Search results for: memory network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5746

Search results for: memory network

2986 A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle

Authors: Zhiyong Zheng, Xu Li, Liang Huang, Zhengliang Sun, Jianhua Xu

Abstract:

Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework.

Keywords: gated recurrent unit, multi-stage learning, reliable estimation, variational auto-encoder, yaw angle

Procedia PDF Downloads 147
2985 Construction and Optimization of Green Infrastructure Network in Mountainous Counties Based on Morphological Spatial Pattern Analysis and Minimum Cumulative Resistance Models: A Case Study of Shapingba District, Chongqing

Authors: Yuning Guan

Abstract:

Under the background of rapid urbanization, mountainous counties need to break through mountain barriers for urban expansion due to undulating topography, resulting in ecological problems such as landscape fragmentation and reduced biodiversity. Green infrastructure networks are constructed to alleviate the contradiction between urban expansion and ecological protection, promoting the healthy and sustainable development of urban ecosystems. This study applies the MSPA model, the MCR model and Linkage Mapper Tools to identify eco-sources and eco-corridors in the Shapingba District of Chongqing and combined with landscape connectivity assessment and circuit theory to delineate the importance levels to extract ecological pinch point areas on the corridors. The results show that: (1) 20 ecological sources are identified, with a total area of 126.47 km², accounting for 31.88% of the study area, and showing a pattern of ‘one core, three corridors, multi-point distribution’. (2) 37 ecological corridors are formed in the area, with a total length of 62.52km, with a ‘more in the west, less in the east’ pattern. (3) 42 ecological pinch points are extracted, accounting for 25.85% of the length of the corridors, which are mainly distributed in the eastern new area. Accordingly, this study proposes optimization strategies for sub-area protection of ecological sources, grade-level construction of ecological corridors, and precise restoration of ecological pinch points.

Keywords: green infrastructure network, morphological spatial pattern, minimal cumulative resistance, mountainous counties, circuit theory, shapingba district

Procedia PDF Downloads 47
2984 Social and Cognitive Stress Impact on Neuroscience and PTSD

Authors: Sadra Abbasi

Abstract:

The complex connection between psychological stress and the onset of different diseases has been an ongoing issue in the mental health field for a long time. Multiple studies have demonstrated that long-term stress can greatly heighten the likelihood of developing health issues like heart disease, cancer, arthritis, and severe depression. Recent research in cognitive science has provided insight into the intricate processes involved in posttraumatic stress disorder (PTSD), suggesting that distinct memory systems are accountable for both vivid reliving and normal autobiographical memories of traumatic incidents, as proposed by dual representation theory. This theory has important consequences for our comprehension of the neural mechanisms involved in fear and behavior related to threats, highlighting the amygdala-hippocampus-medial prefrontal cortex circuit as a crucial component in this process. This particular circuit, extensively researched in behavioral neuroscience, is essential for regulating the body's reactions to stress and trauma. This review will examine how incorporating a modern neuroscience viewpoint into an integrative case formulation offers a current way to comprehend the intricate connections among psychological stress, trauma, and disease.

Keywords: social, cognitive, stress, neuroscience, behavior, PTSD

Procedia PDF Downloads 38
2983 Layer-Level Feature Aggregation Network for Effective Semantic Segmentation of Fine-Resolution Remote Sensing Images

Authors: Wambugu Naftaly, Ruisheng Wang, Zhijun Wang

Abstract:

Models based on convolutional neural networks (CNNs), in conjunction with Transformer, have excelled in semantic segmentation, a fundamental task for intelligent Earth observation using remote sensing (RS) imagery. Nonetheless, tokenization in the Transformer model undermines object structures and neglects inner-patch local information, whereas CNNs are unable to simulate global semantics due to limitations inherent in their convolutional local properties. The integration of the two methodologies facilitates effective global-local feature aggregation and interactions, potentially enhancing segmentation results. Inspired by the merits of CNNs and Transformers, we introduce a layer-level feature aggregation network (LLFA-Net) to address semantic segmentation of fine-resolution remote sensing (FRRS) images for land cover classification. The simple yet efficient system employs a transposed unit that hierarchically utilizes dense high-level semantics and sufficient spatial information from various encoder layers through a layer-level feature aggregation module (LLFAM) and models global contexts using structured Transformer blocks. Furthermore, the decoder aggregates resultant features to generate rich semantic representation. Extensive experiments on two public land cover datasets demonstrate that our proposed framework exhibits competitive performance relative to the most recent frameworks in semantic segmentation.

