Search results for: hydrogen trap sites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3041

Search results for: hydrogen trap sites

341 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies

Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr

Abstract:

Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.

Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool

Procedia PDF Downloads 209
340 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 102
339 Superoleophobic Nanocellulose Aerogel Membrance as Bioinspired Cargo Carrier on Oil by Sol-Gel Method

Authors: Zulkifli, I. W. Eltara, Anawati

Abstract:

Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces—those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water—are extremely rare. In addition to chemical composition and roughened texture, a third parameter is essential to achieve superoleophobicity, namely, re-entrant surface curvature in the form of overhang structures. The overhangs can be realized as fibers. Superoleophobic surfaces are appealing for example, antifouling, since purely superhydrophobic surfaces are easily contaminated by oily substances in practical applications, which in turn will impair the liquid repellency. On the other studied have demonstrate that such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, they are flexible, unlike most aerogels that suffer from brittleness, and they allow flexible hierarchically porous templates for functionalities, e.g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogel used in current work is an ultralight weight solid material composed of native cellulose nanofibers. The native cellulose nanofibers are cleaved from the self-assembled hierarchy of macroscopic cellulose fibers. They have become highly topical, as they are proposed to show extraordinary mechanical properties due to their parallel and grossly hydrogen bonded polysaccharide chains. We demonstrate that superoleophobic nanocellulose aerogels coating by sol-gel method, the aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Superoleophobic nanocellulose aerogels have recently been achieved using unmodified cellulose nanofibers and using carboxy methylated, negatively charged cellulose nanofibers as starting materials. In this work, the aerogels made from unmodified cellulose nanofibers were subsequently treated with fluorosilanes. To complement previous work on superoleophobic aerogels, we demonstrate their application as cargo carriers on oil, gas permeability, plastrons, and drag reduction, and we show that fluorinated nanocellulose aerogels are high-adhesive superoleophobic surfaces. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces.

Keywords: superoleophobic, nanocellulose, aerogel, sol-gel

Procedia PDF Downloads 321
338 Impact of Early Father Involvement on Middle Childhood Cognitive and Behavioral Outcomes

Authors: Jamel Slaughter

Abstract:

Father involvement across the development of a child has been linked to children’s psychological adjustment, fewer behavioral problems, and higher educational attainment. Conversely, there is much less research that highlights father involvement in relation to childhood development during early childhood period prior to preschool age (ages 1-3 years). Most research on fathers and child outcomes have been limited by its focus on the stages of adolescence, middle childhood, and infancy. This study examined the influence of father involvement, during the toddler stage, on 5th grade cognitive development, rule-breaking, and behavior outcomes measured by Child Behavior Checklist (CBCL) scores. Using data from the Early Head Start Research and Evaluation (EHSRE) Study, 1996-2010: United States, a total of 3,001 children and families were identified in 17 sites (cities), representing a diverse demographic sample. An independent samples t-test was run to compare cognitive development, aggressive, and rule-breaking behavior mean scores among children who had early continuous father involvement for the first 14 – 36 months to children who did not have early continuous father involvement for the first 14 – 36 months. Multiple linear regression was conducted to determine if continuous, or non-continuous father involvement (14 month-36 months), can be used to predict outcome scores on the Child Behavior Checklist in aggressive behavior, rule-breaking behavior, and cognitive development, at 5th grade. A statistically significant mean difference in cognitive development scores were found for children who had continuous father involvement (M=1.92, SD=2.41, t (1009) =2.81, p =.005, 95% CI=.146 to .828) compared to those who did not (M=2.60, SD=3.06, t (1009) =-2.38, p=.017, 95% CI= -1.08 to -.105). There was also a statistically significant mean difference in rule-breaking behavior scores between children who had early continuous father involvement (M=1.95, SD=2.33, t (1009) = 3.69, p <.001, 95% CI= .287 to .940), compared to those that did not (M=2.87, SD=2.93, t (1009) = -3.49, p =.001, 95% CI= -1.30 to -.364). No statistically significant difference was found in aggressive behavior scores. Multiple linear regression was performed using continuous father involvement to determine which has the largest relationship to rule-breaking behavior and cognitive development based on CBCL scores. Rule-breaking behavior was found to be significant (F (2, 1008) = 8.353, p<.001), with an R2 of .016. Cognitive development was also significant (F (2, 1008) = 4.44, p=.012), with an R2 of .009. Early continuous father involvement was a significant predictor of rule-breaking behavior and cognitive development at middle childhood. Findings suggest early continuous father involvement during the first 14 – 36 months of their children’s life, may lead to lower levels of rule-breaking behaviors and thought problems at 5th grade.

