Search results for: feature detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4741

Search results for: feature detection

1981 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries

Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li

Abstract:

Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.

Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net

Procedia PDF Downloads 153
1980 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering

Authors: K. Umbleja, M. Ichino

Abstract:

Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.

Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis

Procedia PDF Downloads 162
1979 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning

Authors: Melody Yin

Abstract:

Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.

Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time

Procedia PDF Downloads 168
1978 Experimental Chip/Tool Temperature FEM Model Calibration by Infrared Thermography: A Case Study

Authors: Riccardo Angiuli, Michele Giannuzzi, Rodolfo Franchi, Gabriele Papadia

Abstract:

Temperature knowledge in machining is fundamental to improve the numerical and FEM models used for the study of some critical process aspects, such as the behavior of the worked material and tool. The extreme conditions in which they operate make it impossible to use traditional measuring instruments; infrared thermography can be used as a valid measuring instrument for temperature measurement during metal cutting. In the study, a large experimental program on superduplex steel (ASTM A995 gr. 5A) cutting was carried out, the relevant cutting temperatures were measured by infrared thermography when certain cutting parameters changed, from traditional values to extreme ones. The values identified were used to calibrate a FEM model for the prediction of residual life of the tools. During the study, the problems related to the detection of cutting temperatures by infrared thermography were analyzed, and a dedicated procedure was developed that could be used during similar processing.

Keywords: machining, infrared thermography, FEM, temperature measurement

Procedia PDF Downloads 184
1977 A Turn-on Fluorescent Sensor for Pb(II)

Authors: Ece Kök Yetimoğlu, Soner Çubuk, Neşe Taşci, M. Vezir Kahraman

Abstract:

Lead(II) is one of the most toxic environmental pollutants in the world, due to its high toxicity and non-biodegradability. Lead exposure causes severe risks to human health such as central brain damages, convulsions, kidney damages, and even death. To determine lead(II) in environmental or biological samples, scientists use atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICPMS), fluorescence spectrometry and electrochemical techniques. Among these systems the fluorescence spectrometry and fluorescent chemical sensors have attracted considerable attention because of their good selectivity and high sensitivity. The fluorescent polymers usually contain covalently bonded fluorophores. In this study imidazole based UV cured polymeric film was prepared and designed to act as a fluorescence chemo sensor for lead (II) analysis. The optimum conditions such as influence of pH value and time on the fluorescence intensity of the sensor have also been investigated. The sensor was highly sensitive with a detection limit as low as 1.87 × 10−8 mol L-1 and it was successful in the determination of Pb(II) in water samples.

Keywords: fluorescence, lead(II), photopolymerization, polymeric sensor

Procedia PDF Downloads 671
1976 Wireless Sensor Anomaly Detection Using Soft Computing

Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh

Abstract:

We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.

Keywords: IDS, Machine learning, WSN, ZigBee technology

Procedia PDF Downloads 543
1975 Mechanical, Physical and Durability Properties of Cement Mortars Added with Recycled PP/PE-Based Food Packaging Waste Material

Authors: Livia Guerini, Christian Paglia

Abstract:

In Switzerland, only a fraction of plastic waste from food packaging is collected and recycled for further use in the food industry. Therefore, reusing these waste plastics for building applications can be an attractive alternative to disposal in order to reduce the problem of waste management and to make up for the depletion of raw materials needed for construction. In this study, experiments were conducted on the mechanical properties (compressive and flexural strength, elastic modulus), physical properties (density, workability, porosity, and water permeability) and durability (freeze/thaw resistance) of cementitious mortars with additions of recycled low-/high-density polyethylene (LDPE/HDPE)/ polypropylene (PP) regrind (addition of 5% and 10% by weight) and LDPE sheets (addition of 0.5% and 1.5% by weight) coming from food packaging. The results show that as the addition of plastic material increases, the density and mechanical properties of the mortars decrease compared to conventional ones. Porosity is similar in all the mixtures made, while the workability and the permeability are affected not only by the amount added but also by the shape of the plastic aggregate. Freeze/thaw resistance, on the other hand, is significantly higher in mortars with plastic aggregates than in traditional mortar. This feature may be interesting for the realization of outdoor mortars in cold environments.