Keywords: land cover mapping, semantic segmentation, remote sensing, vision transformer networks, deep learning

Procedia PDF Downloads 13
2982 Dialogues of Medical Places and Health Care in Oporto City (20th Century)

Authors: Monique Palma, Isabel Amaral

Abstract:

This paper aims at mapping medical places in Oporto in the twentieth century in order to bring the urban history of medicine and healthcare in Portugal to a large audience, using Oporto as a case study. This analysis is consistent with the SDS's 2030 goals for policy guidance for heritage and development actors. As a result, it is critical to begin this research in order to place on the political agenda the preservation of Portuguese culture's history, memory, and heritage, particularly the medical culture, which is one of the most important drivers of civilizational development. To understand the evolution of medical care in urban history, we will conduct archive research (manuals, treatises, reports, periodic journals, newspapers, etc.) and interviews with key actors from medical institutions and medical museums. The findings of this study will be used to develop medical itineraries for inclusion in touristic agendas in Portugal and abroad, to include Portuguese medicine in global roadmaps, and to promote the preservation of the most iconic places of health care and medical heritage, as well as tools to promote social cohesion, dialogue among people, and "sense of place" globally.

Keywords: medical itineraries, history of medicine, urban history, Oporto

Procedia PDF Downloads 231
2981 Guidelines for Sustainable Urban Mobility in Historic Districts from International Experiences

Authors: Tamer ElSerafi

Abstract:

In recent approaches to heritage conservation, the whole context of historic areas becomes as important as the single historic building. This makes the provision of infrastructure and network of mobility an effective element in the urban conservation. Sustainable urban conservation projects consider the high density of activities, the need for a good quality access system to the transit system, and the importance of the configuration of the mobility network by identifying the best way to connect the different districts of the urban area through a complex unique system that helps the synergic development to achieve a sustainable mobility system. A sustainable urban mobility is a key factor in maintaining the integrity between socio-cultural aspects and functional aspects. This paper illustrates the mobility aspects, mobility problems in historic districts, and the needs of the mobility systems in the first part. The second part is a practical analysis for different mobility plans. It is challenging to find innovative and creative conservation solutions fitting modern uses and needs without risking the loss of inherited built resources. Urban mobility management is becoming an essential and challenging issue in the urban conservation projects. Depending on literature review and practical analysis, this paper tries to define and clarify the guidelines for mobility management in historic districts as a key element in sustainability of urban conservation and development projects. Such rules and principles could control the conflict between the socio–cultural and economic activities, and the different needs for mobility in these districts in a sustainable way. The practical analysis includes a comparison between mobility plans which have been implemented in four different cities; Freiburg in Germany, Zurich in Switzerland and Bray Town in Ireland. This paper concludes with a matrix of guidelines that considers both principles of sustainability and livability factors in urban historic districts.

Keywords: sustainable mobility, urban mobility, mobility management, historic districts

Procedia PDF Downloads 161
2980 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 188
2979 Analysis of Non-Conventional Roundabout Performance in Mixed Traffic Conditions

Authors: Guneet Saini, Shahrukh, Sunil Sharma

Abstract:

Traffic congestion is the most critical issue faced by those in the transportation profession today. Over the past few years, roundabouts have been recognized as a measure to promote efficiency at intersections globally. In developing countries like India, this type of intersection still faces a lot of issues, such as bottleneck situations, long queues and increased waiting times, due to increasing traffic which in turn affect the performance of the entire urban network. This research is a case study of a non-conventional roundabout, in terms of geometric design, in a small town in India. These types of roundabouts should be analyzed for their functionality in mixed traffic conditions, prevalent in many developing countries. Microscopic traffic simulation is an effective tool to analyze traffic conditions and estimate various measures of operational performance of intersections such as capacity, vehicle delay, queue length and Level of Service (LOS) of urban roadway network. This study involves analyzation of an unsymmetrical non-circular 6-legged roundabout known as “Kala Aam Chauraha” in a small town Bulandshahr in Uttar Pradesh, India using VISSIM simulation package which is the most widely used software for microscopic traffic simulation. For coding in VISSIM, data are collected from the site during morning and evening peak hours of a weekday and then analyzed for base model building. The model is calibrated on driving behavior and vehicle parameters and an optimal set of calibrated parameters is obtained followed by validation of the model to obtain the base model which can replicate the real field conditions. This calibrated and validated model is then used to analyze the prevailing operational traffic performance of the roundabout which is then compared with a proposed alternative to improve efficiency of roundabout network and to accommodate pedestrians in the geometry. The study results show that the alternative proposed is an advantage over the present roundabout as it considerably reduces congestion, vehicle delay and queue length and hence, successfully improves roundabout performance without compromising on pedestrian safety. The study proposes similar designs for modification of existing non-conventional roundabouts experiencing excessive delays and queues in order to improve their efficiency especially in the case of developing countries. From this study, it can be concluded that there is a need to improve the current geometry of such roundabouts to ensure better traffic performance and safety of drivers and pedestrians negotiating the intersection and hence this proposal may be considered as a best fit.

