Search results for: intercultural competence training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4555

Search results for: intercultural competence training

1765 Variations in Spatial Learning and Memory across Natural Populations of Zebrafish, Danio rerio

Authors: Tamal Roy, Anuradha Bhat

Abstract:

Cognitive abilities aid fishes in foraging, avoiding predators & locating mates. Factors like predation pressure & habitat complexity govern learning & memory in fishes. This study aims to compare spatial learning & memory across four natural populations of zebrafish. Zebrafish, a small cyprinid inhabits a diverse range of freshwater habitats & this makes it amenable to studies investigating role of native environment in spatial cognitive abilities. Four populations were collected across India from waterbodies with contrasting ecological conditions. Habitat complexity of the water-bodies was evaluated as a combination of channel substrate diversity and diversity of vegetation. Experiments were conducted on populations under controlled laboratory conditions. A square shaped spatial testing arena (maze) was constructed for testing the performance of adult zebrafish. The square tank consisted of an inner square shaped layer with the edges connected to the diagonal ends of the tank-walls by connections thereby forming four separate chambers. Each of the four chambers had a main door in the centre. Each chamber had three sections separated by two windows. A removable coloured window-pane (red, yellow, green or blue) identified each main door. A food reward associated with an artificial plant was always placed inside the left-hand section of the red-door chamber. The position of food-reward and plant within the red-door chamber was fixed. A test fish would have to explore the maze by taking turns and locate the food inside the right-side section of the red-door chamber. Fishes were sorted from each population stock and kept individually in separate containers for identification. At a time, a test fish was released into the arena and allowed 20 minutes to explore in order to find the food-reward. In this way, individual fishes were trained through the maze to locate the food reward for eight consecutive days. The position of red door, with the plant and the reward, was shuffled every day. Following training, an intermission of four days was given during which the fishes were not subjected to trials. Post-intermission, the fishes were re-tested on the 13th day following the same protocol for their ability to remember the learnt task. Exploratory tendencies and latency of individuals to explore on 1st day of training, performance time across trials, and number of mistakes made each day were recorded. Additionally, mechanism used by individuals to solve the maze each day was analyzed across populations. Fishes could be expected to use algorithm (sequence of turns) or associative cues in locating the food reward. Individuals of populations did not differ significantly in latencies and tendencies to explore. No relationship was found between exploration and learning across populations. High habitat-complexity populations had higher rates of learning & stronger memory while low habitat-complexity populations had lower rates of learning and much reduced abilities to remember. High habitat-complexity populations used associative cues more than algorithm for learning and remembering while low habitat-complexity populations used both equally. The study, therefore, helped understand the role of natural ecology in explaining variations in spatial learning abilities across populations.

Keywords: algorithm, associative cue, habitat complexity, population, spatial learning

Procedia PDF Downloads 288
1764 Developing Offshore Energy Grids in Norway as Capability Platforms

Authors: Vidar Hepsø

Abstract:

The energy and oil companies on the Norwegian Continental shelf come from a situation where each asset control and manage their energy supply (island mode) and move towards a situation where the assets need to collaborate and coordinate energy use with others due to increased cost and scarcity of electric energy sharing the energy that is provided. Currently, several areas are electrified either with an onshore grid cable or are receiving intermittent energy from offshore wind-parks. While the onshore grid in Norway is well regulated, the offshore grid is still in the making, with several oil and gas electrification projects and offshore wind development just started. The paper will describe the shift in the mindset that comes with operating this new offshore grid. This transition process heralds an increase in collaboration across boundaries and integration of energy management across companies, businesses, technical disciplines, and engagement with stakeholders in the larger society. This transition will be described as a function of the new challenges with increased complexity of the energy mix (wind, oil/gas, hydrogen and others) coupled with increased technical and organization complexity in energy management. Organizational complexity denotes an increasing integration across boundaries, whether these boundaries are company, vendors, professional disciplines, regulatory regimes/bodies, businesses, and across numerous societal stakeholders. New practices must be developed, made legitimate and institutionalized across these boundaries. Only parts of this complexity can be mitigated technically, e.g.: by use of batteries, mixing energy systems and simulation/ forecasting tools. Many challenges must be mitigated with legitimated societal and institutionalized governance practices on many levels. Offshore electrification supports Norway’s 2030 climate targets but is also controversial since it is exploiting the larger society’s energy resources. This means that new systems and practices must also be transparent, not only for the industry and the authorities, but must also be acceptable and just for the larger society. The paper report from ongoing work in Norway, participant observation and interviews in projects and people working with offshore grid development in Norway. One case presented is the development of an offshore floating windfarm connected to two offshore installations and the second case is an offshore grid development initiative providing six installations electric energy via an onshore cable. The development of the offshore grid is analyzed using a capability platform framework, that describes the technical, competence, work process and governance capabilities that are under development in Norway. A capability platform is a ‘stack’ with the following layers: intelligent infrastructure, information and collaboration, knowledge sharing & analytics and finally business operations. The need for better collaboration and energy forecasting tools/capabilities in this stack will be given a special attention in the two use cases that are presented.

