Search results for: gradient boosting machine
934 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks
Procedia PDF Downloads 223933 Algorithms Minimizing Total Tardiness
Authors: Harun Aydilek, Asiye Aydilek, Ali Allahverdi
Abstract:
The total tardiness is a widely used performance measure in the scheduling literature. This performance measure is particularly important in situations where there is a cost to complete a job beyond its due date. The cost of scheduling increases as the gap between a job's due date and its completion time increases. Such costs may also be penalty costs in contracts, loss of goodwill. This performance measure is important as the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. The problem is addressed in the literature, however, it has been assumed zero setup times. Even though this assumption may be valid for some environments, it is not valid for some other scheduling environments. When setup times are treated as separate from processing times, it is possible to increase machine utilization and to reduce total tardiness. Therefore, non-zero setup times need to be considered as separate. A dominance relation is developed and several algorithms are proposed. The developed dominance relation is utilized in the proposed algorithms. Extensive computational experiments are conducted for the evaluation of the algorithms. The experiments indicated that the developed algorithms perform much better than the existing algorithms in the literature. More specifically, one of the newly proposed algorithms reduces the error of the best existing algorithm in the literature by 40 percent.Keywords: algorithm, assembly flowshop, dominance relation, total tardiness
Procedia PDF Downloads 353932 A New Second Tier Screening for Congenital Adrenal Hyperplasia Utilizing One Dried Blood Spot
Authors: Engy Shokry, Giancarlo La Marca, Maria Luisa Della Bona
Abstract:
Newborn screening for Congenital Adrenal Hyperplasia (CAH) relies on quantification of 17α-hydroxyprogesterone using enzyme immunoassays. These assays, in spite of being rapid, readily available and easy to perform, its reliability was found questionable due to lack of selectivity and specificity resulting in large number of false-positives, consequently family anxiety and associated hospitalization costs. To improve specificity of conventional 17α-hydroxyprogesterone screening which may experience false transient elevation in preterm, low birth weight or acutely ill neonates, steroid profiling by LC-MS/MS as a second-tier test was implemented. Unlike the previously applied LC-MS/MS methods, with the disadvantage of requiring a relatively high number of blood drops. Since newborn screening tests are increasing, it is necessary to minimize the sample volume requirement to make the maximum use of blood samples collected on filter paper. The proposed new method requires just one 3.2 mm dried blood spot (DBS) punch. Extraction was done using methanol: water: formic acid (90:10:0.1, v/v/v) containing deuterium labelled internal standards. Extracts were evaporated and reconstituted in 10 % acetone in water. Column switching strategy for on-line sample clean-up was applied to improve the chromatographic run. The first separative step retained the investigated steroids and passed through the majority of high molecular weight impurities. After the valve switching, the investigated steroids are back flushed from the POROS® column onto the analytical column and separated using gradient elution. Found quantitation limits were 5, 10 and 50 nmol/L for 17α-hydroxyprogesterone, androstenedione and cortisol respectively with mean recoveries of between 98.31-103.24 % and intra-/ inter-assay CV% < 10 % except at LLOQ. The method was validated using standard addition calibration and isotope dilution strategies. Reference ranges were determined by analysing samples from 896 infants of various ages at the time of sample collection. The method was also applied on patients with confirmed CAH. Our method represents an attractive combination of low sample volume requirement, minimal sample preparation time without derivatization and quick chromatography (5 min). The three steroid profile and the concentration ratios (17OHP + androstenedione/cortisol) allowed better screening outcomes of CAH reducing false positives, associated costs and anxiety.Keywords: congenital adrenal hyperplasia (CAH), 17α-hydroxyprogesterone, androstenedione, cortisol, LC-MS/MS
Procedia PDF Downloads 437931 Alterations of Gut Microbiota and Its Metabolomics in Child with 6PPDQ, PBDE, PCB, and Metal (Loid) Exposure
Authors: Xia Huo
Abstract:
The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu and 34 children from Haojiang. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and both the alpha diversity index and specific metabolites in single-element models. The study found that the Bayesian kernel machine regression (BKMR) model showed a negative correlation between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the Chao 1 index, particularly beyond the 55th percentile. Furthermore, the EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our research suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the gut microbiota and its metabolites. These alterations may be associated with neurodevelopmental abnormalities in children.Keywords: gut microbiota, 6PPDQ, PBDEs, PCBs, metal(loid)s, BKMR
Procedia PDF Downloads 54930 Analyzing Extended Reality Technologies for Human Space Exploration
Authors: Morgan Kuligowski, Marientina Gotsis
Abstract:
Extended reality (XR) technologies share an intertwined history with spaceflight and innovation. New advancements in XR technologies offer expanding possibilities to advance the future of human space exploration with increased crew autonomy. This paper seeks to identify implementation gaps between existing and proposed XR space applications to inform future mission planning. A review of virtual reality, augmented reality, and mixed reality technologies implemented aboard the International Space Station revealed a total of 16 flown investigations. A secondary set of ground-tested XR human spaceflight applications were systematically retrieved from literature sources. The two sets of XR technologies, those flown and those existing in the literature were analyzed to characterize application domains and device types. Comparisons between these groups revealed untapped application areas for XR to support crew psychological health, in-flight training, and extravehicular operations on future flights. To fill these roles, integrating XR technologies with advancements in biometric sensors and machine learning tools is expected to transform crew capabilities.Keywords: augmented reality, extended reality, international space station, mixed reality, virtual reality
Procedia PDF Downloads 214929 Artificial Intelligent Tax Simulator to Minimize Tax Liability for Multinational Corporations
Authors: Sean Goltz, Michael Mayo
Abstract:
The purpose of this research is to use Global-Regulation.com database of the world laws, focusing on tax treaties between countries, in order to create an AI-driven tax simulator that will run an AI agent through potential tax scenarios across countries. The AI agent goal is to identify the scenario that will result in minimum tax liability based on tax treaties between countries. The results will be visualized by a three dimensional matrix. This will be an online web application. Multinational corporations are running their business through multiple countries. These countries, in turn, have a tax treaty with many other countries to regulate the payment of taxes on income that is transferred between these countries. As a result, planning the best tax scenario across multiple countries and numerous tax treaties is almost impossible. This research propose to use Global-Regulation.com database of word laws in English (machine translated by Google and Microsoft API’s) in order to create a simulator that will include the information in the tax treaties. Once ready, an AI agent will be sent through the simulator to identify the scenario that will result in minimum tax liability. Identifying the best tax scenario across countries may save multinational corporations, like Google, billions of dollars annually. Given the nature of the raw data and the domain of taxes (i.e., numbers), this is a promising ground to employ artificial intelligence towards a practical and beneficial purpose.Keywords: taxation, law, multinational, corporation
Procedia PDF Downloads 195928 Cutting Performance of BDD Coating on WC-Co Tools
Authors: Feng Xu, Zhaozhi Liu, Junhua Xu, Xiaolong Tang, Dunwen Zuo
Abstract:
Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill.Keywords: cemented carbide with high cobalt content, CVD boron-doped diamond, cutting test, drill
Procedia PDF Downloads 439927 Implementation of a Photo-Curable 3D Additive Manufacturing Technology with Grey Capability by Using Piezo Ink-jets
Authors: Ming-Jong Tsai, Y. L. Cheng, Y. L. Kuo, S. Y. Hsiao, J. W. Chen, P. H. Liu, D. H. Chen
Abstract:
The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi.Keywords: 3D printing, additive manufacturing, color, photo-curable, Piezo type ink-jet, UV Resin
Procedia PDF Downloads 559926 Examines the Proportionality between the Needs of Industry and Technical and Vocational Training of Male and Female Vocational Schools
Authors: Khalil Aryanfar, Pariya Gholipor, Elmira Hafez
Abstract:
This study examines the proportionality between the needs of industry and technical and vocational training of male and female vocational schools. The research method was descriptive that was conducted in two parts: documentary analysis and needs assessment and Delphi method was used in the need assessment. The statistical population of the study included 312 individuals from the industry sector employers and 52 of them were selected through stratified random sampling. Methods of data collection in this study, upstream documents include: document of the development of technical and vocational training, Statistical Yearbook 1393 in Tehran, the available documents in Isfahan Planning Department, the findings indicate that there is an almost proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of welding, industrial electronics, electro technique, industrial drawing, auto mechanics, design, packaging, machine tool, metalworking, construction, accounting, computer graphics and the Administrative Affairs. The findings indicate that there is no proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of Thermal - cooling systems, building electricity, building drawing, interior architecture, car electricity and motor repair.Keywords: needs assessment, technical and vocational training, industry
Procedia PDF Downloads 451925 Push-Out Bond Strength of Two Root-End Filling Materials in Root-End Cavities Prepared by Er,Cr: YSGG Laser or Ultrasonic Technique
Authors: Noushin Shokouhinejad, Hasan Razmi, Reza Fekrazad, Saeed Asgary, Ammar Neshati, Hadi Assadian, Sanam Kheirieh
Abstract:
This study compared the push-out bond strength of mineral trioxide aggregate (MTA) and a new endodontic cement (NEC) as root-end filling materials in root-end cavities prepared by ultrasonic technique (US) or Er,Cr:YSGG laser (L). Eighty single-rooted extracted human teeth were endodontically treated, apicectomised and randomly divided into four following groups (n = 20): US/MTA, US/NEC, L/MTA and L/NEC. In US/MTA and US/NEC groups, rooted cavities were prepared with ultrasonic retrotip and filled with MTA and NEC, respectively. In L/MTA and L/NEC groups, root-end cavities were prepared using Er, Cr:YSGG laser and filled with MTA and NEC, respectively. Each root was cut apically to create a 2 mm-thick root slice for measurement of bond strength using a universal testing machine. Then, all slices were examined to determine the mode of bond failure. Data were analysed using two-way ANOVA. Root-end filling materials showed significantly higher bond strength in root-end cavities prepared using the ultrasonic technique (US/MTA and US/NEC) (P < 0.001). The bond strengths of MTA and NEC did not differ significantly. The failure modes were mainly adhesive for MTA, but cohesive for NEC. In conclusion, bond strengths of MTA and NEC to root-end cavities were comparable and higher in ultrasonically prepared cavities.Keywords: bond strength, Er, Cr:YSGG laser, MTA, NEC, root-end cavity
Procedia PDF Downloads 345924 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 417923 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning
Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor
Abstract:
Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH
Procedia PDF Downloads 171922 Using Deep Learning in Lyme Disease Diagnosis
Authors: Teja Koduru
Abstract:
Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash
Procedia PDF Downloads 239921 Automatic Verification Technology of Virtual Machine Software Patch on IaaS Cloud
Authors: Yoji Yamato
Abstract:
In this paper, we propose an automatic verification technology of software patches for user virtual environments on IaaS Cloud to decrease verification costs of patches. In these days, IaaS services have been spread and many users can customize virtual machines on IaaS Cloud like their own private servers. Regarding to software patches of OS or middleware installed on virtual machines, users need to adopt and verify these patches by themselves. This task increases operation costs of users. Our proposed method replicates user virtual environments, extracts verification test cases for user virtual environments from test case DB, distributes patches to virtual machines on replicated environments and conducts those test cases automatically on replicated environments. We have implemented the proposed method on OpenStack using Jenkins and confirmed the feasibility. Using the implementation, we confirmed the effectiveness of test case creation efforts by our proposed idea of 2-tier abstraction of software functions and test cases. We also evaluated the automatic verification performance of environment replications, test cases extractions and test cases conductions.Keywords: OpenStack, cloud computing, automatic verification, jenkins
Procedia PDF Downloads 485920 A Study of Traditional Mode in the Framework of Sustainable Urban Transportation
Authors: Juanita, B. Kombaitan, Iwan Pratoyo Kusumantoro
Abstract:
The traditional mode is a non-motorized vehicle powered by human or animal power. The objective of the study was to define the strategy of using traditional modes by the framework of sustainable urban transport in support of urban tourism activities. The study of the traditional mode does not include a modified mode using the engine power as motor tricycles are often called ‘bentor ‘in Indonesia. The use of non-motorized traditional mode in Indonesia has begun to shift, and its use began to be eliminated by the change of propulsion using the machine. In an effort to push back the use of traditional mode one of them with tourism activities. Strategies for the use of traditional modes within the framework of sustainable urban transport are seen from three dimensions: social, economic and environmental. The social dimension related to accessibility and livability, an economic dimension related to traditional modes can promote products and tourist attractions, while the environmental dimension related to the needs of the users/groups with respect to safety, comfort. The traditional mode is rarely noticed by the policy makers, and public opinion in its use needs attention. The involvement of policy-making between stakeholders and the community is needed in the development of sustainable traditional mode strategies in support of urban tourism activities.Keywords: traditional mode, sustainable, urban, transportation
Procedia PDF Downloads 264919 Massively Parallel Sequencing Improved Resolution for Paternity Testing
Authors: Xueying Zhao, Ke Ma, Hui Li, Yu Cao, Fan Yang, Qingwen Xu, Wenbin Liu
Abstract:
Massively parallel sequencing (MPS) technologies allow high-throughput sequencing analyses with a relatively affordable price and have gradually been applied to forensic casework. MPS technology identifies short tandem repeat (STR) loci based on sequence so that repeat motif variation within STRs can be detected, which may help one to infer the origin of the mutation in some cases. Here, we report on one case with one three-step mismatch (D18S51) in family trios based on both capillary electrophoresis (CE) and MPS typing. The alleles of the alleged father (AF) are [AGAA]₁₇AGAG[AGAA]₃ and [AGAA]₁₅. The mother’s alleles are [AGAA]₁₉ and [AGAA]₉AGGA[AGAA]₃. The questioned child’s (QC) alleles are [AGAA]₁₉ and [AGAA]₁₂. Given that the sequence variants in repeat regions of AF and mother are not observed in QC’s alleles, the QC’s allele [AGAA]₁₂ was likely inherited from the AF’s allele [AGAA]₁₅ by loss of three repeat [AGAA]. Besides, two new alleles of D18S51 in this study, [AGAA]₁₇AGAG[AGAA]₃ and [AGAA]₉AGGA[AGAA]₃, have not been reported before. All the results in this study were verified using Sanger-type sequencing. In summary, the MPS typing method can offer valuable information for forensic genetics research and play a promising role in paternity testing.Keywords: family trios analysis, forensic casework, ion torrent personal genome machine (PGM), massively parallel sequencing (MPS)
Procedia PDF Downloads 301918 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques
Authors: Bhrugesh Radadiya, Jaydeep Shah
Abstract:
In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm
Procedia PDF Downloads 725917 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic
Authors: Budoor Al Abid
Abstract:
Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.Keywords: machine learning, adaptive, fuzzy logic, data mining
Procedia PDF Downloads 194916 Mind Care Assistant - Companion App
Authors: Roshani Gusain, Deep Sinha, Karan Nayal, Anmol Kumar Mishra, Manav Singh
Abstract:
In this research paper, we introduce "Mind Care Assistant - Companion App", which is a Flutter and Firebase-based mental health monitor. The app wants to improve and monitor the mental health of its users, it uses noninvasive ways to check for a change in their emotional state. By responding to questions, the app will provide individualized suggestions ᅳ tasks and mindfulness exercises ᅳ for users who are depressed or anxious. The app features a chat-bot that incorporates cognitive behavioural therapy (CBT) principles and combines natural language processing with machine learning to develop personalised responses. The feature of the app that makes it easy for us to choose between iOS and Android is cross-platform, which allows users from both mobile systems to experience almost no changes in their interfaces. With Firebase integration synchronized and real-time data storage, security is easily possible. The paper covers the architecture of the app, how it was developed and some important features. The primary research result presents the promise of a "Mind Care Assistant" in mental health care using new wait-for-health technology, proposing a full stack application to be able to manage depression/anxiety and overall Mental well-being very effectively.Keywords: mental health, mobile application, flutter, firebase, Depression, Anxiety