Keywords: operational performance, roundabout, simulation, VISSIM

Procedia PDF Downloads 140
2978 Analyzing Spatio-Structural Impediments in the Urban Trafficscape of Kolkata, India

Authors: Teesta Dey

Abstract:

Integrated Transport development with proper traffic management leads to sustainable growth of any urban sphere. Appropriate mass transport planning is essential for the populous cities in third world countries like India. The exponential growth of motor vehicles with unplanned road network is now the common feature of major urban centres in India. Kolkata, the third largest mega city in India, is not an exception of it. The imbalance between demand and supply of unplanned transport services in this city is manifested in the high economic and environmental costs borne by the associated society. With the passage of time, the growth and extent of passenger demand for rapid urban transport has outstripped proper infrastructural planning and causes severe transport problems in the overall urban realm. Hence Kolkata stands out in the world as one of the most crisis-ridden metropolises. The urban transport crisis of this city involves severe traffic congestion, the disparity in mass transport services on changing peripheral land uses, route overlapping, lowering of travel speed and faulty implementation of governmental plans as mostly induced by rapid growth of private vehicles on limited road space with huge carbon footprint. Therefore the paper will critically analyze the extant road network pattern for improving regional connectivity and accessibility, assess the degree of congestion, identify the deviation from demand and supply balance and finally evaluate the emerging alternate transport options as promoted by the government. For this purpose, linear, nodal and spatial transport network have been assessed based on certain selected indices viz. Road Degree, Traffic Volume, Shimbel Index, Direct Bus Connectivity, Average Travel and Waiting Tine Indices, Route Variety, Service Frequency, Bus Intensity, Concentration Analysis, Delay Rate, Quality of Traffic Transmission, Lane Length Duration Index and Modal Mix. Total 20 Traffic Intersection Points (TIPs) have been selected for the measurement of nodal accessibility. Critical Congestion Zones (CCZs) are delineated based on one km buffer zones of each TIP for congestion pattern analysis. A total of 480 bus routes are assessed for identifying the deficiency in network planning. Apart from bus services, the combined effects of other mass and para transit modes, containing metro rail, auto, cab and ferry services, are also analyzed. Based on systematic random sampling method, a total of 1500 daily urban passengers’ perceptions were studied for checking the ground realities. The outcome of this research identifies the spatial disparity among the 15 boroughs of the city with severe route overlapping and congestion problem. North and Central Kolkata-based mass transport services exceed the transport strength of south and peripheral Kolkata. Faulty infrastructural condition, service inadequacy, economic loss and workers’ inefficiency are the most dominant reasons behind the defective mass transport network plan. Hence there is an urgent need to revive the extant road based mass transport system of this city by implementing a holistic management approach by upgrading traffic infrastructure, designing new roads, better cooperation among different mass transport agencies, better coordination of transport and changing land use policies, large increase in funding and finally general passengers’ awareness.

Keywords: carbon footprint, critical congestion zones, direct bus connectivity, integrated transport development

Procedia PDF Downloads 274
2977 The Regional Expression of New Rural Dwellings Design in Linhai, Zhejiang: A Case of New Rural Dwellings Design in Badie Village

Authors: Fan Zhang

Abstract:

In the process of urbanization in China, the new rural construction is in the ascendant, which is becoming more and more popular. Under the driving effect of rural urbanization, the house pattern and tectonic methods of traditional vernacular houses have shown great differences from the family structure and values of contemporary peasant families. Therefore, it is particularly important to find a prototype, form and strategy, to make a balance between the traditional memory and modern functional requirements. In order for research to combine the regional culture with modern life, under the situation of the current batch production of new rural residence, Badie village, in Linhai, Zhejiang province, is taken as the case. This paper aims to put forward a prototype which can not only meet the demand of modern life but also ensure the continuation of traditional culture and historical context for the new rural dwellings design. This research not only helps to extend the local context in the construction of the new site but also contributes to the fusion of old and new rural dwellings in the old site construction. Through the study and research of this case, the research methodology and results can be drawn as reference for the new rural construction in other areas.

