Search results for: packet size
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5852

Search results for: packet size

3152 Shear Strength Characterization of Coal Mine Spoil in Very-High Dumps with Large Scale Direct Shear Testing

Authors: Leonie Bradfield, Stephen Fityus, John Simmons

Abstract:

The shearing behavior of current and planned coal mine spoil dumps up to 400m in height is studied using large-sample-high-stress direct shear tests performed on a range of spoils common to the coalfields of Eastern Australia. The motivation for the study is to address industry concerns that some constructed spoil dump heights ( > 350m) are exceeding the scale ( ≤ 120m) for which reliable design information exists, and because modern geotechnical laboratories are not equipped to test representative spoil specimens at field-scale stresses. For more than two decades, shear strength estimation for spoil dumps has been based on either infrequent, very small-scale tests where oversize particles are scalped to comply with device specimen size capacity such that the influence of prototype-sized particles on shear strength is not captured; or on published guidelines that provide linear shear strength envelopes derived from small-scale test data and verified in practice by slope performance of dumps up to 120m in height. To date, these published guidelines appear to have been reliable. However, in the field of rockfill dam design there is a broad acceptance of a curvilinear shear strength envelope, and if this is applicable to coal mine spoils, then these industry-accepted guidelines may overestimate the strength and stability of dumps at higher stress levels. The pressing need to rationally define the shearing behavior of more representative spoil specimens at field-scale stresses led to the successful design, construction and operation of a large direct shear machine (LDSM) and its subsequent application to provide reliable design information for current and planned very-high dumps. The LDSM can test at a much larger scale, in terms of combined specimen size (720mm x 720mm x 600mm) and stress (σn up to 4.6MPa), than has ever previously been achieved using a direct shear machine for geotechnical testing of rockfill. The results of an extensive LDSM testing program on a wide range of coal-mine spoils are compared to a published framework that widely accepted by the Australian coal mining industry as the standard for shear strength characterization of mine spoil. A critical outcome is that the LDSM data highlights several non-compliant spoils, and stress-dependent shearing behavior, for which the correct application of the published framework will not provide reliable shear strength parameters for design. Shear strength envelopes developed from the LDSM data are also compared with dam engineering knowledge, where failure envelopes of rockfills are curved in a concave-down manner. The LDSM data indicates that shear strength envelopes for coal-mine spoils abundant with rock fragments are not in fact curved and that the shape of the failure envelope is ultimately determined by the strength of rock fragments. Curvilinear failure envelopes were found to be appropriate for soil-like spoils containing minor or no rock fragments, or hard-soil aggregates.

Keywords: coal mine, direct shear test, high dump, large scale, mine spoil, shear strength, spoil dump

Procedia PDF Downloads 159
3151 Design of S-Shape GPS Application Electrically Small Antenna

Authors: Riki H. Patel, Arpan Desai, Trushit Upadhyaya, Shobhit K. Patel

Abstract:

The micro strip antennas area has seen some inventive work in recent years and is now one of the most dynamic fields of antenna theory. A novel and simple printed wideband monopole antenna is presented. Printed on a single dielectric substrate and easily fed by using a 50 ohm microstip line, low-profile antenna structure with two parallel S-shaped meandered line of same size. In this research, S–form micro strip patch antenna is designed from measuring the prototypes of the proposed antenna one available bands with 10db return loss bandwidths of about GPS application (GPS L2 1490 MHz) and covering the 1400 to 1580 MHz frequency band at 1.5 GHz The simulated results for main parameters such as return loss, impedance bandwidth, radiation patterns and gains are also discussed herein. The modeling study shows that such antennas, in simplicity design and supply, and can satisfy GPS application. Two parallel slots are incorporated to disturb the surface flow path, introducing local inductive effect. This antenna is fed by a coaxial feeding tube.

Keywords: bandwidth, electrically small antenna, microstrip, patch antenna, GPS

Procedia PDF Downloads 493
3150 Study of Parameters Influencing Dwell Times for Trains

Authors: Guillaume Craveur

Abstract:

The work presented here shows a study on several parameters identified as influencing dwell times for trains. Three kinds of rolling stocks are studied for this project and the parameters presented are the number of passengers, the allocation of passengers, their priorities, the platform station height, the door width and the train design. In order to make this study, a lot of records have been done in several stations in Paris (France). Then, in order to study these parameters, numerical simulations are completed. The goal is to quantify the impact of each parameter on the dwelling times. For example, this study highlights the impact of platform height and the presence of steps between the platform and the train. Three types of station platforms are concerned by this study : ‘optimum’ station platform which is 920 mm high, standard station platform which is 550 mm high, and high station platform which is 1150 mm high and different kinds of steps exist in order to fill these gaps. To conclude, this study shows the impact of these parameters on dwell times and their impact in function of the size of population.