Procedia PDF Downloads 9915 Identifying Areas on the Pavement Where Rain Water Runoff Affects Motorcycle Behavior
Authors: Panagiotis Lemonakis, Theodoros Αlimonakis, George Kaliabetsos, Nikos Eliou
Abstract:
It is very well known that certain vertical and longitudinal slopes have to be assured in order to achieve adequate rainwater runoff from the pavement. The selection of longitudinal slopes, between the turning points of the vertical curves that meet the afore-mentioned requirement does not ensure adequate drainage because the same condition must also be applied at the transition curves. In this way none of the pavement edges’ slopes (as well as any other spot that lie on the pavement) will be opposite to the longitudinal slope of the rotation axis. Horizontal and vertical alignment must be properly combined in order to form a road which resultant slope does not take small values and hence, checks must be performed in every cross section and every chainage of the road. The present research investigates the rain water runoff from the road surface in order to identify the conditions under which, areas of inadequate drainage are being created, to analyze the rainwater behavior in such areas, to provide design examples of good and bad drainage zones and to track down certain motorcycle types which might encounter hazardous situations due to the presence of water film between the pavement and both of their tires resulting loss of traction. Moreover, it investigates the combination of longitudinal and cross slope values in critical pavement areas. It should be pointed out that the drainage gradient is analytically calculated for the whole road width and not just for an oblique slope per chainage (combination of longitudinal grade and cross slope). Lastly, various combinations of horizontal and vertical design are presented, indicating the crucial zones of bad pavement drainage. The key conclusion of the study is that any type of motorcycle will travel for some time inside the area of improper runoff for a certain time frame which depends on the speed and the trajectory that the rider chooses along the transition curve. Taking into account that on this section the rider will have to lean his motorcycle and hence reduce the contact area of his tire with the pavement it is apparent that any variations on the friction value due to the presence of a water film may lead to serious problems regarding his safety. The water runoff from the road pavement is improved when between reverse longitudinal slopes, crest instead of sag curve is chosen and particularly when its edges coincide with the edges of the horizontal curve. Lastly, the results of the investigation have shown that the variation of the longitudinal slope involves the vertical shift of the center of the poor water runoff area. The magnitude of this area increases as the length of the transition curve increases.Keywords: drainage, motorcycle safety, superelevation, transition curves, vertical grade
Procedia PDF Downloads 97914 Nilsson Model Performance in Estimating Bed Load Sediment, Case Study: Tale Zang Station
Authors: Nader Parsazadeh
Abstract:
The variety of bed sediment load relationships, insufficient information and data, and the influence of river conditions make the selection of an optimum relationship for a given river extremely difficult. Hence, in order to select the best formulae, the bed load equations should be evaluated. The affecting factors need to be scrutinized, and equations should be verified. Also, re-evaluation may be needed. In this research, sediment bed load of Dez Dam at Tal-e Zang Station has been studied. After reviewing the available references, the most common formulae were selected that included Meir-Peter and Muller, using MS Excel to compute and evaluate data. Then, 52 series of already measured data at the station were re-measured, and the sediment bed load was determined. 1. The calculated bed load obtained by different equations showed a great difference with that of measured data. 2. r difference ratio from 0.5 to 2.00 was 0% for all equations except for Nilsson and Shields equations while it was 61.5 and 59.6% for Nilsson and Shields equations, respectively. 3. By reviewing results and discarding probably erroneous measured data measurements (by human or machine), one may use Nilsson Equation due to its r value higher than 1 as an effective equation for estimating bed load at Tal-e Zang Station in order to predict activities that depend upon bed sediment load estimate to be determined. Also, since only few studies have been conducted so far, these results may be of assistance to the operators and consulting companies.Keywords: bed load, empirical relation ship, sediment, Tale Zang Station
Procedia PDF Downloads 359913 FLIME - Fast Low Light Image Enhancement for Real-Time Video
Authors: Vinay P., Srinivas K. S.