Keywords: capability platform, electrification, carbon footprint, control rooms, energy forecsting, operational model

Procedia PDF Downloads 68
1763 Medical Workforce Knowledge of Adrenaline (Epinephrine) Administration in Anaphylaxis in Adults Considerably Improved with Training in an UK Hospital from 2010 to 2017

Authors: Jan C. Droste, Justine Burns, Nithin Narayan

Abstract:

Introduction: Life-threatening detrimental effects of inappropriate adrenaline (epinephrine) administration, e.g., by giving the wrong dose, in the context of anaphylaxis management is well documented in the medical literature. Half of the fatal anaphylactic reactions in the UK are iatrogenic, and the median time to a cardio-respiratory arrest can be as short as 5 minutes. It is therefore imperative that hospital doctors of all grades have active and accurate knowledge of the correct route, site, and dosage of administration of adrenaline. Given this time constraint and the potential fatal outcome with inappropriate management of anaphylaxis, it is alarming that surveys over the last 15 years have repeatedly shown only a minority of doctors to have accurate knowledge of adrenaline administration as recommended by the UK Resuscitation Council guidelines (2008 updated 2012). This comparison of survey results of the medical workforce over several years in a small NHS District General Hospital was conducted in order to establish the effect of the employment of multiple educational methods regarding adrenaline administration in anaphylaxis in adults. Methods: Between 2010 and 2017, several education methods and tools were used to repeatedly inform the medical workforce (doctors and advanced clinical practitioners) in a single district general hospital regarding the treatment of anaphylaxis in adults. Whilst the senior staff remained largely the same cohort, junior staff had changed fully in every survey. Examples included: (i) Formal teaching -in Grand Rounds; during the junior doctors’ induction process; advanced life support courses (ii) In-situ simulation training performed by the clinical skills simulation team –several ad hoc sessions and one 3-day event in 2017 visiting 16 separate clinical areas performing an acute anaphylaxis scenario using actors- around 100 individuals from multi-disciplinary teams were involved (iii) Hospital-wide distribution of the simulation event via the Trust’s Simulation Newsletter (iv) Laminated algorithms were attached to the 'crash trolleys' (v) A short email 'alert' was sent to all medical staff 3 weeks prior to the survey detailing the emergency treatment of anaphylaxis (vi) In addition, the performance of the surveys themselves represented a teaching opportunity when gaps in knowledge could be addressed. Face to face surveys were carried out in 2010 ('pre-intervention), 2015, and 2017, in the latter two occasions including advanced clinical practitioners (ACP). All surveys consisted of convenience samples. If verbal consent to conduct the survey was obtained, the medical practitioners' answers were recorded immediately on a data collection sheet. Results: There was a sustained improvement in the knowledge of the medical workforce from 2010 to 2017: Answers improved regarding correct drug by 11% (84%, 95%, and 95%); the correct route by 20% (76%, 90%, and 96%); correct site by 40% (43%, 83%, and 83%) and the correct dose by 45% (27%, 54%, and 72%). Overall, knowledge of all components -correct drug, route, site, and dose-improved from 13% in 2010 to 62% in 2017. Conclusion: This survey comparison shows knowledge of the medical workforce regarding adrenaline administration for treatment of anaphylaxis in adults can be considerably improved by employing a variety of educational methods.