Keywords: cognitive development, early continuous father involvement, middle childhood, rule-breaking behavior

Procedia PDF Downloads 274
337 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes

Authors: Alan Luo, Hunter N. B. Moseley

Abstract:

Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.

Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography

Procedia PDF Downloads 100
336 TikTok as a Search Engine for Selecting Traveling Destinations and Its Relation to Nation’s Destinations Branding: Comparative Study Between Gen-Y and Gen-Z in the Egyptian Community

Authors: Ghadeer Aly, Yasmeen Hanafy

Abstract:

The way we research travel options and decide where to go has substantially changed in the digital age. Atypical search engines like social networking sites like TikTok have evolved, influencing the preferences of various generations. The influence of TikTok use as a search engine for choosing travel locations and its effect on a country's destination branding are both examined in this study. The study specifically focuses on the comparative preferences and actions of Generations Y and Z within the Egyptian community, shedding light on how these generations interact with travel related TikTok content and how it influences their perceptions of various destinations. It also investigates how TikTok Accounts use tourism branding techniques to promote a country's tourist destination. The investigation of how social media platforms are changing as unconventional search engines has theoretical relevance. This study can advance our knowledge of how digital platforms alter information-seeking behaviors and affect the way people make decisions. Furthermore, investigating the relationship between TikTok video and destination branding might shed light on the intricate interplay between social media, perceptions of locations, and travel preferences, enhancing theories about consumer behavior and communication in the digital age. Regarding the methodology of the research, the study is conducted in two stages: first, both generations are polled, and from the results, the top three destinations are chosen to be subjected to content analysis. As for the research's theoretical framework, it incorporates the tourism destination branding model as well as the conceptual model of nation branding. Through the use of the survey as a quantitative approach and the qualitative content analysis, the research will rely on both quantitative and qualitative methods. When it comes to the theoretical framework, both the Nation Branding Model and the Tourism Branding Model can offer useful frameworks for analyzing and comprehending the dynamics of using TikTok as a search engine to choose travel destinations, especially in the context of Generation Y and Generation Z in the Egyptian community. Additionally, the sample will be drawn specifically from both Gen-Y and Gen-Z. 100 members of Gen Z and 100 members of Gen Y will be chosen from TikTok users and followers of travel-related accounts, and the sample for the content analysis will be chosen based on the survey's results.

Keywords: tiktok, nation image, egyptian community, tourism branding

Procedia PDF Downloads 50
335 Characterization and Modification of the Optical Properties of Zirconia Ceramics for Aesthetic Dental Restorations

Authors: R. A. Shahmiri, O. Standard, J. Hart, C. C. Sorrell

Abstract:

Yttrium stabilized tetragonal zirconium polycrystalline (Y-TZP) has been used as a dental biomaterial. The strength and toughness of zirconia can be accounted for by its toughening mechanisms, such as crack deflection, zone shielding, contact shielding, and crack bridging. Prevention of crack propagation is of critical importance in high-fatigue situations, such as those encountered in mastication and para-function. However, the poor translucency of Y-TZP means that it may not meet the aesthetic requirements due to its white/grey appearance in polycrystalline form. To improve optical property of the Zirconia, precise evaluation of its refractive index is of significance. Zirconia`s optical properties need to be studied more in depth. Number of studies assumed, scattered light is isotropically distributed over all angles from biological media when defining optical parameters. Nevertheless, optical behaviour of real biological material depends on angular scattering of light by anisotropy material. Therefore, the average cosine of the scattering angle (which represent recovery phase function in the scattering angular distribution) usually characterized by anisotropy material. It has been identified that yttrium anti-sites present in the space charge layer have no significant role in the absorption of light in the visible range. Addition of cation dopant to polycrystalline zirconia results in segregate to grain boundaries and grain growth. Intrinsic and extrinsic properties of ZrO2 and their effect on optical properties need to be investigated. Intrinsic properties such as chemical composition, defect structure (oxygen vacancy), phase configuration (porosity, second phase) and distribution of phase need to be studied to comprehend their effect on refraction index, absorption/reflection and scattering. Extrinsic properties such as surface structure, thickness, underlying tooth structure, cement layer (type, thickness), and light source (natural, curing, artificial) of ZrO2 need to be studied to understand their effect on colour and translucency of material. This research reviewed effect of stabilization of tetragonal zirconia on optical property of zirconia for dental application.