Keywords: badie village, design strategy, new rural dwellings, regional context, regional expression

Procedia PDF Downloads 212
2976 Volatility and Stylized Facts

Authors: Kalai Lamia, Jilani Faouzi

Abstract:

Measuring and controlling risk is one of the most attractive issues in finance. With the persistence of uncontrolled and erratic stocks movements, volatility is perceived as a barometer of daily fluctuations. An objective measure of this variable seems then needed to control risks and cover those that are considered the most important. Non-linear autoregressive modeling is our first evaluation approach. In particular, we test the presence of “persistence” of conditional variance and the presence of a degree of a leverage effect. In order to resolve for the problem of “asymmetry” in volatility, the retained specifications point to the importance of stocks reactions in response to news. Effects of shocks on volatility highlight also the need to study the “long term” behaviour of conditional variance of stocks returns and articulate the presence of long memory and dependence of time series in the long run. We note that the integrated fractional autoregressive model allows for representing time series that show long-term conditional variance thanks to fractional integration parameters. In order to stop at the dynamics that manage time series, a comparative study of the results of the different models will allow for better understanding volatility structure over the Tunisia stock market, with the aim of accurately predicting fluctuation risks.

Keywords: asymmetry volatility, clustering, stylised facts, leverage effect

Procedia PDF Downloads 299
2975 Real-Time Monitoring of Drinking Water Quality Using Advanced Devices

Authors: Amani Abdallah, Isam Shahrour

Abstract:

The quality of drinking water is a major concern of public health. The control of this quality is generally performed in the laboratory, which requires a long time. This type of control is not adapted for accidental pollution from sudden events, which can have serious consequences on population health. Therefore, it is of major interest to develop real-time innovative solutions for the detection of accidental contamination in drinking water systems This paper presents researches conducted within the SunRise Demonstrator for ‘Smart and Sustainable Cities’ with a particular focus on the supervision of the water quality. This work aims at (i) implementing a smart water system in a large water network (Campus of the University Lille1) including innovative equipment for real-time detection of abnormal events, such as those related to the contamination of drinking water and (ii) develop a numerical modeling of the contamination diffusion in the water distribution system. The first step included verification of the water quality sensors and their effectiveness on a network prototype of 50m length. This part included the evaluation of the efficiency of these sensors in the detection both bacterial and chemical contamination events in drinking water distribution systems. An on-line optical sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in refractive index induced by injected loads of chemical (cadmium, mercury) and biological contaminations (Escherichia coli). All injected substances were detected by the sensor; the magnitude of the response depends on the type of contaminant introduced and it is proportional to the injected substance concentration.

Keywords: distribution system, drinking water, refraction index, sensor, real-time

Procedia PDF Downloads 357
2974 Management of Interdependence in Manufacturing Networks

Authors: Atour Taghipour

Abstract:

In the real world each manufacturing company is an independent business unit. These business units are linked to each other through upstream and downstream linkages. The management of these linkages is called coordination which, could be considered as a difficult engineering task. The degree of difficulty of coordination depends on the type and the nature of information exchanged between partners as well as the structure of relationship from mutual to the network structure. The literature of manufacturing systems comprises a wide range of varieties of methods and approaches of coordination. In fact, two main streams of research can be distinguished: central coordination versus decentralized coordination. In the centralized systems a high degree of information exchanges is required. The high degree of information exchanges sometimes leads to difficulties when independent members do not want to share information. In order to address these difficulties, decentralized approaches of coordination of operations planning decisions based on some minimal information sharing have been proposed in many academic disciplines. This paper first proposes a framework of analysis in order to analyze the proposed approaches in the literature, based on this framework which includes the similarities between approaches we categorize the existing approaches. This classification can be used as a research map for future researches. The result of our paper highlights several opportunities for future research. First, it is proposed to develop more dynamic and stochastic mechanisms of planning coordination of manufacturing units. Second, in order to exploit the complementarities of approaches proposed by diverse science discipline, we propose to integrate the techniques of coordination. Finally, based on our approach we proposed to develop coordination standards to guaranty both the complementarity of these approaches as well as the freedom of companies to adopt any planning tools.