Keywords: adrenaline, anaphylaxis, epinephrine, medical education, patient safety

Procedia PDF Downloads 128
1762 Applying Biculturalism in Studying Tourism Host Community Cultural Integrity and Individual Member Stress

Authors: Shawn P. Daly

Abstract:

Communities heavily engaged in the tourism industry discover their values intersect, meld, and conflict with those of visitors. Maintaining cultural integrity in the face of powerful external pressures causes stress among society members. This effect represents a less studied aspect of sustainable tourism. The present paper brings a perspective unique to the tourism literature: biculturalism. The grounded theories, coherent hypotheses, and validated constructs and indicators of biculturalism represent a sound base from which to consider sociocultural issues in sustainable tourism. Five models describe the psychological state of individuals operating at cultural crossroads: assimilation (joining the new culture), acculturation (grasping the new culture but remaining of the original culture), alternation (varying behavior to cultural context), multicultural (maintaining distinct cultures), and fusion (blending cultures). These five processes divide into two units of analysis (individual and society), permitting research questions at levels important for considering sociocultural sustainability. Acculturation modelling has morphed into dual processes of acculturation (new culture adaptation) and enculturation (original culture adaptation). This dichotomy divides sustainability research questions into human impacts from assimilation (acquiring new culture, throwing away original), separation (rejecting new culture, keeping original), integration (acquiring new culture, keeping original), and marginalization (rejecting new culture, throwing away original). Biculturalism is often cast in terms of its emotional, behavioral, and cognitive dimensions. Required cultural adjustments and varying levels of cultural competence lead to physical, psychological, and emotional outcomes, including depression, lowered life satisfaction and self-esteem, headaches, and back pain—or enhanced career success, social skills, and life styles. Numerous studies provide empirical scales and research hypotheses for sustainability research into tourism’s causality and effect on local well-being. One key issue in applying biculturalism to sustainability scholarship concerns identification and specification of the alternative new culture contacting local culture. Evidence exists for tourism industry, universal tourist, and location/event-specific tourist culture. The biculturalism paradigm holds promise for researchers examining evolving cultural identity and integrity in response to mass tourism. In particular, confirmed constructs and scales simplify operationalization of tourism sustainability studies in terms of human impact and adjustment.

Keywords: biculturalism, cultural integrity, psychological and sociocultural adjustment, tourist culture

Procedia PDF Downloads 409
1761 Investigation of Supply and Demand Trends in Diabetes Nutrition Counseling

Authors: Maedeh Gharazi

Abstract:

Distinguishing proof of entrepreneurial open doors in the field of nutrition counseling is a focal issue in utilizing nutrition experts and addressing the needs of patients with chronic diseases better. To this end, this review has been directed keeping in mind the end goal to investigate the supply and interest patterns of diabetes sustenance advising as a fundamental stride toward recognizing the entrepreneurial open doors for nutrition advisors in Tehran, Iran. To execute this expressive overview concentrate on, a survey in light of Likert scale was sent via email to 100 dynamic experts in the field of nutrition counseling services in Tehran, of whom 52 reacted to its inquiries. At that point, the mean estimations of members' reactions were ascertained utilizing SPSS programming and contrasted to each other. The outcome acquired in view of members' reactions uncovered that the requirement for "healthful guiding as a treatment group" was basically not met in diverse age, training and salary gatherings of diabetic patients. Along these lines, nutrition counseling as a treatment group can be considered as a suitable field for entrepreneurial exercises.

Keywords: nutrition counseling, chronic diseases, diabetes, likert scale, SPSS programming

Procedia PDF Downloads 343
1760 Innovation Management in E-Health Care: The Implementation of New Technologies for Health Care in Europe and the USA

Authors: Dariusz M. Trzmielak, William Bradley Zehner, Elin Oftedal, Ilona Lipka-Matusiak

Abstract:

The use of new technologies should create new value for all stakeholders in the healthcare system. The article focuses on demonstrating that technologies or products typically enable new functionality, a higher standard of service, or a higher level of knowledge and competence for clinicians. It also highlights the key benefits that can be achieved through the use of artificial intelligence, such as relieving clinicians of many tasks and enabling the expansion and greater specialisation of healthcare services. The comparative analysis allowed the authors to create a classification of new technologies in e-health according to health needs and benefits for patients, doctors, and healthcare systems, i.e., the main stakeholders in the implementation of new technologies and products in healthcare. The added value of the development of new technologies in healthcare is diagnosed. The work is both theoretical and practical in nature. The primary research methods are bibliographic analysis and analysis of research data and market potential of new solutions for healthcare organisations. The bibliographic analysis is complemented by the author's case studies of implemented technologies, mostly based on artificial intelligence or telemedicine. In the past, patients were often passive recipients, the end point of the service delivery system, rather than stakeholders in the system. One of the dangers of powerful new technologies is that patients may become even more marginalised. Healthcare will be provided and delivered in an increasingly administrative, programmed way. The doctor may also become a robot, carrying out programmed activities - using 'non-human services'. An alternative approach is to put the patient at the centre, using technologies, products, and services that allow them to design and control technologies based on their own needs. An important contribution to the discussion is to open up the different dimensions of the user (carer and patient) and to make them aware of healthcare units implementing new technologies. The authors of this article outline the importance of three types of patients in the successful implementation of new medical solutions. The impact of implemented technologies is analysed based on: 1) "Informed users", who are able to use the technology based on a better understanding of it; 2) "Engaged users" who play an active role in the broader healthcare system as a result of the technology; 3) "Innovative users" who bring their own ideas to the table based on a deeper understanding of healthcare issues. The authors' research hypothesis is that the distinction between informed, engaged, and innovative users has an impact on the perceived and actual quality of healthcare services. The analysis is based on case studies of new solutions implemented in different medical centres. In addition, based on the observations of the Polish author, who is a manager at the largest medical research institute in Poland, with analytical input from American and Norwegian partners, the added value of the implementations for patients, clinicians, and the healthcare system will be demonstrated.

Keywords: innovation, management, medicine, e-health, artificial intelligence

Procedia PDF Downloads 20
1759 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 196
1758 Bag of Local Features for Person Re-Identification on Large-Scale Datasets

Authors: Yixiu Liu, Yunzhou Zhang, Jianning Chi, Hao Chu, Rui Zheng, Libo Sun, Guanghao Chen, Fangtong Zhou

Abstract:

In the last few years, large-scale person re-identification has attracted a lot of attention from video surveillance since it has a potential application prospect in public safety management. However, it is still a challenging job considering the variation in human pose, the changing illumination conditions and the lack of paired samples. Although the accuracy has been significantly improved, the data dependence of the sample training is serious. To tackle this problem, a new strategy is proposed based on bag of visual words (BoVW) model of designing the feature representation which has been widely used in the field of image retrieval. The local features are extracted, and more discriminative feature representation is obtained by cross-view dictionary learning (CDL), then the assignment map is obtained through k-means clustering. Finally, the BoVW histograms are formed which encodes the images with the statistics of the feature classes in the assignment map. Experiments conducted on the CUHK03, Market1501 and MARS datasets show that the proposed method performs favorably against existing approaches.

Keywords: bag of visual words, cross-view dictionary learning, person re-identification, reranking

Procedia PDF Downloads 195
1757 Digital Preservation in Nigeria Universities Libraries: A Comparison between University of Nigeria Nsukka and Ahmadu Bello University Zaria

Authors: Suleiman Musa, Shuaibu Sidi Safiyanu

Abstract:

This study examined the digital preservation in Nigeria university libraries. A comparison between the university of Nigeria Nsukka (UNN) and Ahmadu Bello University Zaria (ABU, Zaria). The study utilized primary source of data obtained from two selected institution librarians. Finding revealed varying results in terms of skills acquired by librarians before and after digitization of the two institutions. The study reports that journals publication, text book, CD-ROMS, conference papers and proceedings, theses, dissertations and seminar papers are among the information resources available for digitization. The study further documents that copyright issue, power failure, and unavailability of needed materials are among the challenges facing the digitization of library of the institution. On the basis of the finding, the study concluded that digitization of library enhances efficiency in organization and retrieval of information services. The study therefore recommended that software should be upgraded with backup, training of the librarians on digital process, installation of antivirus and enhancement of technical collaboration between the library and MIS.

Keywords: digitalization, preservation, libraries, comparison

Procedia PDF Downloads 339
1756 Analysis of Labor Effectiveness at Green Tea Dry Sorting Workstation for Increasing Tea Factory Competitiveness

Authors: Bayu Anggara, Arita Dewi Nugrahini, Didik Purwadi

Abstract:

Dry sorting workstation needs labor to produce green tea in Gambung Tea Factory. Observation results show that there is labor who are not working at the moment and doing overtime jobs to meet production targets. The measurement of the level of labor effectiveness has never been done before. The purpose of this study is to determine the level of labor effectiveness and provide recommendations for improvement based on the results of the Pareto diagram and Ishikawa diagram. The method used to measure the level of labor effectiveness is Overall Labor Effectiveness (OLE). OLE had three indicators which are availability, performance, and quality. Recommendations are made based on the results of the Pareto diagram and Ishikawa diagram for indicators that do not meet world standards. Based on the results of the study, the OLE value was 68.19%. Recommendations given to improve labor performance are adding mechanics, rescheduling rest periods, providing special training for labor, and giving rewards to labor. Furthermore, the recommendations for improving the quality of labor are procuring water content measuring devices, create material standard policies, and rescheduling rest periods.