Abstract:
Low Light Image Enhancement is of utmost impor- tance in computer vision based tasks. Applications include vision systems for autonomous driving, night vision devices for defence systems, low light object detection tasks. Many of the existing deep learning methods are resource intensive during the inference step and take considerable time for processing. The algorithm should take considerably less than 41 milliseconds in order to process a real-time video feed with 24 frames per second and should be even less for a video with 30 or 60 frames per second. The paper presents a fast and efficient solution which has two main advantages, it has the potential to be used for a real-time video feed, and it can be used in low compute environments because of the lightweight nature. The proposed solution is a pipeline of three steps, the first one is the use of a simple function to map input RGB values to output RGB values, the second is to balance the colors and the final step is to adjust the contrast of the image. Hence a custom dataset is carefully prepared using images taken in low and bright lighting conditions. The preparation of the dataset, the proposed model, the processing time are discussed in detail and the quality of the enhanced images using different methods is shown.Keywords: low light image enhancement, real-time video, computer vision, machine learning
Procedia PDF Downloads 201912 Short-Term Operation Planning for Energy Management of Exhibition Hall
Authors: Yooncheol Lee, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
This paper deals with the establishment of a short-term operational plan for an air conditioner for efficient energy management of exhibition hall. The short-term operational plan is composed of a time series of operational schedules, which we have searched using genetic algorithms. Establishing operational schedule should be considered the future trends of the variables affecting the exhibition hall environment. To reflect continuously changing factors such as external temperature and occupant, short-term operational plans should be updated in real time. But it takes too much time to evaluate a short-term operational plan using EnergyPlus, a building emulation tool. For that reason, it is difficult to update the operational plan in real time. To evaluate the short-term operational plan, we designed prediction models based on machine learning with fast evaluation speed. This model, which was created by learning the past operational data, is accurate and fast. The collection of operational data and the verification of operational plans were made using EnergyPlus. Experimental results show that the proposed method can save energy compared to the reactive control method.Keywords: exhibition hall, energy management, predictive model, simulation-based optimization
Procedia PDF Downloads 336911 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 482910 Laying Hens' Feed Fortified with Pectin, Xanthan Gum and Guar Gum Aims to Reduce the Cholesterol in Muscle and Egg Yolk
Authors: Novia Dwi Prabandari, Diah Ayu Asmarani
Abstract:
Soluble fiber can accelerate the metabolism of cholesterol. Pectin and gum has been used in the form of substance additive for material stabilizer and emulsifier. Pectin supplementation in laying hens can decimate the cholesterol content in egg yolk and muscle. Therefore, this laying hens’ feed is regular feed chickens enriched with soluble fiber (Pectin, Xanthan gum, and Guar gum) to produce eggs and muscle with lower cholesterol than usual.The ingredients are mixed in the ratio of concentrate 45%, corn flour 25%, soybean meal 20%, and extract of soluble fiber 10%. Once all the ingredients are mixed and then evaporated with temperature < 80 °C. Then put in the grinding machine resulting in a circular shape with holes 2-3 mm in diameter, after it dried up the water content in the feed is less than 14%. Eggs from laying hen with soluble fiber fortification feed intake will have lower cholesterol levels in eggs than regular feed. So even with the cholesterol content in the muscle, it is because chicken feed fortified with soluble fiber will accelerate the metabolism of cholesterol and cause cholesterol deposits in the chicken less. The use of this kind of laying hens feed is produce eggs with high protein content can be consumed more for people who have hypercholesterolemia.Keywords: pectin, xanthan gum, guar gum, laying hen, cholesterol
Procedia PDF Downloads 441909 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images
Authors: Reem El Chakik
Abstract:
The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination
Procedia PDF Downloads 110908 Covid-19, Diagnosis with Computed Tomography and Artificial Intelligence, in a Few Simple Words
Authors: Angelis P. Barlampas
Abstract:
Target: The (SARS-CoV-2) is still a threat. AI software could be useful, categorizing the disease into different severities and indicate the extent of the lesions. Materials and methods: AI is a new revolutionary technique, which uses powered computerized systems, to do what a human being does more rapidly, more easily, as accurate and diagnostically safe as the original medical report and, in certain circumstances, even better, saving time and helping the health system to overcome problems, such as work overload and human fatigue. Results: It will be given an effort to describe to the inexperienced reader (see figures), as simple as possible, how an artificial intelligence system diagnoses computed tomography pictures. First, the computerized machine learns the physiologic motives of lung parenchyma by being feeded with normal structured images of the lung tissue. Having being used to recognizing normal structures, it can then easily indentify the pathologic ones, as their images do not fit to known normal picture motives. It is the same way as when someone spends his free time in reading magazines with quizzes, such as <Keywords: covid-19, artificial intelligence, automated imaging, CT, chest imaging
Procedia PDF Downloads 50907 Inter Laboratory Comparison with Coordinate Measuring Machine and Uncertainty Analysis
Authors: Tugrul Torun, Ihsan A. Yuksel, Si̇nem On Aktan, Taha K. Vezi̇roglu
Abstract:
In the quality control processes in some industries, the usage of CMM has increased in recent years. Consequently, the CMMs play important roles in the acceptance or rejection of manufactured parts. For parts, it’s important to be able to make decisions by performing fast measurements. According to related technical drawing and its tolerances, measurement uncertainty should also be considered during assessment. Since uncertainty calculation is difficult and time-consuming, most companies ignore the uncertainty value in their routine inspection method. Although studies on measurement uncertainty have been carried out on CMM’s in recent years, there is still no applicable method for analyzing task-specific measurement uncertainty. There are some standard series for calculating measurement uncertainty (ISO-15530); it is not possible to use it in industrial measurement because it is not a practical method for standard measurement routine. In this study, the inter-laboratory comparison test has been carried out in the ROKETSAN A.Ş. with all dimensional inspection units. The reference part that we used is traceable to the national metrology institute TUBİTAK UME. Each unit has measured reference parts according to related technical drawings, and the task-specific measuring uncertainty has been calculated with related parameters. According to measurement results and uncertainty values, the En values have been calculated.Keywords: coordinate measurement, CMM, comparison, uncertainty
Procedia PDF Downloads 210906 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement
Authors: Rhadinia Tayag-Relanes, Felina C. Young
Abstract:
This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the PDCA approach and record review in the gathering of data for the calendar year 2019 from August to October data of the noodle products miki, canton, and misua. Causal-comparative research was used in this study; it attempts to establish cause-effect relationships among the variables such as descriptive statistics and correlation, both were used to compute the data gathered. The study found that miki, canton, and misua production has different cycle time sets for each production and has different production outputs in every set of its production process and a different number of wastages. The company has not yet established its allowable rejection rate/ wastage; instead, this paper used a 1% wastage limit. The researcher recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators by checking their performance statistically based on the output and the machine performance; a root cause analysis for finding the solution must be conducted; and an improvement on the recording system of the input and output of the production process of noodle product should be established to eliminate the poor recording of data.Keywords: continuous improvement, process, operations, PDCA
Procedia PDF Downloads 69905 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework
Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe
Abstract:
This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.Keywords: IoT, fog, cloud, data analysis, data privacy
Procedia PDF Downloads 95