Keywords: network coordination, manufacturing, operations planning, supply chain

Procedia PDF Downloads 285
2973 Nutriscience Project: A Web-Based Intervention to Improve Nutritional Literacy among Families and Educators of Pre-School Children

Authors: R. Barros, J. Azevedo, P. Padrão, M. Gregório, I. Pádua, C. Almeida, C. Rodrigues, P. Fontes, A. Coelho

Abstract:

Recent evidence shows a positive association between nutritional literacy and healthy eating. Traditional nutrition education strategies for childhood obesity prevention have shown weak effect. The Nutriscience project aims to create and evaluate an innovative and multidisciplinary strategy for promoting effective and accessible nutritional information to children, their families, and educators. Nutriscience is a one-year prospective follow-up evaluation study including pre-school children (3-5 y), who attend national schools’ network (29). The project is structured around a web-based intervention, using an on-line interactive platform, and focus on increasing fruit and vegetable consumption, and reducing sugar and salt intake. The platform acts as a social network where educational materials, games, and nutritional challenges are proposed in a gamification approach that promotes family and community social ties. A nutrition Massive Online Open Course is developed for educators, and a national healthy culinary contest will be promoted on TV channel. A parental self-reported questionnaire assessing sociodemographic and nutritional literacy (knowledge, attitudes, skills) is administered (baseline and end of the intervention). We expect that results on nutritional literacy from the presented strategy intervention will give us important information about the best practices for health intervention with kindergarten families. This intervention program using a digital interactive platform could be an educational tool easily adapted and disseminated for childhood obesity prevention.

Keywords: childhood obesity, educational tool, nutritional literacy, web-based intervention

Procedia PDF Downloads 335
2972 Sustainable Conservation and Renewal Strategies for Industrial Heritage Communities from the Perspective of the Spirit of Place

Authors: Liu Yao

Abstract:

With the acceleration of urbanization and the profound change in industrial structure, a large number of unused and abandoned industrial heritage has emerged in the city, and the industrial communities attached to them have also fallen into a state of decline. This decline is not only reflected in the aging and decay of physical space but also in the rupture and absence of historical and cultural veins. Therefore, in urban renewal, we should not only pay attention to the physical transformation and reconstruction but also think deeply about how to inherit the spiritual core of industrial heritage communities, how to awaken and reconstruct their place memory, and how to promote its organic integration with the process of urban redevelopment. This study takes the Jiangnan Cement Factory industrial heritage community as a typical case and analyzes the challenges and opportunities it faces in the process of renewal, protection and utilization. With the continuation of the spirit of place as the core, we are committed to realizing the sustainable development of the community's industry, space and culture. Based on this, we propose three types of regeneration strategies, including industrial activation, spatial restoration and spiritual continuity, in order to provide useful theoretical references and practical guidance for the future conservation of industrial heritage and the sustainable development of communities.

Keywords: spirit of place, industrial heritage communities, urban renewal, sustainable communities

Procedia PDF Downloads 56
2971 A Portable Cognitive Tool for Engagement Level and Activity Identification

Authors: Terry Teo, Sun Woh Lye, Yufei Li, Zainuddin Zakaria

Abstract:

Wearable devices such as Electroencephalography (EEG) hold immense potential in the monitoring and assessment of a person’s task engagement. This is especially so in remote or online sites. Research into its use in measuring an individual's cognitive state while performing task activities is therefore expected to increase. Despite the growing number of EEG research into brain functioning activities of a person, key challenges remain in adopting EEG for real-time operations. These include limited portability, long preparation time, high number of channel dimensionality, intrusiveness, as well as level of accuracy in acquiring neurological data. This paper proposes an approach using a 4-6 EEG channels to determine the cognitive states of a subject when undertaking a set of passive and active monitoring tasks of a subject. Air traffic controller (ATC) dynamic-tasks are used as a proxy. The work found that when using the channel reduction and identifier algorithm, good trend adherence of 89.1% can be obtained between a commercially available BCI 14 channel Emotiv EPOC+ EEG headset and that of a carefully selected set of reduced 4-6 channels. The approach can also identify different levels of engagement activities ranging from general monitoring ad hoc and repeated active monitoring activities involving information search, extraction, and memory activities.