Keywords: food packaging waste, durability properties, mechanical properties, mortar, recycled PE, recycled PP

Procedia PDF Downloads 145
1974 Modeling and Tracking of Deformable Structures in Medical Images

Authors: Said Ettaieb, Kamel Hamrouni, Su Ruan

Abstract:

This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method.

Keywords: active shape model, a priori knowledge, spatiotemporal shape variation, deformable structures, medical images

Procedia PDF Downloads 342
1973 A Clustering Algorithm for Massive Texts

Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen

Abstract:

Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.

Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process

Procedia PDF Downloads 435
1972 Rehabilitation of the Blind Using Sono-Visualization Tool

Authors: Ashwani Kumar

Abstract:

In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object.

Keywords: image processing, pixel, pitch, loudness, sound generation, edge detection, brightness

Procedia PDF Downloads 388
1971 Earphone Style Wearable Device for Automatic Guidance Service with Position Sensing

Authors: Dawei Cai

Abstract:

This paper describes a design of earphone style wearable device that may provide an automatic guidance service for visitors. With both position information and orientation information obtained from NFC and terrestrial magnetism sensor, a high level automatic guide service may be realized. To realize the service, a algorithm for position detection using the packet from NFC tags, and developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensors called as MEMS. If visitors want to know some explanation about an exhibit in front of him, what he has to do is only move to the object and stands for a moment. The identification program will automatically recognize the status based on the information from NFC and MEMS, and start playing explanation content about the exhibit. This service should be useful for improving the understanding of the exhibition items and bring more satisfactory visiting experience without less burden.

Keywords: wearable device, MEMS sensor, ubiquitous computing, NFC

Procedia PDF Downloads 239
1970 A Practical Protection Method for Parallel Transmission-Lines Based on the Fault Travelling-Waves

Authors: Mohammad Reza Ebrahimi

Abstract:

In new restructured power systems, swift fault detection is very important. The parallel transmission-lines are vastly used in this kind of power systems because of high amount of energy transferring. In this paper, a method based on the comparison of two schemes, i.e., i) maximum magnitude of travelling-wave (TW) energy ii) the instants of maximum energy occurrence at the circuits of parallel transmission-line is proposed. Using the travelling-wave of fault in order to faulted line identification this method has noticeable operation time. Moreover, the algorithm can cover for identification of faults as external or internal faults. For an internal fault, the exact location of the fault can be estimated confidently. A lot of simulations have been done with PSCAD/EMTDC to verify the performance of the proposed algorithm.

Keywords: travelling-wave, maximum energy, parallel transmission-line, fault location

Procedia PDF Downloads 186
1969 Detection of Adulterants in Milk Using IoT

Authors: Shaik Mohammad Samiullah Shariff, Siva Sreenath, Sai Haripriya, Prathyusha, M. Padma Lalitha

Abstract:

The Internet of Things (IoT) is the emerging technology that has been utilized to extend the possibilities for smart dairy farming (SDF). Milk consumption is continually increasing due to the world's growing population. As a result, some providers are prone to using dishonest measures to close the supply-demand imbalance, such as adding adulterants to milk. To identify the presence of adulterants in milk, traditional testing methods necessitate the use of particular chemicals and equipment. While efficient, this method has the disadvantage of yielding difficult and time-consuming qualitative results. Furthermore, same milk sample cannot be tested for other adulterants later. As a result, this study proposes an IoT-based approach for identifying adulterants in milk by measuring electrical conductivity (EC) or Total Dissolved Solids (TDS) and PH. In order to achieve this, an Arduino UNO microcontroller is used to assess the contaminants. When there is no adulteration, the pH and TDS values of milk range from 6.45 to 6.67 and 750 to 780ppm, respectively, according to this study. Finally, the data is uploaded to the cloud via an IoT device attached to the Ubidot web platform.