Keywords: dwell times, numerical tools, rolling stock, platforms

Procedia PDF Downloads 334
3149 Welfare Estimation in a General Equilibrium Model with Cities

Authors: Oded Hochman

Abstract:

We first show that current measures of welfare changes in the whole economy do not apply to an economy with cities. In addition, since such measures are defined over a partial equilibrium, they capture only partially the effect of a welfare change. We then define a unique and additive measure that we term the modified economic surplus (mES) which fully captures the welfare effects caused by a change in the price of a nationally traded good. We show that the price change causes, on the one hand a change of land rents in the economy and, on the other hand, an equal change of mES that can be estimated by measuring areas in the price-quantity national demand and supply plane. We construct for each city a cost function from which we derive a city’s and, after aggregation, an economy-wide demand and supply functions of nationwide prices and of either the unearned incomes (Marshalian functions) or the utility levels (compensated functions).

Keywords: city cost function, welfare measures, modified compensated variation, modified economic surplus, unearned income function, differential land rents, city size

Procedia PDF Downloads 318
3148 Tackling the Decontamination Challenge: Nanorecycling of Plastic Waste

Authors: Jocelyn Doucet, Jean-Philippe Laviolette, Ali Eslami

Abstract:

The end-of-life management and recycling of polymer wastes remains a key environment issue in on-going efforts to increase resource efficiency and attaining GHG emission reduction targets. Half of all the plastics ever produced were made in the last 13 years, and only about 16% of that plastic waste is collected for recycling, while 25% is incinerated, 40% is landfilled, and 19% is unmanaged and leaks in the environment and waterways. In addition to the plastic collection issue, the UN recently published a report on chemicals in plastics, which adds another layer of challenge when integrating recycled content containing toxic products into new products. To tackle these important issues, innovative solutions are required. Chemical recycling of plastics provides new complementary alternatives to the current recycled plastic market by converting waste material into a high value chemical commodity that can be reintegrated in a variety of applications, making the total market size of the output – virgin-like, high value products - larger than the market size of the input – plastic waste. Access to high-quality feedstock also remains a major obstacle, primarily due to material contamination issues. Pyrowave approaches this challenge with its innovative nano-recycling technology, which purifies polymers at the molecular level, removing undesirable contaminants and restoring the resin to its virgin state without having to depolymerise it. This breakthrough approach expands the range of plastics that can be effectively recycled, including mixed plastics with various contaminants such as lead, inorganic pigments, and flame retardants. The technology allows yields below 100ppm, and purity can be adjusted to an infinitesimal level depending on the customer's specifications. The separation of the polymer and contaminants in Pyrowave's nano-recycling process offers the unique ability to customize the solution on targeted additives and contaminants to be removed based on the difference in molecular size. This precise control enables the attainment of a final polymer purity equivalent to virgin resin. The patented process involves dissolving the contaminated material using a specially formulated solvent, purifying the mixture at the molecular level, and subsequently extracting the solvent to yield a purified polymer resin that can directly be reintegrated in new products without further treatment. Notably, this technology offers simplicity, effectiveness, and flexibility while minimizing environmental impact and preserving valuable resources in the manufacturing circuit. Pyrowave has successfully applied this nano-recycling technology to decontaminate polymers and supply purified, high-quality recycled plastics to critical industries, including food-contact compliance. The technology is low-carbon, electrified, and provides 100% traceable resins with properties identical to those of virgin resins. Additionally, the issue of low recycling rates and the limited market for traditionally hard-to-recycle plastic waste has fueled the need for new complementary alternatives. Chemical recycling, such as Pyrowave's microwave depolymerization, presents a sustainable and efficient solution by converting plastic waste into high-value commodities. By employing microwave catalytic depolymerization, Pyrowave enables a truly circular economy of plastics, particularly in treating polystyrene waste to produce virgin-like styrene monomers. This revolutionary approach boasts low energy consumption, high yields, and a reduced carbon footprint. Pyrowave offers a portfolio of sustainable, low-carbon, electric solutions to give plastic waste a second life and paves the way to the new circular economy of plastics. Here, particularly for polystyrene, we show that styrene monomer yields from Pyrowave’s polystyrene microwave depolymerization reactor is 2,2 to 1,5 times higher than that of the thermal conventional pyrolysis. In addition, we provide a detailed understanding of the microwave assisted depolymerization via analyzing the effects of microwave power, pyrolysis time, microwave receptor and temperature on the styrene product yields. Furthermore, we investigate life cycle environmental impact assessment of microwave assisted pyrolysis of polystyrene in commercial-scale production. Finally, it is worth pointing out that Pyrowave is able to treat several tons of polystyrene to produce virgin styrene monomers and manage waste/contaminated polymeric materials as well in a truly circular economy.