Keywords: assessment, neurophysiology, monitoring, EEG

Procedia PDF Downloads 77
2970 The Unique Electrical and Magnetic Properties of Thorium Di-Iodide Indicate the Arrival of Its Superconducting State

Authors: Dong Zhao

Abstract:

Even though the recent claim of room temperature superconductivity by LK-99 was confirmed an unsuccessful attempt, this work reawakened people’s century striving to get applicable superconductors with Tc of room temperature or higher and under ambient pressure. One of the efforts was focusing on exploring the thorium salts. This is because certain thorium compounds revealed an unusual property of having both high electrical conductivity and diamagnetism or the so-called “coexistence of high electrical conductivity and diamagnetism.” It is well known that this property of the coexistence of high electrical conductivity and diamagnetism is held by superconductors because of the electron pairings. Consequently, the likelihood for these thorium compounds to have superconducting properties becomes great. However, as a surprise, these thorium salts possess this property at room temperature and atmosphere pressure. This gives rise to solid evidence for these thorium compounds to be room-temperature superconductors without a need for external pressure. Among these thorium compound superconductors claimed in that work, thorium di-iodide (ThI₂) is a unique one and has received comprehensive discussion. ThI₂ was synthesized and structurally analyzed by the single crystal diffraction method in the 1960s. Its special property of coexistence of high electrical conductivity and diamagnetism was revealed. Because of this unique property, a special molecular configuration was sketched. Except for an ordinary oxidation of +2 for the thorium cation, the thorium’s oxidation state in ThI₂ is +4. According to the experimental results, ThI₂‘s actual molecular configuration was determined as an unusual one of [Th4+(e-)2](I-)2. This means that the ThI₂ salt’s cation is composed of a [Th4+(e-)2]2+ cation core. In other words, the cation of ThI₂ is constructed by combining an oxidation state +4 of the thorium atom and a pair of electrons or an electron lone pair located on the thorium atom. This combination of the thorium atom and the electron lone pair leads to an oxidation state +2 for the [Th4+(e-)2]2+ cation core. This special construction of the thorium cation is very distinctive, which is believed to be the factor that grants ThI₂ the room temperature superconductivity. Actually, the key for ThI₂ to become a room-temperature superconductor is this characteristic electron lone pair residing on the thorium atom along with the formation of a network constructed by the thorium atoms. This network specializes in a way that allows the electron lone pairs to hop over it and, thus, to generate the supercurrent. This work will discuss, in detail, the special electrical and magnetic properties of ThI₂ as well as its structural features at ambient conditions. The exploration of how the electron pairing in combination with the structurally specialized network works together to bring ThI₂ into a superconducting state. From the experimental results, strong evidence has definitely pointed out that the ThI₂ should be a superconductor, at least at room temperature and under atmosphere pressure.

Keywords: co-existence of high electrical conductivity and diamagnetism, electron lone pair, room temperature superconductor, special molecular configuration of thorium di-iodide ThI₂

Procedia PDF Downloads 60
2969 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: metaphor detection, deep learning, representation learning, embeddings

Procedia PDF Downloads 154
2968 Public-Private Partnership for Critical Infrastructure Resilience

Authors: Anjula Negi, D. T. V. Raghu Ramaswamy, Rajneesh Sareen

Abstract:

Road infrastructure is emphatically one of the top most critical infrastructure to the Indian economy. Road network in the country of around 3.3 million km is the second largest in the world. Nationwide statistics released by Ministry of Road, Transport and Highways reveal that every minute an accident happens and one death every 3.7 minutes. This reported scale in terms of safety is a matter of grave concern, and economically represents a national loss of 3% to the GDP. Union Budget 2016-17 has allocated USD 12 billion annually for development and strengthening of roads, an increase of 56% from last year. Thus, highlighting the importance of roads as critical infrastructure. National highway alone represent only 1.7% of the total road linkages, however, carry over 40% of traffic. Further, trends analysed from 2002 -2011 on national highways, indicate that in less than a decade, a 22 % increase in accidents have been reported, but, 68% increase in death fatalities. Paramount inference is that accident severity has increased with time. Over these years many measures to increase road safety, lessening damage to physical assets, reducing vulnerabilities leading to a build-up for resilient road infrastructure have been taken. In the context of national highway development program, policy makers proposed implementation of around 20 % of such road length on PPP mode. These roads were taken up on high-density traffic considerations and for qualitative implementation. In order to understand resilience impacts and safety parameters, enshrined in various PPP concession agreements executed with the private sector partners, such highway specific projects would be appraised. This research paper would attempt to assess such safety measures taken and the possible reasons behind an increase in accident severity through these PPP case study projects. Delving further on safety features to understand policy measures adopted in these cases and an introspection on reasons of severity, whether an outcome of increased speeds, faulty road design and geometrics, driver negligence, or due to lack of discipline in following lane traffic with increased speed. Assessment exercise would study these aspects hitherto to PPP and post PPP project structures, based on literature review and opinion surveys with sectoral experts. On the way forward, it is understood that the Ministry of Road, Transport and Highway’s estimate for strengthening the national highway network is USD 77 billion within next five years. The outcome of this paper would provide an understanding of resilience measures adopted, possible options for accessible and safe road network and its expansion to policy makers for possible policy initiatives and funding allocation in securing critical infrastructure.