Keywords: Ishikawa diagram, labor effectiveness, OLE, Pareto diagram

Procedia PDF Downloads 229
1755 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 256
1754 The Way Digitized Lectures and Film Presence Coaching Impact Academic Identity: An Expert Facilitated Participatory Action Research Case Study

Authors: Amanda Burrell, Tonia Gary, David Wright, Kumara Ward

Abstract:

This paper explores the concept of academic identity as it relates to the lecture, in particular, the digitized lecture delivered to a camera, in the absence of a student audience. Many academics have the performance aspect of the role thrust upon them with little or no training. For the purpose of this study, we look at the performance of the academic identity and examine tailored film presence coaching for its contributions toward academic identity, specifically in relation to feelings of self-confidence and diminishment of discomfort or stage fright. The case is articulated through the lens of scholar-practitioners, using expert facilitated participatory action research. It demonstrates in our sample of experienced academics, all reported some feelings of uncertainty about presenting lectures to camera prior to coaching. We share how power poses and reframing fear, produced improvements in the ease and competency of all participants. We share exactly how this insight could be adapted for self-coaching by any academic when called to present to a camera and consider the relationship between this and academic identity.

Keywords: academic identity, digitized lecture, embodied learning, performance coaching

Procedia PDF Downloads 337
1753 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis

Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho

Abstract:

This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.

Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis

Procedia PDF Downloads 182
1752 The Relationship between Citizens’ Perception of Public Officials’ Ethical Performance and Public Trust in the Government in Egypt

Authors: Nevine Henry Wasef

Abstract:

The research discusses how Egyptian citizens perceive the performance of public sector officials, particularly the ethical values manifested in their behavior. It aims at answering the question of how Egyptian citizens’ perception of public officials affects citizens' trust in the government at large and the process of public service delivery specifically. The hypothesis is that public opinion about civil servants’ ethical values would be proportional to citizens’ trust in the government, which means that the more citizens regard administrators with high ethical standards, the higher trust in the government they would have and vice versa. The research would focus on the independent variable of trust in the government and the dependent variable of public perception of administrators’ ethical performance. The data would be collected through surveys designed to measure the public evaluation of public officials they are interacting with and the quality of services delivered to them. The study concludes that implementing ethical values in public administration has a crucial role in improving citizens’ trust in the government based on various case studies of governments that successfully adopted ethical training programs for their civil servants.

Keywords: trust, distrust, ethics, performance, integrity, values, public service

Procedia PDF Downloads 88
1751 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering

Procedia PDF Downloads 397
1750 E-Business Role in the Development of the Economy of Sultanate of Oman

Authors: Mairaj Salim, Asma Zaheer

Abstract:

Oman has accomplished as much or more than its fellow Gulf monarchies, despite starting from scratch considerably later, having less oil income to utilize, dealing with a larger and more rugged geography, and resolving a bitter civil war along the way. Of course, Oman's progress in the past 30-plus years has not been without problems and missteps, but the balance is squarely on the positive side of the ledger. Oil has been the driving force of the Omani economy since Oman began commercial production in 1967. The oil industry supports the country’s high standard of living and is primarily responsible for its modern and expansive infrastructure, including electrical utilities, telephone services, roads, public education and medical services. In addition to extensive oil reserves, Oman also has substantial natural gas reserves, which are expected to play a leading role in the Omani economy in the Twenty-first Century. To reduce the country’s dependence on oil revenues, the government is restructuring the economy by directing investment to non-oil activities. Since the 21st century IT has changed the performing tasks. To manage the affairs for the benefits of organizations and economy, the Omani government has adopted E-Business technologies for the development. E-Business is important because it allows • Transformation of old economy relationships (vertical/linear relationships) to new economy relationships characterized by end-to-end relationship management solutions (integrated or extended relationships) • Facilitation and organization of networks, small firms depend on ‘partner’ firms for supplies and product distribution to meet customer demands • SMEs to outsource back-end process or cost centers enabling the SME to focus on their core competence • ICT to connect, manage and integrate processes internally and externally • SMEs to join networks and enter new markets, through shortened supply chains to increase market share, customers and suppliers • SMEs to take up the benefits of e-business to reduce costs, increase customer satisfaction, improve client referral and attract quality partners • New business models of collaboration for SMEs to increase their skill base • SMEs to enter virtual trading arena and increase their market reach A national strategy for the advancement of information and communication technology (ICT) has been worked out, mainly to introduce e-government, e-commerce, and a digital society. An information technology complex KOM (Knowledge Oasis Muscat) had been established, consisting of section for information technology, incubator services, a shopping center of technology software and hardware, ICT colleges, E-Government services and other relevant services. So, all these efforts play a vital role in the development of Oman economy.