Keywords: nanorecycling, nanomaterials, plastic recycling, depolymerization

Procedia PDF Downloads 65
3147 Effect of Wind and Humidity on Microwave Links in North West Libya

Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri

Abstract:

The propagation of microwave is affected by rain and dust particles causing signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents effect of wind and humidity on wireless communication such as microwave links in the North West region of Libya (Al-Khoms). The experimental procedure is done on three selected antennae towers (Nagaza station, Al-Khoms center station, Al-Khoms gateway station) for determining the attenuation loss per unit length and cross-polarization discrimination (XPD) change. Dust particles are collected along the region of the study, to measure the particle size distribution (PSD), calculate the concentration, and chemically analyze the contents, then the dielectric constant can be calculated. The results show that humidity and dust, antenna height and the visibility affect both attenuation and phase shift; in which, a few considerations must be taken into account in the communication power budget.

Keywords: : Attenuation, scattering, transmission loss.

Procedia PDF Downloads 214
3146 Super-ellipsoidal Potential Function for Autonomous Collision Avoidance of a Teleoperated UAV

Authors: Mohammed Qasim, Kyoung-Dae Kim

Abstract:

In this paper, we present the design of the super-ellipsoidal potential function (SEPF), that can be used for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of SEPF, we have the full control over the shape and size of the potential function. In particular, we can adjust the length, width, height, and the amount of flattening at the tips of the potential function so that the collision avoidance motion vector generated from the potential function can be adjusted accordingly. Based on the idea of the SEPF, we also propose an approach for the local autonomy of a UAV for its collision avoidance when the UAV is teleoperated by a human operator. In our proposed approach, a teleoperated UAV can not only avoid collision autonomously with other surrounding objects but also track the operator’s control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAVs collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation of quadrotor UAV teleoperation using virtual robot experimentation platform (v-rep) and Matlab programs.

Keywords: artificial potential function, autonomous collision avoidance, teleoperation, quadrotor

Procedia PDF Downloads 398
3145 Reproductive Biology of Fringe-Lipped Carp, Labeo fimbriatus (Bloch) from Vanivilas Sagar Reservoir of Karnataka, India

Authors: K. B. Rajanna, P. Nayana, H. N. Anjanayappa, N. Chethan

Abstract:

The ‘fringed - lipped’ peninsula carp Labeo fimbriatus is a potential and an abundant fish species in rivers and reservoirs of peninsular India. It contributes a part of the inland fish production and also plays a role in the rural economy in major carp deficient regions of India. The fish is locally called as ‘Kemmeenu’ in Karnataka. Month wise samples were collected from the Vanivilasa Sagar Reservoir fish landing centre and fishing villages around the reservoir. Present investigation on the reproductive biology showed the occurrence of ripe gonads more during October, November, December and January. Thus it is concluded that spawning season coinciding with monsoon season and the size at maturity was found to be 36 and 37 cm total length (M and F). This study will throw light on reproductive biology of fish for captive brood stock development, breeding and rearing of Labeo fimbriatus. Since this fish is commercial important the study would help to take up hatchery production.

