversity response is very important, it would affect problem-solving strategies and ultimate success in their career or life. The meaning of resilience is discussed as the process of bouncing back and the ability to adapt well in adversity’s response, being resilient does not mean to live without any stress and difficulty, but to grow and thrive under pressure. The purpose of this study is to describe the process of resilience and adversity’s response. The use of the narrative inquiry aims for understanding the experiential process of adversity response, and the problem-solving strategies (such as emotion control, motivation, decisions making process), as well as making the experience become life story, which may be evaluated by its teller and its listeners. The narrative study describes the researcher’s self-experience of adversity’s response to the recovery of the seriously burnt injury from a hill fire at his 12 years old, as well as the adversities and obstacles related to the tragedy after the physical recovery. Sense-Making Theory and McCormack’s Lenses were used for constructive perspective and data analyzing. To conclude, this study has described the life story of fighting the adversities, also, those narratives come out some suggestions, which point out positive thinking is necessary to build up resilience and the ability of immediate adversity response. Also, some problem-solving strategies toward adversities are discussed, which are helpful for resilience education for youth and young adult.Keywords: adversity response, life story, narrative inquiry, resilience
Procedia PDF Downloads 3169620 Monitoring of Hydrological Parameters in the Alexandra Jukskei Catchment in South Africa
Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera
Abstract:
It has been noted that technical programming for handling groundwater resources is not accessible. The lack of these systems hinders groundwater management processes necessary for decision-making through monitoring and evaluation regarding the Jukskei River of the Crocodile River (West) Basin in Johannesburg, South Africa. Several challenges have been identified in South Africa's Jukskei Catchment concerning groundwater management. Some of those challenges will include the following: Gaps in data records; there is a need for training and equipping of monitoring staff; formal accreditation of monitoring capacities and equipment; there is no access to regulation terms (e.g., meters). Taking into consideration necessities and human requirements as per typical densities in various regions of South Africa, there is a need to construct several groundwater level monitoring stations in a particular segment; the available raw data on groundwater level should be converted into consumable products for example, short reports on delicate areas (e.g., Dolomite compartments, wetlands, aquifers, and sole source) and considering the increasing civil unrest there has been vandalism and theft of groundwater monitoring infrastructure. GIS was employed at the catchment level to plot the relationship between those identified groundwater parameters in the catchment area and the identified borehole. GIS-based maps were designed for groundwater monitoring to be pretested on one borehole in the Jukskei catchment. This data will be used to establish changes in the borehole compared to changes in the catchment area according to identified parameters.Keywords: GIS, monitoring, Jukskei, catchment
Procedia PDF Downloads 989619 Data Mining to Capture User-Experience: A Case Study in Notebook Product Appearance Design
Authors: Rhoann Kerh, Chen-Fu Chien, Kuo-Yi Lin
Abstract:
In the era of rapidly increasing notebook market, consumer electronics manufacturers are facing a highly dynamic and competitive environment. In particular, the product appearance is the first part for user to distinguish the product from the product of other brands. Notebook product should differ in its appearance to engage users and contribute to the user experience (UX). The UX evaluates various product concepts to find the design for user needs; in addition, help the designer to further understand the product appearance preference of different market segment. However, few studies have been done for exploring the relationship between consumer background and the reaction of product appearance. This study aims to propose a data mining framework to capture the user’s information and the important relation between product appearance factors. The proposed framework consists of problem definition and structuring, data preparation, rules generation, and results evaluation and interpretation. An empirical study has been done in Taiwan that recruited 168 subjects from different background to experience the appearance performance of 11 different portable computers. The results assist the designers to develop product strategies based on the characteristics of consumers and the product concept that related to the UX, which help to launch the products to the right customers and increase the market shares. The results have shown the practical feasibility of the proposed framework.Keywords: consumers decision making, product design, rough set theory, user experience
Procedia PDF Downloads 3189618 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions
Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi
Abstract:
This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.Keywords: BNWF method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction
Procedia PDF Downloads 3969617 Determination of the Bank's Customer Risk Profile: Data Mining Applications
Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge
Abstract:
In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.Keywords: client classification, loan suitability, risk rating, CART analysis
Procedia PDF Downloads 3389616 Multi-Label Approach to Facilitate Test Automation Based on Historical Data
Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally
Abstract:
The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.Keywords: machine learning, multi-class, multi-label, supervised learning, test automation
Procedia PDF Downloads 1369615 A Meta-Analysis of School-Based Suicide Prevention for Adolescents and Meta-Regressions of Contextual and Intervention Factors
Authors: E. H. Walsh, J. McMahon, M. P. Herring
Abstract:
Post-primary school-based suicide prevention (PSSP) is a valuable avenue to reduce suicidal behaviours in adolescents. The aims of this meta-analysis and meta-regression were 1) to quantify the effect of PSSP interventions on adolescent suicide ideation (SI) and suicide attempts (SA), and 2) to explore how intervention effects may vary based on important contextual and intervention factors. This study provides further support to the benefits of PSSP by demonstrating lower suicide outcomes in over 30,000 adolescents following PSSP and mental health interventions and tentatively suggests that intervention effectiveness may potentially vary based on intervention factors. The protocol for this study is registered on PROSPERO (ID=CRD42020168883). Population, intervention, comparison, outcomes, and study design (PICOs) defined eligible studies as cluster randomised studies (n=12) containing PSSP and measuring suicide outcomes. Aggregate electronic database EBSCO host, Web of Science, and Cochrane Central Register of Controlled Trials databases were searched. Cochrane bias tools for cluster randomised studies demonstrated that half of the studies were rated as low risk of bias. The Egger’s Regression Test adapted for multi-level modelling indicated that publication bias was not an issue (all ps > .05). Crude and corresponding adjusted pooled log odds ratios (OR) were computed using the Metafor package in R, yielding 12 SA and 19 SI effects. Multi-level random-effects models accounting for dependencies of effects from the same study revealed that in crude models, compared to controls, interventions were significantly associated with 13% (OR=0.87, 95% confidence interval (CI), [0.78,0.96], Q18 =15.41, p=0.63) and 34% (OR=0.66, 95%CI [0.47,0.91], Q10=16.31, p=0.13) lower odds of SI and SA, respectively. Adjusted models showed similar odds reductions of 15% (OR=0.85, 95%CI[0.75,0.95], Q18=10.04, p=0.93) and 28% (OR=0.72, 95%CI[0.59,0.87], Q10=10.46, p=0.49) for SI and SA, respectively. Within-cluster heterogeneity ranged from no heterogeneity to low heterogeneity for SA across crude and adjusted models (0-9%). No heterogeneity was identified for SI across crude and adjusted models (0%). Pre-specified univariate moderator analyses were not significant for SA (all ps < 0.05). Variations in average pooled SA odds reductions across categories of various intervention characteristics were observed (all ps < 0.05), which preliminarily suggests that the effectiveness of interventions may potentially vary across intervention factors. These findings have practical implications for researchers, clinicians, educators, and decision-makers. Further investigation of important logical, theoretical, and empirical moderators on PSSP intervention effectiveness is recommended to establish how and when PSSP interventions best reduce adolescent suicidal behaviour.Keywords: adolescents, contextual factors, post-primary school-based suicide prevention, suicide ideation, suicide attempts
Procedia PDF Downloads 1069614 Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving Target
Authors: Anh Duc Dang, Joachim Horn
Abstract:
This paper presents a new approach to control robots, which can quickly find their swarm while tracking a moving target through the obstacles of the environment. In this approach, an artificial potential field is generated between each free-robot and the virtual attractive point of the swarm. This artificial potential field will lead free-robots to their swarm. The swarm-finding of these free-robots dose not influence the general motion of their swarm and nor other robots. When one singular robot approaches the swarm then its swarm-search will finish, and it will further participate with its swarm to reach the position of the target. The connections between member-robots with their neighbours are controlled by the artificial attractive/repulsive force field between them to avoid collisions and keep the constant distances between them in ordered formation. The effectiveness of the proposed approach has been verified in simulations.Keywords: formation control, potential field method, obstacle avoidance, swarm intelligence, multi-agent systems
Procedia PDF Downloads 4459613 A Variable Neighborhood Search with Tabu Conditions for the Roaming Salesman Problem
Authors: Masoud Shahmanzari
Abstract:
The aim of this paper is to present a Variable Neighborhood Search (VNS) with Tabu Search (TS) conditions for the Roaming Salesman Problem (RSP). The RSP is a special case of the well-known traveling salesman problem (TSP) where a set of cities with time-dependent rewards and a set of campaign days are given. Each city can be visited on any day and a subset of cities can be visited multiple times. The goal is to determine an optimal campaign schedule consist of daily open/closed tours that visit some cities and maximizes the total net benefit while respecting daily maximum tour duration constraints and the necessity to return campaign base frequently. This problem arises in several real-life applications and particularly in election logistics where depots are not fixed. We formulate the problem as a mixed integer linear programming (MILP), in which we capture as many real-world aspects of the RSP as possible. We also present a hybrid metaheuristic algorithm based on a VNS with TS conditions. The initial feasible solution is constructed via a new matheuristc approach based on the decomposition of the original problem. Next, this solution is improved in terms of the collected rewards using the proposed local search procedure. We consider a set of 81 cities in Turkey and a campaign of 30 days as our largest instance. Computational results on real-world instances show that the developed algorithm could find near-optimal solutions effectively.Keywords: optimization, routing, election logistics, heuristics
Procedia PDF Downloads 1009612 Effect on the Performance of the Nano-Particulate Graphite Lubricant in the Turning of AISI 1040 Steel under Variable Machining Conditions
Authors: S. Srikiran, Dharmala Venkata Padmaja, P. N. L. Pavani, R. Pola Rao, K. Ramji
Abstract:
Technological advancements in the development of cutting tools and coolant/lubricant chemistry have enhanced the machining capabilities of hard materials under higher machining conditions. Generation of high temperatures at the cutting zone during machining is one of the most important and pertinent problems which adversely affect the tool life and surface finish of the machined components. Generally, cutting fluids and solid lubricants are used to overcome the problem of heat generation, which is not effectively addressing the problems. With technological advancements in the field of tribology, nano-level particulate solid lubricants are being used nowadays in machining operations, especially in the areas of turning and grinding. The present investigation analyses the effect of using nano-particulate graphite powder as lubricant in the turning of AISI 1040 steel under variable machining conditions and to study its effect on cutting forces, tool temperature and surface roughness of the machined component. Experiments revealed that the increase in cutting forces and tool temperature resulting in the decrease of surface quality with the decrease in the size of nano-particulate graphite powder as lubricant.Keywords: solid lubricant, graphite, minimum quantity lubrication (MQL), nano–particles
Procedia PDF Downloads 2719611 Cost Benefit Analysis and Adjustments of Corporate Social Responsibility in the Airline Industry
Authors: Roman Asatryan
Abstract:
The decision-making processes in Corporate Social Responsibility (CSR) among firms in general and airlines in particular have to do with the benefits that accrue through those investments. The crux of the matter is not whether to invest in CSR or not, but rather, how firms can quantify the benefits derived from such investments. This paper analyzes the cost benefit adjustment strategies for firms in the airline industry in their CSR strategy adoption and implementation. The adjustment strategies identified will enable firms in the airline industry to have a basis for determining the worth of such CSR investments. This paper discusses the cost and benefit analysis model in order to understand the ways airlines can reduce costs and increase returns on CSR, or balance the cost and benefits. The analysis from this study points to the fact that economic concepts especially the CBA are useful, though they are not without challenges. The challenge arises when it is problematic to express the real impact of the externality in monetary terms. The use of rational maximization of the gains may seem to be a rather optimistic goal mainly because of environmental variability, perceptual uncertainty, and imperfect knowledge about the potential externality. This paper concludes that the CBA model gives a basic understanding of the motivations for investing in intangible assets like CSR. Consequently, it sets the tone for formulating relevant hypothesis in empirical studies in investment in CSR in particular and other intangible assets in business operations.Keywords: cost-benefit analysis, corporate social responsibility, airline industry
Procedia PDF Downloads 3989610 Digital Self-Care Intervention Evaluation from the Perspective of Healthcare Users
Authors: Dina Ziadlou, Anthony Sunjaya, Joyzen Cortez Ramos, Romario Muñoz Ramos, Richard Dasselaar
Abstract:
This study aimed to evaluate the opinions of users using digital health technologies to prevent, promote, and maintain their health and well-being with or without the support of a healthcare provider to delineate an overview of the future patient journey while considering the strategic initiatives in the digital transformation era. This research collected the opinions of healthcare clients through a structural questionnaire to collect user accessibility, user knowledge, user experience, user engagement, and personalized medicine to investigate the mindset of the users and illustrate their opinions, expectations, needs, and voices about digital self-care expansion. In the realm of digital transformation, the accessibility of users to the internet, digital health platforms, tools, and mobile health applications have revolutionized the healthcare ecosystem toward nurturing informed and empowered patients who are tech-savvy and can take the initiative to be in charge of their health, involved in medical decision-making, and seek digital health innovations to prevent diseases and promote their healthy lifestyles. Therefore, the future of the patient journey is digital self-care intervention in a healthcare ecosystem where the partnership of patients in healthcare services is tied to their health information and action ownership.Keywords: digital health, patient engagement, self-care intervention, digital self-care intervention, digital transformation
