Search results for: material structure changing
12291 Anharmonic Behavior in BaTiO3: Investigation by Raman Spectroscopy
Authors: M. D. Fontana, I. Bejaoui Ouni, D. Chapron, H. Aroui
Abstract:
BaTiO3 (BT) is a well known ferroelectric material which has been thoroughly studied during several decades since it undergoes successive cubic-tetragonal-orthorhombic-rhombohedral phase transitions on cooling. It has several ferroelectric properties that allow it to be a good material for electronic applications such as the design of ferroelectric memories and pyroelectric elements. In the present work, we report the analysis of temperature dependence of Raman frequency and damping of the A1 modes polarized along the FE c axis as well as the optical phonons E corresponding to the ionic motions in the plane normal to c. Measurements were carried out at different temperatures ranging from 298 to 408 K (tetragonal phase) within different scattering configurations. Spectroscopic parameters of BT have determined using a high resolution Raman spectrometer and a fitting program. All the first order frequency modes exhibit a quasi linear decrease as function of the temperature, except for the A1[TO1], E[TO2] and E[TO4] lines which reveal a parabolic dependence illustrating an anharmonic process. The phonon frequency downshifts and damping evolutions are interpreted in terms of normal volume expansion and third- and fourth-order anharmonic potentials.Keywords: BaTiO3, Raman spectroscopy, frequency, damping, anharmonic potential
Procedia PDF Downloads 30012290 Relationship between Blow Count Number (N) and Shear Wave Velocity (Vs30) from the Specified Embankment Material: A Case Study on Three Selected Earthen Dams
Authors: Tanapon Suklim, Prachaya Intaphrom, Noppadol Poomvises, Anchalee Kongsuk
Abstract:
The relationship between shear wave velocity (Vs30) and blow count Number from Standard Penetration Tests (NSPT) was investigated on specified embankment dam to find the solution which can be used to estimate the value of N. Shear wave velocity, Vs30 and blow count number, NSPT were performed at three specified dam sites. At each site, Vs30 measurement was recorded by using seismic survey of MASW technique and NSPT were measured by field Standard Penetration Test. Regression analysis was used to derive statistical relation. The relation is giving a final solution to applicable calculated N-value with other earthen dam. Dam engineer can use the statistical relation to convert field Vs30 to estimated N-value instead of absolute N-value from field Standard Penetration Test. It can be noted that the formulae can be applied only in the earthen dam of specified material.Keywords: blow count number, earthen dam, embankment, shear wave velocity
Procedia PDF Downloads 23612289 The Traffic Congestion in Biskra in Algeria
Authors: Selatnia Khaled Grine Ikram
Abstract:
The city of Biskra, like other Algerian cities, knows of urban traffic congestion. The concentration of investments especially in the secondary and tertiary sectors in the Wilaya has attracted a large rural population. The latter, combined with the high rate of natural growing, favored the imbalance of the spatial frame of wilayal system and consequently the traffic congestion of the primate city (Biskra). This urban disease is explained by a two-tier development. The capital of Wilaya growing faster than its others centers body and takes measurements of proportion to the whole. The consequences can only be negative. The pressure on the roads, the growth of the fleet, overloading of equipment and activities have become the characteristics of the city of Biskra, which can no longer meet the needs of its inhabitants. This research attempts to show the relationship between urban congestion of the primate city and the imbalance of the spatial structure of the micro-regional urban system.Keywords: traffic congestion, spatial structure, pressure on the roads, equipment and activities
Procedia PDF Downloads 67812288 High Heating Value Bio-Chars from a Bio-Oil Upgrading Process
Authors: Julius K. Gane, Mohamad N. Nahil, Paul T. Williams
Abstract:
In today’s world of rapid population growth and a changing climate, one way to mitigate various negative effects is via renewable energy solutions. Energy and power as basic requirements in almost all human endeavours are also the banes of the changing climate and the impacts thereof. Thus it is crucial to develop innovative and environmentally friendly energy options to ameliorate various negative repercussions. Upgrading of fast pyrolysis bio-oil via hydro-treatment offers such opportunities, as quality renewable liquid transportation fuels can be produced. The process, however, is typically accompanied by bio-char formation as a by-product. The goal of this work was to study the yield and some properties of bio-chars formed from a hydrotreatment process, with an overall aim to promote the valuable utilization of wastes or by-products from renewable energy technologies. It is assumed that bio-chars that have comparable energy contents with coals will be more desirable as solid energy materials due to renewability and environmental friendliness. Therefore, the analytical work in this study focused mainly on determining the higher heating value (HHV) of the chars. The method involved the reaction of bio-oil in an autoclave supplied by the Parr Instrument Company, IL, USA. Two main parameters (different temperatures and resident times) were investigated. The chars were characterized using a Thermo EA2000 CHNS analyser, then oxygen contents and HHVs computed based on the literature. From the results, these bio-chars can readily serve as feedstocks for the production of renewable solid fuels. Their HHVs ranged between 29.26-39.18 MJ/kg, affected by different temperatures and retention times. There was an inverse relationship between the oxygen content and the HHVs of the chars. It can, therefore, be concluded that it is possible to optimize the process efficiency of the hydrotreatment process used through the production of renewable energy materials from the 'waste’ char by-products. Future work should consider developing a suitable balance between the primary objective of bio-oil upgrading processes (which is to improve the quality of the liquid fuels) and the conversion of its solid wastes into value-added products such as smokeless briquettes.Keywords: bio-char, renewable solid biofuels, valorisation, waste-to-energy