Keywords: inland, maturity, peninsula carp, reservoir

Procedia PDF Downloads 252
3144 Stop Texting While Learning: A Meta-Analysis of Social Networks Use and Academic Performances

Authors: Proud Arunrangsiwed, Sarinya Kongtieng

Abstract:

Teachers and university lecturers face an unsolved problem, which is students’ multitasking behaviors during class time, such as texting or playing a game. It is important to examine the most powerful predictor that can result in students’ educational performances. Meta-analysis was used to analyze the research articles, which were published with the keywords, multitasking, class performance, and texting. We selected 14 research articles published during 2008-2013 from online databases, and four articles met the predetermined inclusion criteria. Effect size of each pair of variables was used as the dependent variable. The findings revealed that the students’ expectancy and value on SNSs usages is the best significant predictor of their educational performances, followed by their motivation and ability in using SNSs, prior educational performances, usage behaviors of SNSs in class, and their personal characteristics, respectively. Future study should conduct a longitudinal design to better understand the effect of multitasking in the classroom.

Keywords: meta-regression analysis, social networking sites, academic Performances, multitasking, motivation

Procedia PDF Downloads 277
3143 Effects of Two Cross Focused Intense Laser Beams On THz Generation in Rippled Plasma

Authors: Sandeep Kumar, Naveen Gupta

Abstract:

Terahertz (THz) generation has been investigated by beating two cosh-Gaussian laser beams of the same amplitude but different wavenumbers and frequencies through rippled collisionless plasma. The ponderomotive force is operative which is induced due to the intensity gradient of the laser beam over the cross-section area of the wavefront. The electrons evacuate towards a low-intensity regime, which modifies the dielectric function of the medium and results in cross focusing of cosh-Gaussian laser beams. The evolution of spot size of laser beams has been studied by solving nonlinear Schrodinger wave equation (NLSE) with variational technique. The laser beams impart oscillations to electrons which are enhanced with ripple density. The nonlinear oscillatory motion of electrons gives rise to a nonlinear current density driving THz radiation. It has been observed that the periodicity of the ripple density helps to enhance the THz radiation.

Keywords: rippled collisionless plasma, cosh-gaussian laser beam, ponderomotive force, variational technique, nonlinear current density

Procedia PDF Downloads 199
3142 3D Printing of Polycaprolactone Scaffold with Multiscale Porosity Via Incorporation of Sacrificial Sucrose Particles

Authors: Mikaela Kutrolli, Noah S. Pereira, Vanessa Scanlon, Mohamadmahdi Samandari, Ali Tamayol

Abstract:

Bone tissue engineering has drawn significant attention and various biomaterials have been tested. Polymers such as polycaprolactone (PCL) offer excellent biocompatibility, reasonable mechanical properties, and biodegradability. However, PCL scaffolds suffer a critical drawback: a lack of micro/mesoporosity, affecting cell attachment, tissue integration, and mineralization. It also results in a slow degradation rate. While 3D-printing has addressed the issue of macroporosity through CAD-guided fabrication, PCL scaffolds still exhibit poor smaller-scale porosity. To overcome this, we generated composites of PCL, hydroxyapatite (HA), and powdered sucrose (PS). The latter serves as a sacrificial material to generate porous particles after sucrose dissolution. Additionally, we have incorporated dexamethasone (DEX) to boost the PCL osteogenic properties. The resulting scaffolds maintain controlled macroporosity from the lattice print structure but also develop micro/mesoporosity within PCL fibers when exposed to aqueous environments. The study involved mixing PS into solvent-dissolved PCL in different weight ratios of PS to PCL (70:30, 50:50, and 30:70 wt%). The resulting composite was used for 3D printing of scaffolds at room temperature. Printability was optimized by adjusting pressure, speed, and layer height through filament collapse and fusion test. Enzymatic degradation, porogen leaching, and DEX release profiles were characterized. Physical properties were assessed using wettability, SEM, and micro-CT to quantify the porosity (percentage, pore size, and interconnectivity). Raman spectroscopy was used to verify the absence of sugar after leaching. Mechanical characteristics were evaluated via compression testing before and after porogen leaching. Bone marrow stromal cells (BMSCs) behavior in the printed scaffolds was studied by assessing viability, metabolic activity, osteo-differentiation, and mineralization. The scaffolds with a 70% sugar concentration exhibited superior printability and reached the highest porosity of 80%, but performed poorly during mechanical testing. A 50% PS concentration demonstrated a 70% porosity, with an average pore size of 25 µm, favoring cell attachment. No trace of sucrose was found in Raman after leaching the sugar for 8 hours. Water contact angle results show improved hydrophilicity as the sugar concentration increased, making the scaffolds more conductive to cell adhesion. The behavior of bone marrow stromal cells (BMSCs) showed positive viability and proliferation results with an increasing trend of mineralization and osteo-differentiation as the sucrose concentration increased. The addition of HA and DEX also promoted mineralization and osteo-differentiation in the cultures. The integration of PS as porogen at a concentration of 50%wt within PCL scaffolds presents a promising approach to address the poor cell attachment and tissue integration issues of PCL in bone tissue engineering. The method allows for the fabrication of scaffolds with tunable porosity and mechanical properties, suitable for various applications. The addition of HA and DEX further enhanced the scaffolds. Future studies will apply the scaffolds in an in-vivo model to thoroughly investigate their performance.