Procedia PDF Downloads 439609 Extending BDI Multiagent Systems with Agent Norms
Authors: Francisco José Plácido da Cunha, Tassio Ferenzini Martins Sirqueira, Marx Leles Viana, Carlos José Pereira de Lucena
Abstract:
Open Multiagent Systems (MASs) are societies in which heterogeneous and independently designed entities (agents) work towards similar, or different ends. Software agents are autonomous and the diversity of interests among different members living in the same society is a fact. In order to deal with this autonomy, these open systems use mechanisms of social control (norms) to ensure a desirable social order. This paper considers the following types of norms: (i) obligation — agents must accomplish a specific outcome; (ii) permission — agents may act in a particular way, and (iii) prohibition — agents must not act in a specific way. All of these characteristics mean to encourage the fulfillment of norms through rewards and to discourage norm violation by pointing out the punishments. Once the software agent decides that its priority is the satisfaction of its own desires and goals, each agent must evaluate the effects associated to the fulfillment of one or more norms before choosing which one should be fulfilled. The same applies when agents decide to violate a norm. This paper also introduces a framework for the development of MASs that provide support mechanisms to the agent’s decision-making, using norm-based reasoning. The applicability and validation of this approach is demonstrated applying a traffic intersection scenario.Keywords: BDI agent, BDI4JADE framework, multiagent systems, normative agents
Procedia PDF Downloads 2379608 Knowledge Discovery and Data Mining Techniques in Textile Industry
Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler
Abstract:
This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.Keywords: data mining, textile production, decision trees, classification
Procedia PDF Downloads 3579607 The Role Played by Awareness and Complexity through the Use of a Logistic Regression Analysis
Authors: Yari Vecchio, Margherita Masi, Jorgelina Di Pasquale
Abstract:
Adoption of Precision Agriculture (PA) is involved in a multidimensional and complex scenario. The process of adopting innovations is complex and social inherently, influenced by other producers, change agents, social norms and organizational pressure. Complexity depends on factors that interact and influence the decision to adopt. Farm and operator characteristics, as well as organizational, informational and agro-ecological context directly affect adoption. This influence has been studied to measure drivers and to clarify 'bottlenecks' of the adoption of agricultural innovation. Making decision process involves a multistage procedure, in which individual passes from first hearing about the technology to final adoption. Awareness is the initial stage and represents the moment in which an individual learns about the existence of the technology. 'Static' concept of adoption has been overcome. Awareness is a precondition to adoption. This condition leads to not encountering some erroneous evaluations, arose from having carried out analysis on a population that is only in part aware of technologies. In support of this, the present study puts forward an empirical analysis among Italian farmers, considering awareness as a prerequisite for adoption. The purpose of the present work is to analyze both factors that affect the probability to adopt and determinants that drive an aware individual to not adopt. Data were collected through a questionnaire submitted in November 2017. A preliminary descriptive analysis has shown that high levels of adoption have been found among younger farmers, better educated, with high intensity of information, with large farm size and high labor-intensive, and whose perception of the complexity of adoption process is lower. The use of a logit model permits to appreciate the weight played by the intensity of labor and complexity perceived by the potential adopter in PA adoption process. All these findings suggest important policy implications: measures dedicated to promoting innovation will need to be more specific for each phase of this adoption process. Specifically, they should increase awareness of PA tools and foster dissemination of information to reduce the degree of perceived complexity of the adoption process. These implications are particularly important in Europe where is pre-announced the reform of Common Agricultural Policy, oriented to innovation. In this context, these implications suggest to the measures supporting innovation to consider the relationship between various organizational and structural dimensions of European agriculture and innovation approaches.Keywords: adoption, awareness, complexity, precision agriculture
Procedia PDF Downloads 1409606 Analysis of Municipal Solid Waste Management in Nigeria
Authors: Anisa Gumel
Abstract:
This study examines the present condition of solid waste management in Nigeria. The author explores the challenges and opportunities affecting municipal solid waste management in "Nigeria" and determines the most profound challenges by analysing the interdependence and interrelationship among identified variables. In this study, multiple stakeholders, including 15 waste management professionals interviewed online, were utilised to identify the difficulties and opportunities affecting municipal solid waste in Nigeria. The interviews were transcribed and coded using NVivo to produce pertinent variables. An online survey of Nigerian internet and social media users was done to validate statements made by experts on the identified variable. In addition, a panel of five experts participated in a focus group discussion to discover the most influential factors that influence municipal solid waste management in Nigeria by analysing the interrelationships as well as the driving and reliant power of variables. The results show significant factors affecting municipal solid waste in Nigeria, including inadequate funding, lack of knowledge, and absence of legislation, as well as behavioural, financial, technological, and legal concerns grouped into five categories. Some claims stated by experts in the interview are supported by the survey data, while others are not. In addition, the focus group reveals patterns, correlations, and driving forces between variables that have been analysed. This study will provide decision-makers with a roadmap for resolving important waste management concerns in Nigeria and managing scarce resources effectively. It will also help non-governmental organisations combat malaria in Nigeria and other underdeveloped nations. In addition, the work contributes to the literature for future scholars to consult.Keywords: municipal solid waste, stakeholders, public, experts
Procedia PDF Downloads 869605 Investigating the Relationship of Social Capital with Student's Aggressive Behavior: Case Study of Male Students of Middle School in Isfahan
Authors: Mohammadreza Kolaei, Vahid Ghasemi, Ebrahim Ansari
Abstract:
This research was carried out with the aim of investigating the relationship between social capital and aggressive behavior of students (Case study: male students of middle school in Isfahan). In terms of methodology, this research is an applied research which is done by descriptive-analytical method and survey method. The instrument for collecting the data was a questionnaire consisting of: questionnaire for measuring aggressive behavior and social capital questionnaire, which was used after the validity and reliability of this questionnaire. On the other hand, the statistical population of the study consisted of all students in the guidance school of Isfahan in the academic year of 2016. For determining the sample size, the Kerjesy and Morgan tables were used and the sampling method of this multi-stage random sampling was used. After collecting the data, they were analyzed by SPSS software. The findings of the research showed that at 95% confidence level, the student's social capital increases, reducing his aggressiveness. Also, the amount of student aggression is estimated at 4% according to its social capital. Also, with increasing social capital of the school, the student's student aggression is reduced, with the student's student aggression's exposure to her social capital being estimated at 3%. On the other hand, increasing the amount of mother's presence in the home decreases the amount of student aggression. Also, the amount of student aggression is estimated at 1% according to the amount of mother's presence in her home. Ultimately, the amount of student aggression decreases with increasing presence of father at home. Also, the amount of student aggression is estimated at 2% according to the variable of father's presence in his home.Keywords: investigating, social capital, aggressive behavior, students, middle school, Isfahan
Procedia PDF Downloads 2929604 Bystanders' Behavior during Emergencies
Authors: Alan (Avi) Kirschenbaum, Carmit Rapaport
Abstract:
The behavior of bystanders in emergencies and disasters have been examined for over 50 years. Such acts have been cited as contributing to saving lives in terms of providing first responder help until official emergency units can arrive. Several reasons have been suggested for this type of behavior but most focused on a broad segment of individual psychological decision-making processes. Recent theoretical evidence suggests that the external factors for such bystander decisions, mainly disaster community based social contexts factors, are also important. We aim to test these competing arguments. Specifically, we examine alternative explanatory perspectives by focusing on self-efficacy as a proxy for the accepted individual psychological case and contrast it with potential bystander characteristics of the individual as well factors as embedded in the social context of the disaster community. To do so, we will utilize a random sampling of the population from a field study of an urban community in Israel that experienced five years of continuous terror attacks. The results strongly suggest that self-efficacy, as well as external factors: preparedness and having skills for intervention during emergencies along with gender best, predict potential helping behaviors. These results broaden our view of bystander behavior and open a window for enhancing this phenomenon as another element in disaster and crisis management.Keywords: bystander behavior, disasters emergencies, psychological motivation to help, social context for helping
Procedia PDF Downloads 126