Keywords: internet of things (IoT), pH sensor, TDS sensor, EC sensor, industry 4.0

Procedia PDF Downloads 78
1968 Health of Riveted Joints with Active and Passive Structural Health Monitoring Techniques

Authors: Javad Yarmahmoudi, Alireza Mirzaee

Abstract:

Many active and passive structural health monitoring (SHM) techniques have been developed for detection of the defects of plates. Generally, riveted joints hold the plates together and their failure may create accidents. In this study, well known active and passive methods were modified for the evaluation of the health of the riveted joints between the plates. The active method generated Lamb waves and monitored their propagation by using lead zirconate titanate (PZT) disks. The signal was analyzed by using the wavelet transformations. The passive method used the Fiber Bragg Grating (FBG) sensors and evaluated the spectral characteristics of the signals by using Fast Fourier Transformation (FFT). The results indicated that the existing methods designed for the evaluation of the health of individual plates may be used for inspection of riveted joints with software modifications.

Keywords: structural health monitoring, SHM, active SHM, passive SHM, fiber bragg grating sensor, lead zirconate titanate, PZT

Procedia PDF Downloads 327
1967 Imaging Based On Bi-Static SAR Using GPS L5 Signal

Authors: Tahir Saleem, Mohammad Usman, Nadeem Khan

Abstract:

GPS signals are used for navigation and positioning purposes by a diverse set of users. However, this project intends to utilize the reflected GPS L5 signals for location of target in a region of interest by generating an image that highlights the positions of targets in the area of interest. The principle of bi-static radar is used to detect the targets or any movement or changes. The idea is confirmed by the results obtained during MATLAB simulations. A matched filter based technique is employed in the signal processing to improve the system resolution. The simulation is carried out under different conditions with moving receiver and targets. Noise and attenuation is also induced and atmospheric conditions that affect the direct and reflected GPS signals have been simulated to generate a more practical scenario. A realistic GPS L5 signal has been simulated, the simulation results verify that the detection and imaging of targets is possible by employing reflected GPS using L5 signals and matched filter processing technique with acceptable spatial resolution.

Keywords: GPS, L5 Signal, SAR, spatial resolution

Procedia PDF Downloads 534
1966 The Use of Remotely Sensed Data to Model Habitat Selections of Pileated Woodpeckers (Dryocopus pileatus) in Fragmented Landscapes

Authors: Ruijia Hu, Susanna T.Y. Tong

Abstract:

Light detection and ranging (LiDAR) and four-channel red, green, blue, and near-infrared (RGBI) remote sensed imageries allow an accurate quantification and contiguous measurement of vegetation characteristics and forest structures. This information facilitates the generation of habitat structure variables for forest species distribution modelling. However, applications of remote sensing data, especially the combination of structural and spectral information, to support evidence-based decisions in forest managements and conservation practices at local scale are not widely adopted. In this study, we examined the habitat requirements of pileated woodpecker (Dryocopus pileatus) (PW) in Hamilton County, Ohio, using ecologically relevant forest structural and vegetation characteristics derived from LiDAR and RGBI data. We hypothesized that the habitat of PW is shaped by vegetation characteristics that are directly associated with the availability of food, hiding and nesting resources, the spatial arrangement of habitat patches within home range, as well as proximity to water sources. We used 186 PW presence or absence locations to model their presence and absence in generalized additive model (GAM) at two scales, representing foraging and home range size, respectively. The results confirm PW’s preference for tall and large mature stands with structural complexity, typical of late-successional or old-growth forests. Besides, the crown size of dead trees shows a positive relationship with PW occurrence, therefore indicating the importance of declining living trees or early-stage dead trees within PW home range. These locations are preferred by PW for nest cavity excavation as it attempts to balance the ease of excavation and tree security. In addition, we found that PW can adjust its travel distance to the nearest water resource, suggesting that habitat fragmentation can have certain impacts on PW. Based on our findings, we recommend that forest managers should use different priorities to manage nesting, roosting, and feeding habitats. Particularly, when devising forest management and hazard tree removal plans, one needs to consider retaining enough cavity trees within high-quality PW habitat. By mapping PW habitat suitability for the study area, we highlight the importance of riparian corridor in facilitating PW to adjust to the fragmented urban landscape. Indeed, habitat improvement for PW in the study area could be achieved by conserving riparian corridors and promoting riparian forest succession along major rivers in Hamilton County.