Procedia PDF Downloads 12812287 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition
Authors: M. Beusink, E. W. C. Coenen
Abstract:
The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures
Procedia PDF Downloads 23312286 Investigation of Suitability of Dredged Wastes for Production of Bricks
Authors: B. Adebayo, A. O. Omotehinse, C. Arum
Abstract:
This study investigates the suitability of dredged samples for the production of bricks. Some geotechnical properties (moisture content, grain size distribution) of dredged samples were also determined using the British Standard. Bricks were produced using appropriate mixes of two dredged wastes. The dredged samples (Oroto dredged samples and Igbokoda dredged samples) have high moisture content of 90.48 % and 37.5 % respectively and both are classified as silty materials. The two dredged samples were mixed in different percentage (1- Oroto dredged sample (DS) 85 % and Igbokoda dredged sample (IS) 15 %, 2-DS 70 % and IS 30 %, 3- DS 55 % and IS 45 %, 4- DS 50 % and IS 50 %, 5- DS 45 % and IS 55 %,6- DS 30 % and IS 70 %, 7- DS 15 % and IS 85 %, 8- Clay 100 %, 9- DS 100 %, 10-IS 100 %) for the production of bricks and were tested for 7 days, 14 days, 21 days and 28 days. Although, the water absorption level of the bricks produced were high (5.635 to 33.4 %), the compressive strength on the 28th day was within the accepted British Standard. The Igbokoda dredge sample is a good material for the production of bricks when mixed with Oroto Dredged sample because the compressive strength of the material is within the accepted limit.Keywords: bricks, dredged, moisture content, suitability
Procedia PDF Downloads 23912285 Terahertz Surface Plasmon in Carbon Nanotube Dielectric Interface via Amplitude Modulated Laser
Authors: Monika Singh
Abstract:
A carbon nanotube thin film coated on dielectric interface is employed to produce THz surface plasma wave (SPW). The carbon nanotube has its plasmon frequency in the THz range. The SPW field falls off away from the metal film both inside the dielectric as well as in free space. An amplitude modulated laser pulse normally incident, from free space on slow wave structure, exert a modulation frequency ponderomotive force on the free electrons of the CNT film and resonantly excite the THz surface plasma wave at the modulation frequency. Carbon nanotube based plasmonic nano-structure materials provides potentially more versatile approach to tightly confined surface modes in the THz range in comparison to noble metals.Keywords: surface plasmons, surface waves, thin films, THz radiation
Procedia PDF Downloads 39212284 Supplier Carbon Footprint Methodology Development for Automotive Original Equipment Manufacturers
Authors: Nur A. Özdemir, Sude Erkin, Hatice K. Güney, Cemre S. Atılgan, Enes Huylu, Hüseyin Y. Altıntaş, Aysemin Top, Özak Durmuş
Abstract:
Carbon emissions produced during a product’s life cycle, from extraction of raw materials up to waste disposal and market consumption activities are the major contributors to global warming. In the light of the science-based targets (SBT) leading the way to a zero-carbon economy for sustainable growth of the companies, carbon footprint reporting of the purchased goods has become critical for identifying hotspots and best practices for emission reduction opportunities. In line with Ford Otosan's corporate sustainability strategy, research was conducted to evaluate the carbon footprint of purchased products in accordance with Scope 3 of the Greenhouse Gas Protocol (GHG). The purpose of this paper is to develop a systematic and transparent methodology to calculate carbon footprint of the products produced by automotive OEMs (Original Equipment Manufacturers) within the context of automobile supply chain management. To begin with, primary material data were collected through IMDS (International Material Database System) corresponds to company’s three distinct types of vehicles including Light Commercial Vehicle (Courier), Medium Commercial Vehicle (Transit and Transit Custom), Heavy Commercial Vehicle (F-MAX). Obtained material data was classified as metals, plastics, liquids, electronics, and others to get insights about the overall material distribution of produced vehicles and matched to the SimaPro Ecoinvent 3 database which is one of the most extent versions for modelling material data related to the product life cycle. Product life cycle analysis was calculated within the framework of ISO 14040 – 14044 standards by addressing the requirements and procedures. A comprehensive literature review and cooperation with suppliers were undertaken to identify the production methods of parts used in vehicles and to find out the amount of scrap generated during part production. Cumulative weight and material information with related production process belonging the components were listed by multiplying with current sales figures. The results of the study show a key modelling on carbon footprint of products and processes based on a scientific approach to drive sustainable growth by setting straightforward, science-based emission reduction targets. Hence, this study targets to identify the hotspots and correspondingly provide broad ideas