Keywords: ICT, ITA, CRM, SCM, ERP, KOM, SMEs, e-commerce and e-business

Procedia PDF Downloads 251
1749 Technical Efficiency and Challenges of Smallholder Horticultural Farmers in Ghana: A Wake-Up Call for Policy Implementers

Authors: Freda E. Asem, R. D. Osei, D. B. Sarpong, J. K. Kuwornu

Abstract:

While market access remains important, Ghana’s major handicap is her inability to sustain export growth on the open market. The causes of these could be attributed to inefficiency, lack of competitiveness and supply-side constraints. This study examined the challenges faced by smallholder horticultural farmers and how it relates to their technical efficiency. The study employed mixed methods to address the problem. Using the Millennium Development Account (MiDA) Farmer Based Organization survey data on farm households in 23 districts in Ghana, the study assessed the technical efficiency of smallholder horticultural farmers (taking into account production risks). Focus group discussions (FGDs) and in-depth interviews were also conducted on smallholder mango, pineapple, and chilli pepper farmers selected districts in Ghana. Results revealed the constraints faced by smallholder horticultural farmers to be marketing, training, funding, accessibility, and affordability of inputs, land, access to credit, and the disconnect between themselves and policy makers and implementers.

Keywords: productivity, gender, policy, efficiency, constraints

Procedia PDF Downloads 483
1748 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants

Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka

Abstract:

The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.

Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset

Procedia PDF Downloads 103
1747 The Willingness and Action of Engineering Students in Career Choice: A Mixed-Method Research from the Perspective of the Rational Choice Theory

Authors: Juan Wang, Xiuxiu Wang, Di Wang

Abstract:

Engineers are an important force supporting the economic and social development of a country. As China has the largest scale of engineering education in the world, the career choice of engineering students will affect the contribution of human capital to national scientific and technological progress and economic development. A questionnaire survey shows the following: on the whole, the students surveyed were willing to engage in an engineering career, but their willingness needed to be enhanced, and their willingness was affected by such factors as their understanding of the value of the engineering career; the resources from individual benefits, resources from career and individual strengths. Also, based on in-depth interviews with some engineering students, it is found that engineering students’ career choice behaviors totally based on survival rationality, economic rationality, social rationality and other combinations. Based on this, policy support should be given to the enrollment, training, employment and other aspects of engineering education; improve the professional status and treatment of engineers through multiple measures; ensure a smooth career path to enhance the willingness of engineering students to choose careers.

Keywords: engineering students, career choice, engineer, human capital

Procedia PDF Downloads 9
1746 Assessment of Women Involvement in Fishing Activities: A Case Study of Epe and Ibeju Lekki LGA, Lagos

Authors: Temitope Adewale, Oladapo Raji

Abstract:

The study was designed to investigate the assessment of women's involvement in fishing. In order to give the study a direction, five research questions, as well as two hypotheses, were postulated, and a total of fifty (50) respondents each were selected from two local government areas for the study. This brings a total of one hundred (100) respondents selected from these local government areas in Lagos state. The outcome of the finding indicates that the percentage of the respondents’ age, 49% was between 31 and 35 years, 56% has a working experience of 6-10 years, 61% were married, 69% had secondary education as their educational level. However, findings show that socio-economic characteristics (x2 =15.504, df=6, p < 0.05) and income (r=0.83, p < 0.05) have a significant relationship on the fishing. It was established that the Women in Fish production/processing were faced with a lot of constraints such as high cost of inputs, inadequate electricity supply, lack of adequate capital, non-availability of the improved oven, non-availability of extension agents, inadequate fish landing, lack of transportation facilities, lack of training on financial management and loan acquisition which affected the level of output of women in Fish processing adversely.