Keywords: bone, PCL, 3D printing, tissue engineering

Procedia PDF Downloads 56
3141 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms

Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim

Abstract:

The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.

Keywords: BESS, firefly algorithm, PVDG, voltage fluctuation

Procedia PDF Downloads 320
3140 Expectation and Satisfaction of Health Spa Business Service, Ranong Province, Thailand

Authors: Supattra Pranee

Abstract:

The purposes of this research are to study the current business of health spa and to study the customers’ level of expectation as well as level of satisfaction of the health spa business in Ranong, Thailand. This paper drew upon data collected from health spa customers by using questionnaire. In addition, an in-depth interview was utilized to collect data from health spa entrepreneurs. The findings revealed that the health spa business is growing very fast and the coming ASEAN Economic Community (AEC) will ameliorate the business growth and increase the customer base. There is a need to improve staff’s ability to communicate in English. However, the economic size of Ranong province is still small which has resulted in the hesitation of investors to increase their investment in this business. The findings also revealed four categories of level of expectation and satisfaction as follows: (1) Service: overall, customers had a high expectation with a mean of 3.80 and 0.873 SD and a high level of satisfaction with a mean of 3.66 and 0.704 SD. (2) Staff: overall, customers had a high expectation with a mean of 3.95 and 0.865 SD and a high level of satisfaction with a mean of 3.84 and 0.783 SD. (3) Product, Equipment, and Tools: overall, customers had a high expectation with a mean of 4.02 and 0.913 SD and a high level of satisfaction with a mean of 3.88 and 0.772 SD. (4) Place, Atmosphere, and Environment: overall, customers had a high expectation with a mean of 3.95 and 0.906 SD and a high level of satisfaction with a mean of 3.86 and 0.785 SD.

Keywords: expectation, health spa business, satisfaction, ranong province

Procedia PDF Downloads 302
3139 Quantum Dot Biosensing for Advancing Precision Cancer Detection

Authors: Sourav Sarkar, Manashjit Gogoi

Abstract:

In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology.

Keywords: quantum dots, biosensing, cancer, device

Procedia PDF Downloads 55
3138 Crop Price Variation and Water Saving Technologies in Iran

Authors: Saeed Yazdani, Shahrbanoo Bagheri, Sepideh Nikravesh

Abstract:

Considering the importance and scarcity of water resources, the efficient management of water resources is of great importance. Adoption of modern irrigation technology is considered to be a key of increasing the efficiency of water used in agriculture. Policy makers have implemented several ways to induce the adoption of new irrigation technology. The empirical studies show that farmers are reluctant to utilize the use of new irrigation methods. This study aims to assess factors affecting on farmer’s decision on the application of water saving technologies with emphasize on crop price variation and water sources. A Logit model was employed to examine the impact of different variables on use of water saving technology. The required data gathered from a sample of 204 farmers in the year 2012. The results indicate that different variables such as crop price variability, water supply source, high-value crops, farm size, income, education, membership in cooperatives have a positive effect and variables such as age and number of plots have a negative impact on the probability of adopting modern water saving technologies.

Keywords: irrigation, water, water saving technology, scarcity

Procedia PDF Downloads 223
3137 Benthic Foraminiferal Responses to Coastal Pollution for Some Selected Sites along Red Sea, Egypt

Authors: Ramadan M. El-Kahawy, M. A. El-Shafeiy, Mohamed Abd El-Wahab, S. A. Helal, Nabil Aboul-Ela

Abstract:

Due to the economic importance of Safaga Bay, Quseir harbor and Ras Gharib harbor , a multidisciplinary approach was adopted to invistigate 27 surfecial sediment samples from the three sites and 9 samples for each in order to use the benthic foraminifera as bio-indicators for characterization of the environmental variations. Grain size analyses indicate that the bottom facies in the inner part of quseir is muddy while the inner part of Ras Gharib and Safaga is silty sand and those close to the entrance of Safaga bay and Ras Gharib is sandy facies while quseir still also muddy facies. geochemical data show high concentration of heavy-metals mainly in Ras Gharib due to oil leakage from the hydrocarbon oil field and Safaga bay due to the phosphate mining while quseir is medium concentration due to anthropocentric effect.micropaelontological analyses indicate the boundaries of the highest concentration of heavy metals and those of low concentration as well.the dominant benthic foraminifera in these three sites are Ammonia beccarii, Amphistigina and sorites. the study highlights the worsening of environmental conditions and also show that the areas in need of a priority recovery.

Keywords: benthic foraminifera, Ras Gharib, Safaga, Quseir, Red Sea, Egypt

Procedia PDF Downloads 349
3136 Porous Ni Electrodes Modified with Au Nanoparticles for Hydrogen Production

Authors: V. Pérez-Herranz, C. González-Buch, E. M. Ortega, S. Mestre

Abstract:

In this work new macroporous Ni electrodes modified with Au nanoparticles for hydrogen production have been developed. The supporting macroporous Ni electrodes have been obtained by means of the electrodeposition at high current densities. Then, the Au nanoparticles were synthesized and added to the electrode surface. The electrocatalytic behaviour of the developed electrocatalysts was studied by means of pseudo-steady-state polarization curves, electrochemical impedance spectroscopy (EIS) and hydrogen discharge curves. The size of the Au synthetized nanoparticles shows a monomodal distribution, with a very sharp band between 10 and 50 nm. The characteristic parameters d10, d50 and d90 were 14, 20 and 31 nm respectively. From Tafel polarization data has been concluded that the Au nanoparticles improve the catalytic activity of the developed electrodes towards the HER respect to the macroporous Ni electrodes. EIS permits to obtain the electrochemically active area by means of the roughness factor value. All the developed electrodes show roughness factor values in the same order of magnitude. From the activation energy results it can be concluded that the Au nanoparticles improve the intrinsic catalytic activity of the macroporous Ni electrodes.

Keywords: Au nano particles, hydrogen evolution reaction, porous Ni electrodes, electrochemical impedance spectroscopy

Procedia PDF Downloads 621
3135 Unveiling the Black Swan of the Inflation-Adjusted Real Excess Returns-Risk Nexus: Evidence From Pakistan Stock Exchange

Authors: Mohammad Azam

Abstract:

The purpose of this study is to investigate risk and real excess portfolio returns using inflation adjusted risk-free rates, a measuring technique that focuses on the momentum augmented Fama-French six-factor model and use monthly data from 1994 to 2022. With the exception of profitability, the data show that market, size, value, momentum, and investment factors are all strongly associated to excess portfolio stock returns using ordinary lease square regression technique. According to the Gibbons, Ross, and Shanken test, the momentum augmented Fama-French six-factor model outperforms the market. This technique discovery may be utilised by academics and professionals to acquire an in-depth knowledge of the Pakistan Stock Exchange across a broad stock pattern for investing decisions and portfolio construction.

Keywords: real excess portfolio returns, momentum augmented fama & french five-factor model, GRS-test, pakistan stock exchange

Procedia PDF Downloads 101
3134 Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage

Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti

Abstract:

Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.

Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage

Procedia PDF Downloads 159
3133 Flexural Response of Glass Fiber Reinforced Polymer Sandwich Panels with 3D Woven Honeycomb Core

Authors: Elif Kalkanli, Constantinos Soutis

Abstract:

The use of textile preform in the advanced fields including aerospace, automotive and marine has exponentially grown in recent years. These preforms offer excellent advantages such as being lightweight and low-cost, and also, their suitability for creating different fiber architectures with different materials whilst improved mechanical properties in certain aspects. In this study, a novel honeycomb core is developed by a 3Dweaving process. The assembly of the layers is achieved thanks to innovative weaving design. Polyester yarn is selected for the 3D woven honeycomb core (3DWHC). The core is used to manufacture a sandwich panel with 2x2 twill glass fiber composite face sheets. These 3DWHC sandwich panels will be tested in three-point bending. The in-plane and out-of-plane (through-the-thickness) mechanical response of the core will be examined as a function of cell size in addition to the flexural response of the sandwich panel. The failure mechanisms of the core and the sandwich skins will be reported in addition to flexural strength and stiffness. Possible engineering applications will be identified.