about our understanding of how to integrate carbon footprint estimates into our company's supply chain management by defining convenient actions in line with climate science. According to emission values arising from the production phase including raw material extraction and material processing for Ford OTOSAN vehicles subjected in this study, GHG emissions from the production of metals used for HCV, MCV and LCV account for more than half of the carbon footprint of the vehicle's production. Correspondingly, aluminum and steel have the largest share among all material types and achieving carbon neutrality in the steel and aluminum industry is of great significance to the world, which will also present an immense impact on the automobile industry. Strategic product sustainability plan which includes the use of secondary materials, conversion to green energy and low-energy process design is required to reduce emissions of steel, aluminum, and plastics due to the projected increase in total volume by 2030.Keywords: automotive, carbon footprint, IMDS, scope 3, SimaPro, sustainability
Procedia PDF Downloads 10812283 Controllable Modification of Glass-Crystal Composites with Ion-Exchange Technique
Authors: Andrey A. Lipovskii, Alexey V. Redkov, Vyacheslav V. Rusan, Dmitry K. Tagantsev, Valentina V. Zhurikhina
Abstract:
The presented research is related to the development of recently proposed technique of the formation of composite materials, like optical glass-ceramics, with predetermined structure and properties of the crystalline component. The technique is based on the control of the size and concentration of the crystalline grains using the phenomenon of glass-ceramics decrystallization (vitrification) induced by ion-exchange. This phenomenon was discovered and explained in the beginning of the 2000s, while related theoretical description was given in 2016 only. In general, the developed theory enables one to model the process and optimize the conditions of ion-exchange processing of glass-ceramics, which provide given properties of crystalline component, in particular, profile of the average size of the crystalline grains. The optimization is possible if one knows two dimensionless parameters of the theoretical model. One of them (β) is the value which is directly related to the solubility of crystalline component of the glass-ceramics in the glass matrix, and another (γ) is equal to the ratio of characteristic times of ion-exchange diffusion and crystalline grain dissolution. The presented study is dedicated to the development of experimental technique and simulation which allow determining these parameters. It is shown that these parameters can be deduced from the data on the space distributions of diffusant concentrations and average size of crystalline grains in the glass-ceramics samples subjected to ion-exchange treatment. Measurements at least at two temperatures and two processing times at each temperature are necessary. The composite material used was a silica-based glass-ceramics with crystalline grains of Li2OSiO2. Cubical samples of the glass-ceramics (6x6x6 mm3) underwent the ion exchange process in NaNO3 salt melt at 520 oC (for 16 and 48 h), 540 oC (for 8 and 24 h), 560 oC (for 4 and 12 h), and 580 oC (for 2 and 8 h). The ion exchange processing resulted in the glass-ceramics vitrification in the subsurface layers where ion-exchange diffusion took place. Slabs about 1 mm thick were cut from the central part of the samples and their big facets were polished. These slabs were used to find profiles of diffusant concentrations and average size of the crystalline grains. The concentration profiles were determined from refractive index profiles measured with Max-Zender interferometer, and profiles of the average size of the crystalline grains were determined with micro-Raman spectroscopy. Numerical simulation were based on the developed theoretical model of the glass-ceramics decrystallization induced by ion exchange. The simulation of the processes was carried out for different values of β and γ parameters under all above-mentioned ion exchange conditions. As a result, the temperature dependences of the parameters, which provided a reliable coincidence of the simulation and experimental data, were found. This ensured the adequate modeling of the process of the glass-ceramics decrystallization in 520-580 oC temperature interval. Developed approach provides a powerful tool for fine tuning of the glass-ceramics structure, namely, concentration and average size of crystalline grains.Keywords: diffusion, glass-ceramics, ion exchange, vitrification
Procedia PDF Downloads 26912282 Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture
Authors: Xia Chen, Hua-Quan Yang, Shi-Hua Zhou
Abstract:
Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C3A and C2S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture.Keywords: concrete, mineral admixture, hydration, structure
Procedia PDF Downloads 32612281 High Strength Steel Thin-Walled Cold-Formed Profiles Manufactured for Automated Rack Supported Warehouses
Authors: A. Natali, F. V. Lippi, F. Morelli, W. Salvatore, J. H. M. De Paula Filho, P. Pol
Abstract:
Automated Rack Supported Warehouses (ARSWs) are storage buildings whose load-bearing structure is made of the same steel racks where goods are stocked. These racks are made of cold formed elements, and the main supporting structure is repeated several times along the length of the building, resulting in a huge quantity of steel. The possibility of using high strength steel to manufacture the traditional cold-formed profiles used for ARSWs is numerically investigated, with the aim of reducing the necessary steel quantity but guaranteeing optimal structural performance levels.Keywords: steel racks, automated rack supported warehouse, thin-walled cold-formed elements, high strength steel, structural optimization