Keywords: national highways, policy, PPP, safety

Procedia PDF Downloads 258
2967 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 76
2966 Modeling of Drug Distribution in the Human Vitreous

Authors: Judith Stein, Elfriede Friedmann

Abstract:

The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.

Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body

Procedia PDF Downloads 139
2965 Accessibility Analysis of Urban Green Space in Zadar Settlement, Croatia

Authors: Silvija Šiljeg, Ivan Marić, Ante Šiljeg

Abstract:

The accessibility of urban green spaces (UGS) is an integral element in the quality of life. Due to rapid urbanization, UGS studies have become a key element in urban planning. The potential benefits of space for its inhabitants are frequently analysed. A functional transport network system and the optimal spatial distribution of urban green surfaces are the prerequisites for maintaining the environmental equilibrium of the urban landscape. An accessibility analysis was conducted as part of the Urban Green Belts Project (UGB). The development of a GIS database for Zadar was the first step in generating the UGS accessibility indicator. Data were collected using the supervised classification method of multispectral LANDSAT images and manual vectorization of digital orthophoto images (DOF). An analysis of UGS accessibility according to the ANGst standard was conducted in the first phase of research. The accessibility indicator was generated on the basis of seven objective measurements, which included average UGS surface per capita and accessibility according to six functional levels of green surfaces. The generated indicator was compared with subjective measurements obtained by conducting a survey (718 respondents) within statistical units. The collected data reflected individual assessments and subjective evaluations of UGS accessibility. This study highlighted the importance of using objective and subjective measures in the process of understanding the accessibility of urban green surfaces. It may be concluded that when evaluating UGS accessibility, residents emphasize the immediate residential environment, ignoring higher UGS functional levels. It was also concluded that large areas of UGS within a city do not necessarily generate similar satisfaction with accessibility. The heterogeneity of output results may serve as guidelines for the further development of a functional UGS city network.

Keywords: urban green spaces (UGS), accessibility indicator, subjective and objective measurements, Zadar

Procedia PDF Downloads 263
2964 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 131
2963 HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems

Authors: Shu Yin, Zhiyang Ding, Jianzhong Huang, Xiaojun Ruan, Xiaomin Zhu, Xiao Qin

Abstract:

Since large-scale and data-intensive applications have been widely deployed, there is a growing demand for high-performance storage systems to support data-intensive applications. Compared with traditional storage systems, next-generation systems will embrace dedicated processor to reduce computational load of host machines and will have hybrid combinations of different storage devices. The advent of flash- memory-based solid state disk has become a critical role in revolutionizing the storage world. However, instead of simply replacing the traditional magnetic hard disk with the solid state disk, it is believed that finding a complementary approach to corporate both of them is more challenging and attractive. This paper explores an idea of active storage, an emerging new storage configuration, in terms of the architecture and design, the parallel processing capability, the cooperation of other machines in cluster computing environment, and a disk configuration, the hybrid combination of different types of disk drives. Experimental results indicate that the proposed HcDD achieves better I/O performance and longer storage system lifespan.

Keywords: arallel storage system, hybrid storage system, data inten- sive, solid state disks, reliability

Procedia PDF Downloads 450
2962 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 141
2961 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure

Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic

Abstract:

Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.

Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 93
2960 Climacteric Disorder among Women: A Qualitative Review

Authors: Amandeep Kaur, Manmeet Gill

Abstract:

The climacteric is a wide phenomenon. Women of the entire world go through it at their own level. It’s a topic on which women hesitate to talk openly. It includes breast tenderness, uterine bleeding, arthralgia, hemorrhage, changes in emotional level such as facing depression, emotional breakdown, irritability and others. Other than such emotional breakdown nausea, vomiting, headache, gaining or losing weight is common problem associated with the climacteric disorder. The purpose of the present study is to assess the Climacteric disorders among women such as during menopause whatever a woman or girl faces mentally or physically. This is mainly done in women when they reached the age of 12 to 48 worldwide. For completing the study two objectives have been taken. The first objective of the study is to analyze the symptoms which lead to Climacteric among women such as Vaginal problems, Breast changes, Behavioral problems, Weight gain, Problems in the urinary tract etc. and the second Objective is to identify the variables which affect Climacteric these are Physical variables (lack of energy, joint soreness, stiffness, back pain etc.), Psychological variables (anxiety, poor memory, inability to concentrate) and Vasomotor variables (hormone estrogen fall, etc). The secondary source of method or data is used to deal with the theme of paper. Sometimes the word climacteric is interchanged with the term menopause and all these changes are high during the period of menopause among women.