Keywords: deadwood detection, generalized additive model, individual tree crown delineation, LiDAR, pileated woodpecker, RGBI aerial imagery, species distribution models

Procedia PDF Downloads 52
1965 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 97
1964 Lithological Mapping and Iron Deposits Identification in El-Bahariya Depression, Western Desert, Egypt, Using Remote Sensing Data Analysis

Authors: Safaa M. Hassan; Safwat S. Gabr, Mohamed F. Sadek

Abstract:

This study is proposed for the lithological and iron oxides detection in the old mine areas of El-Bahariya Depression, Western Desert, using ASTER and Landsat-8 remote sensing data. Four old iron ore occurrences, namely; El-Gedida, El-Haraa, Ghurabi, and Nasir mine areas found in the El-Bahariya area. This study aims to find new high potential areas for iron mineralization around El-Baharyia depression. Image processing methods such as principle component analysis (PCA) and band ratios (b4/b5, b5/b6, b6/b7, and 4/2, 6/7, band 6) images were used for lithological identification/mapping that includes the iron content in the investigated area. ASTER and Landsat-8 visible and short-wave infrared data found to help mapping the ferruginous sandstones, iron oxides as well as the clay minerals in and around the old mines area of El-Bahariya depression. Landsat-8 band ratio and the principle component of this study showed well distribution of the lithological units, especially ferruginous sandstones and iron zones (hematite and limonite) along with detection of probable high potential areas for iron mineralization which can be used in the future and proved the ability of Landsat-8 and ASTER data in mapping these features. Minimum Noise Fraction (MNF), Mixture Tuned Matched Filtering (MTMF), pixel purity index methods as well as Spectral Ange Mapper classifier algorithm have been successfully discriminated the hematite and limonite content within the iron zones in the study area. Various ASTER image spectra and ASD field spectra of hematite and limonite and the surrounding rocks are compared and found to be consistent in terms of the presence of absorption features at range from 1.95 to 2.3 μm for hematite and limonite. Pixel purity index algorithm and two sub-pixel spectral methods, namely Mixture Tuned Matched Filtering (MTMF) and matched filtering (MF) methods, are applied to ASTER bands to delineate iron oxides (hematite and limonite) rich zones within the rock units. The results are validated in the field by comparing image spectra of spectrally anomalous zone with the USGS resampled laboratory spectra of hematite and limonite samples using ASD measurements. A number of iron oxides rich zones in addition to the main surface exposures of the El-Gadidah Mine, are confirmed in the field. The proposed method is a successful application of spectral mapping of iron oxides deposits in the exposed rock units (i.e., ferruginous sandstone) and present approach of both ASTER and ASD hyperspectral data processing can be used to delineate iron-rich zones occurring within similar geological provinces in any parts of the world.

Keywords: Landsat-8, ASTER, lithological mapping, iron exploration, western desert

Procedia PDF Downloads 145
1963 A Comparative Analysis of Social Stratification in the Participation of Women in Agricultural Activity: A Case Study of District Khushab (Punjab) and D. I. Khan (KPK), Pakistan

Authors: Sohail Ahmad Umer

Abstract:

Since last few decades a question is raising on the subject of the importance of women in different societies of the world particularly in the developing societies of Asia and Africa. Female population constitutes almost 50% of the total population of the world and is playing a significant role in the economy with male population. In Pakistan, a developing country of Asia with majority of Muslim population, working women role is more focused. Women of rural background who are working as voluntary workers and their working hours are neither recorded nor recognized. Agricultural statistics shows that the female participation rate is below 40% while other sources claim them below 20%. Here in present study, another effort has been made to compare the women role in two different provinces of Pakistan to analyze the participation of women in agricultural activities like sowing, picking, irrigating the fields, harvesting and threshing of crops, caring and feeding of the animals, collecting the firewood and etc,as without these activities the farming would be incomplete. One hundred villages in the district Khushab (Punjab) and one hundred villages in district D.I.Khan (KPK) were selected and 33% of the families of each village have been interviewed to study their input in agriculture work. Another important feature is the social stratification therefore the contribution by different variables like the ownership, tenancy, education and caste has also been studied.