Keywords: optical properties, zirconia dental biomaterial, chemical composition, phase composition

Procedia PDF Downloads 374
334 Structure and Magnetic Properties of M-Type Sr-Hexaferrite with Ca, La Substitutions

Authors: Eun-Soo Lim, Young-Min Kang

Abstract:

M-type Sr-hexaferrite (SrFe₁₂O₁₉) have been studied during the past decades because it is the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. Many attempts have been made to improve the intrinsic magnetic properties of M-type Sr-hexaferrites (SrM), such as by improving the saturation magnetization (MS) and crystalline anisotropy by cation substitution. It is well proved that the Ca-La-Co substitutions are one of the most successful approaches, which lead to a significant enhancement in the crystalline anisotropy without reducing MS, and thus the Ca-La-Co-doped SrM have been commercialized in high-grade magnet products. In this research, the effect of respective doping of Ca and La into the SrM lattices were studied with assumptions that these elements could substitute both of Fe and Sr sites. The hexaferrite samples of stoichiometric SrFe₁₂O₁₉ (SrM) and the Ca substituted SrM with formulae of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓCaₓOₐ (x = 0.1, 0.2, 0.3, 0.4), and also La substituted SrM of Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.1, 0.2, 0.3, 0.4) were prepared by conventional solid state reaction processes. X-ray diffraction (XRD) with a Cu Kα radiation source (λ=0.154056 nm) was used for phase analysis. Microstructural observation was conducted with a field emission scanning electron microscopy (FE-SEM). M-H measurements were performed using a vibrating sample magnetometer (VSM) at 300 K. Almost pure M-type phase could be obtained in the all series of hexaferrites calcined at > 1250 ºC. Small amount of Fe₂O₃ phases were detected in the XRD patterns of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.2, 0.3, 0.4) and Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) samples. Also, small amount of unidentified secondary phases without the Fe₂O₃ phase were found in the samples of SrFe₁₂₋ₓCaₓOₐ (x = 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.3, 0.4). Although the Ca substitution (x) into SrM structure did not exhibit a clear tendency in the cell parameter change in both series of samples, Sr₁₋ₓCaₓFe₁₂Oₐ and SrFe₁₂₋ₓCaₓOₐ , the cell volume slightly decreased with doping of Ca in the Sr₁₋ₓCaₓFe₁₂Oₐ samples and increased in the SrFe₁₂₋ₓCaₓOₐ samples. Considering relative ion sizes between Sr²⁺ (0.113 nm), Ca²⁺ (0.099 nm), Fe³⁺ (0.064 nm), these results imply that the Ca substitutes both of Sr and Fe in the SrM. A clear tendency of cell parameter change was observed in case of La substitution into Sr site of SrM ( Sr₁₋ₓLaₓFe₁₂Oₐ); the cell volume decreased with increase of x. It is owing to the similar but smaller ion size of La³⁺ (0.106 nm) than that of Sr²⁺. In case of SrFe₁₂₋ₓLaₓOₐ, the cell volume first decreased at x = 0.1 and then remained almost constant with increase of x from 0.2 to 0.4. These results mean that La only substitutes Sr site in the SrM structure. Besides, the microstructure and magnetic properties of these samples, and correlation between them will be revealed.

Keywords: M-type hexaferrite, substitution, cell parameter, magnetic properties

Procedia PDF Downloads 185
333 Removal of Methylene Blue from Aqueous Solution by Adsorption onto Untreated Coffee Grounds

Authors: N. Azouaou, H. Mokaddem, D. Senadjki, K. Kedjit, Z. Sadaoui

Abstract:

Introduction: Water contamination caused by dye industries, including food, leather, textile, plastic, cosmetics, paper-making, printing and dye synthesis, has caused more and more attention, since most dyes are harmful to human being and environments. Untreated coffee grounds were used as a high-efficiency adsorbent for the removal of a cationic dye (methylene blue, MB) from aqueous solution. Characterization of the adsorbent was performed using several techniques such as SEM, surface area (BET), FTIR and pH zero charge. The effects of contact time, adsorbent dose, initial solution pH and initial concentration were systematically investigated. Results showed the adsorption kinetics followed the pseudo-second-order kinetic model. Langmuir isotherm model is in good agreement with the experimental data as compared to Freundlich and D–R models. The maximum adsorption capacity was found equal to 52.63mg/g. In addition, the possible adsorption mechanism was also proposed based on the experimental results. Experimental: The adsorption experiments were carried out in batch at room temperature. A given mass of adsorbent was added to methylene blue (MB) solution and the entirety was agitated during a certain time. The samples were carried out at quite time intervals. The concentrations of MB left in supernatant solutions after different time intervals were determined using a UV–vis spectrophotometer. The amount of MB adsorbed per unit mass of coffee grounds (qt) and the dye removal efficiency (R %) were evaluated. Results and Discussion: Some chemical and physical characteristics of coffee grounds are presented and the morphological analysis of the adsorbent was also studied. Conclusions: The good capacity of untreated coffee grounds to remove MB from aqueous solution was demonstrated in this study, highlighting its potential for effluent treatment processes. The kinetic experiments show that the adsorption is rapid and maximum adsorption capacities qmax= 52.63mg/g achieved in 30min. The adsorption process is a function of the adsorbent concentration, pH and metal ion concentration. The optimal parameters found are adsorbent dose m=5g, pH=5 and ambient temperature. FTIR spectra showed that the principal functional sites taking part in the sorption process included carboxyl and hydroxyl groups.