Keywords: climacteric and their symposiums, disorder, reviews, in middle age

Procedia PDF Downloads 138
2959 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 135
2958 Arousal, Encoding, And Intrusive Memories

Authors: Hannah Gutmann, Rick Richardson, Richard Bryant

Abstract:

Intrusive memories following a traumatic event are not uncommon. However, in some individuals, these memories become maladaptive and lead to prolonged stress reactions. A seminal model of PTSD explains that aberrant processing during trauma may lead to prolonged stress reactions and intrusive memories. This model explains that elevated arousal at the time of the trauma promotes data driven processing, leading to fragmented and intrusive memories. This study investigated the role of elevated arousal on the development of intrusive memories. We measured salivary markers of arousal and investigated what impact this had on data driven processing, memory fragmentation, and subsequently, the development of intrusive memories. We assessed 100 healthy participants to understand their processing style, arousal, and experience of intrusive memories. Participants were randomised to a control or experimental condition, the latter of which was designed to increase their arousal. Based on current theory, participants in the experimental condition were expected to engage in more data driven processing and experience more intrusive memories than participants in the control condition. This research aims to shed light on the mechanisms underlying the development of intrusive memories to illustrate ways in which therapeutic approaches for PTSD may be augmented for greater efficacy.

Keywords: stress, cortisol, SAA, PTSD, intrusive memories

Procedia PDF Downloads 199
2957 A Parallel Cellular Automaton Model of Tumor Growth for Multicore and GPU Programming

Authors: Manuel I. Capel, Antonio Tomeu, Alberto Salguero

Abstract:

Tumor growth from a transformed cancer-cell up to a clinically apparent mass spans through a range of spatial and temporal magnitudes. Through computer simulations, Cellular Automata (CA) can accurately describe the complexity of the development of tumors. Tumor development prognosis can now be made -without making patients undergo through annoying medical examinations or painful invasive procedures- if we develop appropriate CA-based software tools. In silico testing mainly refers to Computational Biology research studies of application to clinical actions in Medicine. To establish sound computer-based models of cellular behavior, certainly reduces costs and saves precious time with respect to carrying out experiments in vitro at labs or in vivo with living cells and organisms. These aim to produce scientifically relevant results compared to traditional in vitro testing, which is slow, expensive, and does not generally have acceptable reproducibility under the same conditions. For speeding up computer simulations of cellular models, specific literature shows recent proposals based on the CA approach that include advanced techniques, such the clever use of supporting efficient data structures when modeling with deterministic stochastic cellular automata. Multiparadigm and multiscale simulation of tumor dynamics is just beginning to be developed by the concerned research community. The use of stochastic cellular automata (SCA), whose parallel programming implementations are open to yield a high computational performance, are of much interest to be explored up to their computational limits. There have been some approaches based on optimizations to advance in multiparadigm models of tumor growth, which mainly pursuit to improve performance of these models through efficient memory accesses guarantee, or considering the dynamic evolution of the memory space (grids, trees,…) that holds crucial data in simulations. In our opinion, the different optimizations mentioned above are not decisive enough to achieve the high performance computing power that cell-behavior simulation programs actually need. The possibility of using multicore and GPU parallelism as a promising multiplatform and framework to develop new programming techniques to speed-up the computation time of simulations is just starting to be explored in the few last years. This paper presents a model that incorporates parallel processing, identifying the synchronization necessary for speeding up tumor growth simulations implemented in Java and C++ programming environments. The speed up improvement that specific parallel syntactic constructs, such as executors (thread pools) in Java, are studied. The new tumor growth parallel model is proved using implementations with Java and C++ languages on two different platforms: chipset Intel core i-X and a HPC cluster of processors at our university. The parallelization of Polesczuk and Enderling model (normally used by researchers in mathematical oncology) proposed here is analyzed with respect to performance gain. We intend to apply the model and overall parallelization technique presented here to solid tumors of specific affiliation such as prostate, breast, or colon. Our final objective is to set up a multiparadigm model capable of modelling angiogenesis, or the growth inhibition induced by chemotaxis, as well as the effect of therapies based on the presence of cytotoxic/cytostatic drugs.

Keywords: cellular automaton, tumor growth model, simulation, multicore and manycore programming, parallel programming, high performance computing, speed up

Procedia PDF Downloads 245