Procedia PDF Downloads 15712280 Mechanical Study Printed Circuit Boards Bonding for Jefferson Laboratory Detector
Authors: F. Noto, F. De Persio, V. Bellini, G. Costa. F. Mammoliti, F. Meddi, C. Sutera, G. M. Urcioli
Abstract:
One plane X and one plane Y of silicon microstrip detectors will constitute the front part of the Super Bigbite Spectrometer that is under construction and that will be installed in the experimental Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory), located in Newport News, Virgina, USA. Each plane will be made up by two nearly identical, 300 μm thick, 10 cm x 10.3 cm wide silicon microstrip detectors with 50 um pitch, whose electronic signals will be transferred to the front-end electronic based on APV25 chips through C-shaped FR4 Printed Circuit Boards (PCB). A total of about 10000 strips are read-out. This paper treats the optimization of the detector support structure, the materials used through a finite element simulation. A very important aspect of the study will also cover the optimization of the bonding parameters between detector and electronics.Keywords: FEM analysis, bonding, SBS tracker, mechanical structure
Procedia PDF Downloads 33912279 Comparison of Numerical Results of Lambda Wing under Different Turbulence Models and Wall Y+
Authors: Hsien Hao Teng
Abstract:
This study uses numerical simulation to analyze the aerodynamic characteristics of the 53-degree Lambda wing with a sweep angle and mainly discusses the numerical simulation results and physical characteristics of the wall y+. Use the commercial software Fluent to execute Mach number 0.15; when the angle of attack attitude is between 0 degrees and 27 degrees, the physical characteristics of the overall aerodynamic force are analyzed, especially when the fluid separation and vortex structure changes are discussed under the condition of high angle of attack, it will affect The instability of pitching moment. In the numerical calculation, the use of wall y+ and turbulence model will affect the prediction of vortex generation and the difference in structure. The analysis results are compared with experimental data to discuss the trend of the aerodynamic characteristics of the Lambda wing.Keywords: lambda wing, wall function, turbulence model, computational fluid dynamics
Procedia PDF Downloads 25412278 Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly
Authors: Merve Tunay Çetin, Ali Kurşun, Erhan Çetin, Halil Aykul
Abstract:
In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene is put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3 min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures.Keywords: cantilever beam, elastic stress analysis, orientation angle, thermoplastic
Procedia PDF Downloads 50012277 Experimental Assessment of Micromechanical Models for Mechanical Properties of Recycled Short Fiber Composites
Authors: Mohammad S. Rouhi, Magdalena Juntikka
Abstract:
Processing of polymer fiber composites has a remarkable influence on their mechanical performance. These mechanical properties are even more influenced when using recycled reinforcement. Therefore, we place particular attention on the evaluation of micromechanical models to estimate the mechanical properties and compare them against the experimental results of the manufactured composites. For the manufacturing process, an epoxy matrix and carbon fiber production cut-offs as reinforcing material are incorporated using a vacuum infusion process. In addition, continuous textile reinforcement in combination with the epoxy matrix is used as reference material to evaluate the kick-down in mechanical performance of the recycled composite. The experimental results show less degradation of the composite stiffness compared to the strength properties. Observations from the modeling also show the same trend as the error between the theoretical and experimental results is lower for stiffness comparisons than the strength calculations. Yet still, good mechanical performance for specific applications can be expected from these materials.Keywords: composite recycling, carbon fibers, mechanical properties, micromechanics
Procedia PDF Downloads 16112276 Study of the Performance of Metal Tanks with a Floating Roof
Authors: Rezki Akkouche
Abstract:
This work exposes metal tanks in general and floating roofs in particular by listing the codes and standards which study this kind of structure. Initial research discusses the types of tanks, how they are designed, and the disadvantages and advantages that each type has. Then, in-depth research was carried out carefully in order to popularize the floating roof tank and the principles of its design and operation while defining the different types of this kind of roof, how and what they are designed, naming the main installation accessories for these roofs and the dangers that a malfunction of these accessories would cause, also exposing the problems likely to be encountered on these roofs and the considerable and important advantages that floating roof tanks bring. A simplification of the two API 650 and Eurocode 3 regulations - Tanks part - has been made by explaining and mentioning the design rules and laws of this type of structure. Thus a comparison of the two regulations is accomplished by exemplifying this with a study of an actual project.Keywords: tanks of metal, floating roof, performance, comparative analysis
Procedia PDF Downloads 12912275 Understanding Project Failures in Construction: The Critical Impact of Financial Capacity
Authors: Nnadi Ezekiel Oluwaseun Ejiofor
Abstract:
This research investigates the effects of poor cost estimation, material cost variations, and payment punctuality on the financial health and execution of construction projects in Nigeria. To achieve the objectives of the study, a quantitative research approach was employed, and data was gathered through an online survey of 74 construction industry professionals consisting of quantity surveyors, contractors, and other professionals. The study surveyed input on cost estimation errors, price fluctuations, and payment delays, among other factors. The responses of the respondents were analyzed using a five-point Likert scale and the Relative Importance Index (RII). The findings demonstrated that the errors in cost estimating in the Bill of Quantity (BOQ) have a high degree of negative impact on the reputation and image of the participants in the projects. The greatest effect was experienced on the likelihood of obtaining future endeavors for contractors (mean value = 3.42), followed by the likelihood of obtaining new commissions by quantity surveyors (mean value = 3.40). The level of inaccuracy in costing that undershoots exposes them to risks was most serious in terms of easement of construction and effects of shortage of funds to pursue bankruptcy (hence fears of mean value = 3.78). There was also considerable financial damage as a result of cost underestimation, whereby contractors suffered the worst loss in profit (mean value = 3.88). Every expense comes with its own peculiar risk and uncertainty. Pressure on the cost of materials and every other expense attributed to the building and completion of a structure adds risks to the performance figures of a project. The greatest weight (mean importance score = 4.92) was attributed to issues like market inflation in building materials, while the second greatest weight (mean importance score = 4.76) was due to increased transportation charges. On the other hand, delays in payments arising from issues of the clients like poor availability of funds (RII=0.71) and contracting issues such as disagreements on the valuation of works done (RII=0.72) or other reasons were also found to lead to project delays and additional costs. The results affirm the importance of proper cost estimation on the health of organization finances and project risks and finishes within set time limits. As for the suggestions, it is proposed to progress on the methods of costing, engender better communications with the stakeholders, and manage the delays by way of contracting and financial control. This study enhances the existing literature on construction project management by suggesting ways to deal with adverse cost inaccuracies and availability of materials due to delays in payments which, if addressed, would greatly improve the economic performance of the construction business.Keywords: cost estimation, construction project management, material price fluctuations, payment delays, financial impact
Procedia PDF Downloads 812274 Removal of Lead from Aqueous Solutions by Biosorption on Pomegranate Skin: Kinetics, Equilibrium and Thermodynamics
Authors: Y. Laidani, G. Henini, S. Hanini, A. Labbaci, F. Souahi
Abstract:
In this study, pomegranate skin, a material suitable for the conditions in Algeria, was chosen as adsorbent material for removal of lead in an aqueous solution. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, the initial concentration of metal, and temperature. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g, 0.035 mg/g; 1.25 g, 0.096 mg/g). The maximum biosorption occurred at pH value of 8 for the lead. The equilibrium uptake was increased with an increase in the initial concentration of metal in solution (Co = 4 mg/L, qt = 1.2 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficients (R2 > 0.995) and a maximum monolayer adsorption capacity of 0.85 mg/g for lead. The adsorption of the lead was exothermic in nature (ΔH° = -17.833 kJ/mol for Pb (II). The reaction was accompanied by a decrease in entropy (ΔS° = -0.056 kJ/K. mol). The Gibbs energy (ΔG°) increased from -1.458 to -0.305 kJ/mol, respectively for Pb (II) when the temperature was increased from 293 to 313 K.Keywords: biosorption, Pb (+II), pomegranate skin, wastewater
Procedia PDF Downloads 27012273 Thermoelastic Analysis of a Tube Subjected to Internal Heating with Temperature Dependent Material Properties
Authors: Yasemin Kaya, Ahmet N. Eraslan
Abstract:
In this study, the thermoelastic behavior of a long tube is studied by taking into account the temperature dependency of all mechanical and thermal properties. As the tube is heated slowly, an uncoupled solution procedure is adopted under free and radially constrained boundary conditions. The nonlinear heat conduction equation is solved by a finite element collocation procedure and the corresponding distributions of stress and strain are computed by shooting iterations. The computational model is verified in comparison to the analytical solution by shutting down the temperature dependency of physical properties. In the analysis, experimental data available in the literature is used to describe the coefficient of thermal expansion $\alpha$, the thermal conductivity $k$, the modulus of rigidity $G$, the yield strength $\sigma_{0}$, and the Poisson's ratio $\nu$ of Nickel. Results of the analysis are presented in comparison to those having constant physical properties. As a result of the calculations, the temperature dependency of the material properties should be taken into account at higher temperature ranges.Keywords: thermoelasticity, long tube, temperature-dependent properties, internal heating
Procedia PDF Downloads 61312272 Engineered Reactor Components for Durable Iron Flow Battery
Authors: Anna Ivanovskaya, Alexandra E. L. Overland, Swetha Chandrasekaran, Buddhinie S. Jayathilake
Abstract:
Iron-based redox flow batteries (IRFB) are promising for grid-scale storage because of their low-cost and environmental safety. Earth-abundant iron can enable affordable grid-storage to meet DOE’s target material cost <$20/kWh and levelized cost for storage $0.05/kWh. In conventional redox flow batteries, energy is stored in external electrolyte tanks and electrolytes are circulated through the cell units to achieve electrochemical energy conversions. However, IRFBs are hybrid battery systems where metallic iron deposition at the negative side of the battery controls the storage capacity. This adds complexity to the design of a porous structure of 3D-electrodes to achieve a desired high storage capacity. In addition, there is a need to control parasitic hydrogen evolution reaction which accompanies the metal deposition process, increases the pH, lowers the energy efficiency, and limits the durability. To achieve sustainable operation of IRFBs, electrolyte pH, which affects the solubility of reactants and the rate of parasitic reactions, needs to be dynamically readjusted. In the present study we explore the impact of complexing agents on maintaining solubility of the reactants and find the optimal electrolyte conditions and battery operating regime, which are specific for IRFBs with additives, and demonstrate the robust operation.Keywords: flow battery, iron-based redox flow battery, IRFB, energy storage, electrochemistry
Procedia PDF Downloads 7812271 Investigate the Performance of SMA-FRP Composite Bars in Seismic Regions under Corrosion Conditions
Authors: Amirmozafar Benshams, Saman Shafeinejad, Mohammad Zaman Kabir, Farzad Hatami, Mohammadreza Khedmati, Mesbah Saybani
Abstract:
Steel bars has been used in concrete structures for more than one hundred years but lack of corrosion resistance of steel reinforcement has resulted in many structural failures. Fiber Reinforced Polymer (FRP) bar is an acceptable solution to replace steel to mitigate corrosion problem. Since FRP is a brittle material its use in seismic region has been a concern. FRP RC structures can be made ductile by employing a ductile material such as Shape Memory Alloy (SMA) at the plastic hinge region and FRP at the other regions on the other hand SMA is highly resistant to corrosion. Shape Memory Alloy has the unique ability to undergo large inelastic deformation and regain its initial shape through stress removal therefore utilizing composite SMA-FRP bars not only have good corrosion resistance but also have good performance in seismic region. The result show indicate that such composite SMA-FRP bars can substantially reduce the residual drift with adequate energy dissipation capacity during earthquake.Keywords: steel bar, shape memory alloy, FRP, corrosion
Procedia PDF Downloads 39512270 Evaluation of a Hybrid Configuration for Active Space Radiation Bio-Shielding
Authors: Jiahui Song, Ravindra P. Joshi
Abstract:
One of the biggest obstacles to human space exploration of the solar system is the risk posed by prolonged exposure to space radiation. It is generally agreed that particles with energies around 1-2 GeV per nucleon are the most damaging to humans. Passive shielding techniques entail using solid material to create a shield that prevents particles from penetrating a given region by absorbing the energy of incident particles. Previous techniques resulted in adding ‘dead mass’ to spacecraft, which is not an economically viable solution. Additionally, collisions of the incoming ionized particles with traditional passive protective material lead to secondary radiation. This study develops an enhanced hybrid active space radiation bio-shielding concept, a combination of the electrostatic and magnetostatic shielding, by varying the size of the magnetic ring, and by having multiple current-carrying rings, to mitigate the biohazards of severe space radiation for the success of deep-space explorations. The simulation results show an unprecedented reduction of 1GeV GCR (Galactic Cosmic Rays) proton transmission to about 15%.Keywords: bio-shielding, electrostatic, magnetostatic, radiation
Procedia PDF Downloads 39412269 Distribution and Community Structure of Fish in Relation with Water Physico-chemical Parameters of Floodplain Rivers in the Alitash National Park, Ethiopia
Authors: Alamrew Eyayu
Abstract:
Riverine ecosystems are highly exposed to different forms of human activities, and different water features can affect fish distribution in such habitats. Tributaries of the Abbay and Tekeze Basins are supporting all life-requesting activities in Ethiopia. Fisheries of these habitats are also the mainstay of livelihoods. However, brutal human activities are affecting these ecosystems and the fish therein. This study was thus undertaken to examine fish distribution and community structure in relation to water parameters in Ayima, Gelegu and Shinfa Rivers. 2719 fish specimens identified into 43 species were sampled using gillnets, cast nets and electro-fishing on a seasonal campaign. Based on frequency of occurrence (%FO), 5 species fell in the ‘euconstant occurrence’ category or their FO was ≥75%, while many species were in the ‘constant occurrence’ category. Among others, site depth, total phosphorus, dissolved oxygen, and river channel diameter were key environmental factors determining fish community structure. Similarity percentage produced an overall average Bray-Curtis dissimilarity of 60.8% between the fish communities of the three rivers. The final model accounted for 77.2% of the total variance in fish composition, and all canonical axes were significant (Monte Carlo test 499, p =0.002). Generally, this study was conducted in areas where no ecological studies are undertaken, and the results obtained from this study could be important for the sustainable utilization of Ethiopian fisheries.Keywords: fish biology, fisheries socioeconomics, aquatic biodiversity, fisheries management
Procedia PDF Downloads 2912268 A Cheap Mesoporous Silica from Fly Ash as an Adsorbent for Sulfate in Water
Authors: Ximena Castillo, Jaime Pizarro
Abstract:
This research describes the development of a very cheap mesoporous silica material similar to hexagonal mesoporous silica (HMS) and using a silicate extract as precursor. This precursor is obtained from cheap fly ash by an easy calcination process at 850 °C and a green extraction with water. The obtained mesoporous fly ash material had a surface area of 282 m2 g-1 and a pore size of 5.7 nm. It was functionalized with ethylene diamino moieties via the well-known SAMMS method, followed by a DRIFT analysis that clearly showed the successful functionalization. An excellent adsorbent was obtained for the adsorption of sulfate anions by the solid’s modification with copper forming a copper-ethylenediamine complex. The adsorption of sulfates was studied in a batch system ( experimental conditions: pH=8.0; 5 min). The kinetics data were adjusted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model. The maximum sulfate adsorption capacity of this very cheap fly ash based adsorbent was 146.1 mg g-1, 3 times greater than the values reported in literature and commercial adsorbent materials.Keywords: fly ash, mesoporous materials, SAMMS, sulfate
Procedia PDF Downloads 17712267 Single Chip Controller Design for Piezoelectric Actuators with Mixed Signal FPGA
Authors: Han-Bin Park, Taesam Kang, SunKi Hong, Jeong Hoi Gu
Abstract:
The piezoelectric material is being used widely for actuators due to its large power density with simple structure. It can generate a larger force than the conventional actuators with the same size. Furthermore, the response time of piezoelectric actuators is very short, and thus, it can be used for very fast system applications with compact size. To control the piezoelectric actuator, we need analog signal conditioning circuits as well as digital microcontrollers. Conventional microcontrollers are not equipped with analog parts and thus the control system becomes bulky compared with the small size of the piezoelectric devices. To overcome these weaknesses, we are developing one-chip micro controller that can handle analog and digital signals simultaneously using mixed signal FPGA technology. We used the SmartFusion™ FPGA device that integrates ARM®Cortex-M3, analog interface and FPGA fabric in a single chip and offering full customization. It gives more flexibility than traditional fixed-function microcontrollers with the excessive cost of soft processor cores on traditional FPGAs. In this paper we introduce the design of single chip controller using mixed signal FPGA, SmartFusion™[1] device. To demonstrate its performance, we implemented a PI controller for power driving circuit and a 5th order H-infinity controller for the system with piezoelectric actuator in the FPGA fabric. We also demonstrated the regulation of a power output and the operation speed of a 5th order H-infinity controller.Keywords: mixed signal FPGA, PI control, piezoelectric actuator, SmartFusion™
Procedia PDF Downloads 52012266 Electrochemical and Photoelectrochemical Study of Polybithiophene–MnO2 Composite Films
Authors: H. Zouaoui, D. Abdi, B. Nessark, F. Habelhames, A. Bahloul
Abstract:
Among the conjugated organic polymers, the polythiophenes constitute a particularly important class of conjugated polymers, which has been extensively studied for the relation between the geometrical structure and the optic and electronic properties, while the polythiophene is an intractable material. They are, furthermore, chemically and thermally stable materials, and are very attractive for exploitation of their physical properties. The polythiophenes are extensively studied due to the possibility of synthesizing low band gap materials by using substituted thiophenes as precursors. Low band gap polymers may convert visible light into electricity and some photoelectrochemical cells based on these materials have been prepared. Polythiophenes (PThs) are good candidates for polymer optoelectronic devices such as polymer solar cells (PSCs) polymer light-emitting diodes (PLEDs) field-effect transistors (FETs) electrochromics and biosensors. In this work, MnO2 has been synthesized by hydrothermal method and analyzed by infrared spectroscopy. The polybithiophene+MnO2 composite films were electrochemically prepared by cyclic voltammetry technic on a conductor glass substrate ITO (indium–tin-oxide). The composite films are characterized by cyclic voltammetry, impedance spectroscopy and photoelectrochemical analyses. The results confirmed the presence of manganese dioxide nanoparticles in the polymer layer. An application has been made by using these deposits as an electrode in a photoelectrochemical cell for measuring photocurrent tests. The composite films show a significant photocurrent intensity 80 μA.cm-2.Keywords: polybithiophene, MnO2, photoelectrochemical cells, composite films
Procedia PDF Downloads 35312265 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 62512264 A Study on the Coefficient of Transforming Relative Lateral Displacement under Linear Analysis of Structure to Its Real Relative Lateral Displacement
Authors: Abtin Farokhipanah
Abstract:
In recent years, analysis of structures is based on ductility design in contradictory to strength design in surveying earthquake effects on structures. ASCE07-10 code offers to intensify relative drifts calculated from a linear analysis with Cd which is called (Deflection Amplification Factor) to obtain the real relative drifts which can be calculated using nonlinear analysis. This lateral drift should be limited to the code boundaries. Calculation of this amplification factor for different structures, comparing with ASCE07-10 code and offering the best coefficient are the purposes of this research. Following our target, short and tall building steel structures with various earthquake resistant systems in linear and nonlinear analysis should be surveyed, so these questions will be answered: 1. Does the Response Modification Coefficient (R) have a meaningful relation to Deflection Amplification Factor? 2. Does structure height, seismic zone, response spectrum and similar parameters have an effect on the conversion coefficient of linear analysis to real drift of structure? The procedure has used to conduct this research includes: (a) Study on earthquake resistant systems, (b) Selection of systems and modeling, (c) Analyzing modeled systems using linear and nonlinear methods, (d) Calculating conversion coefficient for each system and (e) Comparing conversion coefficients with the code offered ones and concluding results.Keywords: ASCE07-10 code, deflection amplification factor, earthquake engineering, lateral displacement of structures, response modification coefficient
Procedia PDF Downloads 35412263 Comparative Study of Static and Dynamic Representations of the Family Structure and Its Clinical Utility
Authors: Marietta Kékes Szabó
Abstract:
The patterns of personality (mal)function and the individuals’ psychosocial environment influence the healthy status collectively and may lie in the background of psychosomatic disorders. Although the patients with their diversified symptoms usually do not have any organic problems, the experienced complaint, the fear of serious illness and the lack of social support often lead to increased anxiety and further enigmatic symptoms. The role of the family system and its atmosphere seem to be very important in this process. More studies explored the characteristics of dysfunctional family organization: inflexible family structure, hidden conflicts that are not spoken about by the family members during their daily interactions, undefined role boundaries, neglect or overprotection of the children by the parents and coalition between generations. However, questionnaires that are used to measure the properties of the family system are able to explore only its unit and cannot pay attention to the dyadic interactions, while the representation of the family structure by a figure placing test gives us a new perspective to better understand the organization of the (sub)system(s). Furthermore, its dynamic form opens new perspectives to explore the family members’ joint representations, which gives us the opportunity to know more about the flexibility of cohesion and hierarchy of the given family system. In this way, the communication among the family members can be also examined. The aim of my study was to collect a great number of information about the organization of psychosomatic families. In our research we used Gehring’s Family System Test (FAST) both in static and dynamic forms to mobilize the family members’ mental representations about their family and to get data in connection with their individual representations as well as cooperation. There were four families in our study, all of them with a young adult person. Two families with healthy participants and two families with asthmatic patient(s) were involved in our research. The family members’ behavior that could be observed during the dynamic situation was recorded on video for further data analysis with Noldus Observer XT 8.0 program software. In accordance with the previous studies, our results show that the family structure of the families with at least one psychosomatic patient is more rigid than it was found in the control group and the certain (typical, ideal, and conflict) dynamic representations reflected mainly the most dominant family member’s individual concept. The behavior analysis also confirmed the intensified role of the dominant person(s) in the family life, thereby influencing the family decisions, the place of the other family members, as well as the atmosphere of the interactions, which could also be grasped well by the applied methods. However, further research is needed to learn more about the phenomenon that can open the door for new therapeutic approaches.Keywords: psychosomatic families, family structure, family system test (FAST), static and dynamic representations, behavior analysis
Procedia PDF Downloads 39112262 Application and Evaluation of 3D Printing Technology in Customized Fashion Industry
Authors: A. Ezza, B. M. Babar Ramzan, C. Hira
Abstract:
This study deliberates emerging design activates in 3D printing technology, the paper provides the insight into the broad opportunities in 3D printing applications in fashion world. 3D printing is becoming a reason for reduction of lead time. The process engenders the precise models and one of prototype components for design approbation; trail and testing significance through the production components to be utilized in true working environments. This emerging technology have given elevate to an emergent realm of digitally fabricated art and design. Bitonic Creations, CONTINUUM (3D printed shoes), Jiri Evenhuis, Michael Schmidt have be giving extensive amassments of haute couture dresses and accessories. Cosyflex TM, N12 undergarments are examples of an innovative process for 3D printing. Varied types of liquid polymers such as latex, silicon, polyurethane and Teflon as well as a variety of textile fibers such as cotton, viscose and polyamide enable tailor made fabrics for any need. Patterns, perforations, embossing and embellishments may be created by printing on 3D structure base plate. Computer solidifies material feedstock layer by layer with micro-millimeter detail. In lieu of producing textiles by meter, then cutting and sewing them into final product, 3D printing can become a reason to make sewing equipment obsolete. The findings positively corroborates the expected advantage of 3D printed sample that seem to facilitate the first steps for designer.Keywords: 3D printing, customization, fashion industry, Haute couture
Procedia PDF Downloads 566