Keywords: caste, social stratification, tenancy, voluntary workers

Procedia PDF Downloads 370
1962 Persistent Homology of Convection Cycles in Network Flows

Authors: Minh Quang Le, Dane Taylor

Abstract:

Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of networks flows. Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the detection and characterization of convective/cyclic/chiral flows over networks, particularly those that arise for irreversible Markov chains (MCs). As two applications, we study convection cycles arising under the PageRank algorithm, and we investigate chiral edges flows for a stochastic model of a bi-monomer's configuration dynamics. Our experiments highlight how system parameters---e.g., the teleportation rate for PageRank and the transition rates of external and internal state changes for a monomer---can act as homology regularizers of convection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach establishes a new connection between the study of convection cycles and homology, the branch of mathematics that formally studies cycles, which has diverse potential applications throughout the sciences and engineering.

Keywords: homology, persistent homolgy, markov chains, convection cycles, filtration

Procedia PDF Downloads 136
1961 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)

Authors: Eric Pla Erra, Mariana Jimenez Martinez

Abstract:

While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.

Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)

Procedia PDF Downloads 105
1960 Auditory Brainstem Response in Wave VI for the Detection of Learning Disabilities

Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba

Abstract:

The use of brain stem auditory evoked potential (BAEP) is a common way to study the auditory function of people, a way to learn the functionality of a part of the brain neuronal groups that intervene in the learning process by studying the behaviour of wave VI. The latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of innocuous, low-cost, and easy-access techniques such as, among others, the BAEP that can help us to detect early possible neurodevelopmental difficulties for their subsequent assessment and cure. To date and to the authors' best knowledge, only the latency data obtained, observing the first to V waves and mainly in the left ear, were taken into account. This work shows that it is essential to take into account both ears; with these latest data, it has been possible had diagnosed more precise some cases than with the previous data had been diagnosed as 'normal' despite showing signs of some alteration that motivated the new consultation to the specialist.

Keywords: ear, neurodevelopment, auditory evoked potentials, intervals of normality, learning disabilities

Procedia PDF Downloads 165
1959 3D Images Representation to Provide Information on the Type of Castella Beams Hole

Authors: Cut Maisyarah Karyati, Aries Muslim, Sulardi

Abstract:

Digital image processing techniques to obtain detailed information from an image have been used in various fields, including in civil engineering, where the use of solid beam profiles in buildings and bridges has often been encountered since the early development of beams. Along with this development, the founded castellated beam profiles began to be more diverse in shape, such as the shape of a hexagon, triangle, pentagon, circle, ellipse and oval that could be a practical solution in optimizing a construction because of its characteristics. The purpose of this research is to create a computer application to edge detect the profile of various shapes of the castella beams hole. The digital image segmentation method has been used to obtain the grayscale images and represented in 2D and 3D formats. This application has been successfully made according to the desired function, which is to provide information on the type of castella beam hole.

Keywords: digital image, image processing, edge detection, grayscale, castella beams

Procedia PDF Downloads 141
1958 Critical Analysis of Heat Exchanger Cycle for its Maintainability Using Failure Modes and Effect Analysis and Pareto Analysis

Authors: Sayali Vyas, Atharva Desai, Shreyas Badave, Apurv Kulkarni, B. Rajiv

Abstract:

The Failure Modes and Effect Analysis (FMEA) is an efficient evaluation technique to identify potential failures in products, processes, and services. FMEA is designed to identify and prioritize failure modes. It proves to be a useful method for identifying and correcting possible failures at its earliest possible level so that one can avoid consequences of poor performance. In this paper, FMEA tool is used in detection of failures of various components of heat exchanger cycle and to identify critical failures of the components which may hamper the system’s performance. Further, a detailed Pareto analysis is done to find out the most critical components of the cycle, the causes of its failures, and possible recommended actions. This paper can be used as a checklist which will help in maintainability of the system.

Keywords: FMEA, heat exchanger cycle, Ishikawa diagram, pareto analysis, RPN (Risk Priority Number)

Procedia PDF Downloads 402
1957 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 127
1956 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 235
1955 Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing

Authors: Sadaf Nawaz, Adnan Ahmed Khan, Asad Mahmood, Chaudhary Farrukh Javed

Abstract:

Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.