Keywords: 3D woven, assembly, failure modes, honeycomb sandwich panel

Procedia PDF Downloads 203
3132 Contactless and Multiple Space Debris Removal by Micro to Nanno Satellites

Authors: Junichiro Kawaguchi

Abstract:

Space debris problems have emerged and threatened the use of low earth orbit around the Earth owing to a large number of spacecraft. In debris removal, a number of research and patents have been proposed and published so far. They assume servicing spacecraft, robots to be built for accessing the target debris objects. The robots should be sophisticated enough automatically to access the debris articulating the attitude and the translation motion with respect to the debris. This paper presents the idea of using the torpedo-like third unsophisticated and disposable body, in addition to the first body of the servicing robot and the second body of the target debris. The third body is launched from the first body from a distance farer than the size of the second body. This paper presents the method and the system, so that the third body is launched from the first body. The third body carries both a net and an inflatable or extendible drag deceleration device and is built small and light. This method enables even a micro to nano satellite to perform contactless and multiple debris removal even via a single flight.

Keywords: ballute, debris removal, echo satellite, gossamer, gun-net, inflatable space structure, small satellite, un-cooperated target

Procedia PDF Downloads 120
3131 Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading

Authors: Yoshinori Kitsutaka, Fumiya Ikedo

Abstract:

In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved.

Keywords: gypsum board, anchor, shear test, cyclic loading, load-unload curve

Procedia PDF Downloads 385
3130 Modification Effect of CeO2 on Pt-Pd Nano Sized Catalysts for Formic Acid Oxidation

Authors: Ateeq Ur Rehman

Abstract:

This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electrocatalysts. The synthesized catalysts are characterized using different physicochemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.

Keywords: CeO2, ordered mesoporous carbon (OMC), nano particles, formic acid fuel cell

Procedia PDF Downloads 310
3129 Characterization of Pure Nickel Coatings Fabricated under Pulse Current Conditions

Authors: M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari

Abstract:

Pure nickel coatings have been successfully electrodeposited on copper substrates by the pulse plating technique. The influence of current density, duty cycle and pulse frequency on the surface morphology, crystal orientation, and microhardness was determined. It was found that the crystallite size of the deposit increases with increasing current density and duty cycle. The crystal orientation progressively changed from a random texture at 1 A/dm2 to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in increased texture coefficient and peak intensity of (111) reflection. An increase in duty cycle resulted in considerable increase in texture coefficient and peak intensity of (311) reflection. Coatings obtained at high current densities and duty cycles present a mixed morphology of small and large grains. Maximum microhardness of 193 Hv was achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings with (200) texture are ductile while (111) texture improves the microhardness of the coatings.

Keywords: current density, duty cycle, microstructure, nickel, pulse frequency

Procedia PDF Downloads 367
3128 2D CFD-PBM Coupled Model of Particle Growth in an Industrial Gas Phase Fluidized Bed Polymerization Reactor

Authors: H. Kazemi Esfeh, V. Akbari, M. Ehdaei, T. N. G. Borhani, A. Shamiri, M. Najafi

Abstract:

In an industrial fluidized bed polymerization reactor, particle size distribution (PSD) plays a significant role in the reactor efficiency evaluation. The computational fluid dynamic (CFD) models coupled with population balance equation (CFD-PBM) have been extensively employed to investigate the flow behavior in the poly-disperse multiphase fluidized bed reactors (FBRs) utilizing ANSYS Fluent code. In this study, an existing CFD-PBM/ DQMOM coupled modeling framework has been used to highlight its potential to analyze the industrial-scale gas phase polymerization reactor. The predicted results reveal an acceptable agreement with the observed industrial data in terms of pressure drop and bed height. The simulated results also indicate that the higher particle growth rate can be achieved for bigger particles. Hence, the 2D CFD-PBM/DQMOM coupled model can be used as a reliable tool for analyzing and improving the design and operation of the gas phase polymerization FBRs.

Keywords: computational fluid dynamics, population balance equation, fluidized bed polymerization reactor, direct quadrature method of moments

Procedia PDF Downloads 365
3127 A Textile-Based Scaffold for Skin Replacements

Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel

Abstract:

The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.

Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization

Procedia PDF Downloads 257
3126 Performance of Axially Loaded Single Pile Embedded in Cohesive Soil with Cavities

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

The stability of a single model pile located adjacent to a continuous cavity was studied. This paper is an attempt to understand the behaviour of axially loaded single pile embedded in clayey soil with the presences of cavities. The performance of piles located in such soils was studied analytically. A verification analysis was carried out on available studies to assess the ability of analytical model to correctly interpret the system behaviour. The study was adopted by finite element program (PLAXIS). The study included many cases; in each case, there is a critical value in which the presence of cavities has shown minimum effect on the pile performance. Figures including the load carrying capacity of pile with the affecting factors are presented. These figures provide beneficial information for pile design constructed close to underground cavities. It was concluded that the load carrying capacity of the pile is reduced by the presence of the cavity within the soil mass. This reduction varies according to the size and location of cavity.

Keywords: axial load, cavity, clay, pile, ultimate capacity

Procedia PDF Downloads 269
3125 Evaluating Forecasts Through Stochastic Loss Order

Authors: Wilmer Osvaldo Martinez, Manuel Dario Hernandez, Juan Manuel Julio

Abstract:

We propose to assess the performance of k forecast procedures by exploring the distributions of forecast errors and error losses. We argue that non systematic forecast errors minimize when their distributions are symmetric and unimodal, and that forecast accuracy should be assessed through stochastic loss order rather than expected loss order, which is the way it is customarily performed in previous work. Moreover, since forecast performance evaluation can be understood as a one way analysis of variance, we propose to explore loss distributions under two circumstances; when a strict (but unknown) joint stochastic order exists among the losses of all forecast alternatives, and when such order happens among subsets of alternative procedures. In spite of the fact that loss stochastic order is stronger than loss moment order, our proposals are at least as powerful as competing tests, and are robust to the correlation, autocorrelation and heteroskedasticity settings they consider. In addition, since our proposals do not require samples of the same size, their scope is also wider, and provided that they test the whole loss distribution instead of just loss moments, they can also be used to study forecast distributions as well. We illustrate the usefulness of our proposals by evaluating a set of real world forecasts.

Keywords: forecast evaluation, stochastic order, multiple comparison, non parametric test

Procedia PDF Downloads 88
3124 Benders Decomposition Approach to Solve the Hybrid Flow Shop Scheduling Problem

Authors: Ebrahim Asadi-Gangraj

Abstract:

Hybrid flow shop scheduling problem (HFS) contains sequencing in a flow shop where, at any stage, there exist one or more related or unrelated parallel machines. This production system is a common manufacturing environment in many real industries, such as the steel manufacturing, ceramic tile manufacturing, and car assembly industries. In this research, a mixed integer linear programming (MILP) model is presented for the hybrid flow shop scheduling problem, in which, the objective consists of minimizing the maximum completion time (makespan). For this purpose, a Benders Decomposition (BD) method is developed to solve the research problem. The proposed approach is tested on some test problems, small to moderate scale. The experimental results show that the Benders decomposition approach can solve the hybrid flow shop scheduling problem in a reasonable time, especially for small and moderate-size test problems.

Keywords: hybrid flow shop, mixed integer linear programming, Benders decomposition, makespan

Procedia PDF Downloads 187
3123 Lowering Error Floors by Concatenation of Low-Density Parity-Check and Array Code

Authors: Cinna Soltanpur, Mohammad Ghamari, Behzad Momahed Heravi, Fatemeh Zare

Abstract:

Low-density parity-check (LDPC) codes have been shown to deliver capacity approaching performance; however, problematic graphical structures (e.g. trapping sets) in the Tanner graph of some LDPC codes can cause high error floors in bit-error-ratio (BER) performance under conventional sum-product algorithm (SPA). This paper presents a serial concatenation scheme to avoid the trapping sets and to lower the error floors of LDPC code. The outer code in the proposed concatenation is the LDPC, and the inner code is a high rate array code. This approach applies an interactive hybrid process between the BCJR decoding for the array code and the SPA for the LDPC code together with bit-pinning and bit-flipping techniques. Margulis code of size (2640, 1320) has been used for the simulation and it has been shown that the proposed concatenation and decoding scheme can considerably improve the error floor performance with minimal rate loss.

Keywords: concatenated coding, low–density parity–check codes, array code, error floors

Procedia PDF Downloads 354