Keywords: women, fishing, agriculture, Lagos

Procedia PDF Downloads 146
1745 Enriching Interaction in the Classroom Based on Typologies of Experiments and Mathematization in Physics Teaching

Authors: Olga Castiblanco, Diego Vizcaíno

Abstract:

Changing the traditional way of using experimentation in science teaching is quite a challenge. This research results talk about the characterization of physics experiments, not because of the topic it deals with, nor depending on the material used in the assemblies, but related to the possibilities it offers to enrich interaction in the classroom and thereby contribute to the development of scientific thinking skills. It is an action-research of type intervention in the classroom, with four courses of Physics Teaching undergraduate students from a public university in Bogotá. This process allows characterizing typologies such as discrepant, homemade, illustrative, research, recreational, crucial, mental, and virtual experiments. Students' production and researchers' reports on each class were the most relevant data. Content analysis techniques let to categorize the information and obtain results on the richness that each typology of experiment offers when interacting in the classroom. Results show changes in the comprehension of new teachers' role, far from being the possessor and transmitter of the truth. Besides, they understand strategies to engage students effectively since the class advances extending ideas, reflections, debates, and questions, either towards themselves, their classmates, or the teacher.

Keywords: physics teacher training, non-traditional experimentation, contextualized education, didactics of physics

Procedia PDF Downloads 95
1744 Machine Learning Data Architecture

Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap

Abstract:

Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.

Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning

Procedia PDF Downloads 64
1743 New Chances of Reforming Pedagogical Approach In Secondary English Class in China under the New English Curriculum and National College Entrance Examination Reform

Authors: Yue Wang

Abstract:

Five years passed since the newest English curriculum reform policy was published in China, hand-wringing spread among teachers who accused that this is another 'Wearing New Shoes to Walk the Old Road' policy. This paper provides a thoroughly philosophical policy analysis of serious efforts that had been made to support this reform and reveals the hindrances that bridled the reform to yield the desired effect. Blame could be easily put on teachers for their insufficient pedagogical content knowledge, conservative resistance, and the handicaps of large class sizes and limited teaching times, and so on. However, the underlying causes for this implementation failure are the interrelated factors in the NCEE-centred education system, such as the reluctant from students, the lack of school and education bureau support, and insufficient teacher training. A further discussion of 2017 to 2020’s NCEE reform on English prompt new possibilities for the authentic pedagogical approach reform in secondary English classes. In all, the pedagogical approach reform at the secondary level is heading towards a brighter future with the initiation of new NCEE reform.

Keywords: English curriculum, failure, NCEE, new possibilities, pedagogical, policy analysis, reform

Procedia PDF Downloads 141
1742 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.

Keywords: soft jar test, jar test, water treatment plant process, artificial neural network

Procedia PDF Downloads 166
1741 The Importance of Artificial Intelligence on Arts and Design

Authors: Mariam Adel Hakim Fouad

Abstract:

This quantitative examine investigates innovative arts teachers' perceptions regarding the implementation of an Inclusive innovative Arts curriculum. The study employs a descriptive method utilizing a 5-point Likert scale questionnaire comprising 15 objects to acquire data from innovative arts educators. The Census, with a disproportionate stratified sampling approach, became utilized to pick out 226 teachers from five academic circuits (Circuit A, B, C, D & E) within Offinso Municipality, Ghana. The findings suggest that most innovative arts instructors maintain a wonderful belief in enforcing an inclusive, innovative arts curriculum. Wonderful perceptions and attitudes amongst teachers are correlated with improved scholar engagement and participation in class sports. This has a look at recommends organizing workshops and in-carrier schooling periods centered on inclusive innovative arts schooling for creative Arts instructors. Moreover, it shows that colleges of education and universities accountable for trainer schooling integrate foundational guides in creative arts and special schooling into their number one schooling teacher training packages.

Keywords: arts-in-health, evidence based medicine, arts for health, expressive arts therapiesarts, cultural heritage, digitalization, ICTarts, design, font, identity

Procedia PDF Downloads 24
1740 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model

Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König

Abstract:

In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.

Keywords: fire detection, label annotation, foundation models, object detection, segmentation

Procedia PDF Downloads 7
1739 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth

Authors: Valentina Zhang

Abstract:

While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.

Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning

Procedia PDF Downloads 147
1738 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
1737 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 326
1736 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240