Keywords: cognitive radio, energy detector, periodogram, spectrum sensing

Procedia PDF Downloads 377
1954 Networked Radar System to Increase Safety of Urban Railroad Crossing

Authors: Sergio Saponara, Luca Fanucci, Riccardo Cassettari, Ruggero Piernicola, Marco Righetto

Abstract:

The paper presents an innovative networked radar system for detection of obstacles in a railway level crossing scenario. This Monitoring System (MS) is able to detect moving or still obstacles within the railway level crossing area automatically, avoiding the need of human presence for surveillance. The MS is also connected to the National Railway Information and Signaling System to communicate in real-time the level crossing status. The architecture is compliant with the highest Safety Integrity Level (SIL4) of the CENELEC standard. The number of radar sensors used is configurable at set-up time and depends on how large the level crossing area can be. At least two sensors are expected and up four can be used for larger areas. The whole processing chain that elaborates the output sensor signals, as well as the communication interface, is fully-digital, was designed in VHDL code and implemented onto a Xilinx Virtex 6.

Keywords: radar for safe mobility, railroad crossing, railway, transport safety

Procedia PDF Downloads 480
1953 Rendering of Indian History: A Study Based on Select Graphic Novels

Authors: Akhila Sara Varughese

Abstract:

In the postmodern society, visual narratives became an emerging genre in the field of literature. Graphic literature focuses on the literal and symbolic layer of interpretation. The most salient feature of graphic literature is its exploration of the public history of events and life narratives. The Indian graphic literature re-interprets the canon, style and the form of texts in Indian Writing in English and it demands a new literacy and the structure of the English literature. With the help of visual-verbal language, the graphic narratives discuss various facets of contemporary India. Graphic novels have firmly identified itself with the art of storytelling because of its capability of expressing human experiences to the most. In the textual novels, the author usually deserts the imagination of the readers, but in the case of graphic narratives, due to the presence of visual elements, the interpretation becomes simpler. India is the second most populous country in the world with a long tradition of history and culture. Indian literature always tries to reconstruct Indian history in various modes of representation. The present paper focuses on the fictional articulation of Indian history through the graphic narratives and analyses how some historical events in India portrays. The paper also traces the differences in rendering the history in graphic novels with that of textual novels. The paper discusses how much the blending of words and images helps in represent the Indian history by analyzing the graphic novels like Kashmir Pending by Naseer Ahmed, Delhi Calm by Vishwajyoti Ghosh and Munnu by Malik Sajad.

Keywords: graphic novels, Indian history, representation, visual-verbal literacy

Procedia PDF Downloads 347
1952 Engaging Students with Special Education Needs through Technology-Enhanced Interactive Activities in Class

Authors: Pauli P.Y. Lai

Abstract:

Students with Special Education Needs (SEN) face many challenges in learning. Various challenges include difficulty in handwriting, slow understanding and assimilation, difficulty in paying attention during class, and lack of communication skills. To engage students with Special Education Needs in class with general students, Blackboard Collaborate is used as a teaching and learning tool to deliver a lecture with interactive activities. Blackboard Collaborate provides a good platform to create and enhance active, collaborative and interactive learning experience whereby the SEN students can easily interact with their general peers and the instructor by using the features of drawing on a virtual whiteboard, file sharing, classroom chatter, breakout room, hand-raising feature, polling, etc. By integrating a blended learning approach with Blackboard Collaborate, the students with Special Education Needs could engage in interactive activities with ease in class. Our research aims at exploring and discovering the use of Blackboard Collaborate for inclusive education based on a qualitative design with in-depth interviews. Being served in a general education environment, three university students with different kinds of learning disabilities have participated in our study. All participants agreed that functions provided by Blackboard Collaborate have enhanced their learning experiences and helped them learn better. Their academic performances also showed that SEN students could perform well with the help of technology. This research studies different aspects of using Blackboard Collaborate to create an inclusive learning environment for SEN students.

Keywords: blackboard collaborate, enhanced learning experience, inclusive education, special education needs

Procedia PDF Downloads 134