Keywords: adsorption, methylene blue, coffee grounds, kinetic study

Procedia PDF Downloads 199
332 Flora of Seaweeds and the Preliminary Screening of the Fungal Endophytes

Authors: Nur Farah Ain Zainee, Ahmad Ismail, Nazlina Ibrahim, Asmida Ismail

Abstract:

Seaweeds are economically important as they have the potential of being utilized, the capabilities and opportunities for further expansion as well as the availability of other species for future development. Hence, research on the diversity and distribution of seaweeds have to be expanded whilst the seaweeds are one of the Malaysian marine valuable heritage. The study on the distribution of seaweeds at Pengerang, Johor was carried out between February and November 2015 at Kampung Jawa Darat and Kampung Sungai Buntu. The study sites are located at the south-southeast of Peninsular Malaysia where the Petronas Refinery and Petrochemicals Integrated Project Development (RAPID) are in progress. In future, the richness of seaweeds in Pengerang will vanish soon due to the loss of habitat prior to RAPID project. The research was completed to study the diversity of seaweed and to determine the present of fungal endophyte isolated from the seaweed. The sample was calculated by using quadrat with 25-meter line transect by 3 replication for each site. The specimen were preserved, identified, processed in the laboratory and kept as herbarium specimen in Algae Herbarium, Universiti Kebangsaan Malaysia. The complete thallus specimens for fungal endophyte screening were chosen meticulously, transferred into sterile zip-lock plastic bag and kept in the freezer for further process. A total of 29 species has been identified including 12 species of Chlorophyta, 2 species of Phaeophyta and 14 species of Rhodophyta. From February to November 2015, the number of species highly varied and there was a significant change in community structure of seaweeds. Kampung Sungai Buntu shows the highest diversity throughout the study compared to Kampung Jawa Darat. This evidence can be related to the high habitat preference such as types of shores which is rocky, sandy and having lagoon and bay. These can enhance the existence of the seaweeds community due to variations of the habitat. Eighteen seaweed species were selected and screened for the capability presence of fungal endophyte; Sargassum polycystum marked having the highest number of fungal endophyte compared to the other species. These evidence has proved the seaweed have capable of accommodating a lot of species of fungal endophytes. Thus, these evidence leads to positive consequences where further research should be employed.

Keywords: diversity, fungal endophyte, macroalgae, screening, seaweed

Procedia PDF Downloads 206
331 Characterization of the Blood Microbiome in Rheumatoid Arthritis Patients Compared to Healthy Control Subjects Using V4 Region 16S rRNA Sequencing

Authors: D. Hammad, D. P. Tonge

Abstract:

Rheumatoid arthritis (RA) is a disabling and common autoimmune disease during which the body's immune system attacks healthy tissues. This results in complicated and long-lasting actions being carried out by the immune system, which typically only occurs when the immune system encounters a foreign object. In the case of RA, the disease affects millions of people and causes joint inflammation, ultimately leading to the destruction of cartilage and bone. Interestingly, the disease mechanism still remains unclear. It is likely that RA occurs as a result of a complex interplay of genetic and environmental factors including an imbalance in the microorganism population inside our body. The human microbiome or microbiota is an extensive community of microorganisms in and on the bodies of animals, which comprises bacteria, fungi, viruses, and protozoa. Recently, the development of molecular techniques to characterize entire bacterial communities has renewed interest in the involvement of the microbiome in the development and progression of RA. We believe that an imbalance in some of the specific bacterial species in the gut, mouth and other sites may lead to atopobiosis; the translocation of these organisms into the blood, and that this may lead to changes in immune system status. The aim of this study was, therefore, to characterize the microbiome of RA serum samples in comparison to healthy control subjects using 16S rRNA gene amplification and sequencing. Serum samples were obtained from healthy control volunteers and from patients with RA both prior to, and following treatment. The bacterial community present in each sample was identified utilizing V4 region 16S rRNA amplification and sequencing. Bacterial identification, to the lowest taxonomic rank, was performed using a range of bioinformatics tools. Significantly, the proportions of the Lachnospiraceae, Ruminococcaceae, and Halmonadaceae families were significantly increased in the serum of RA patients compared with healthy control serum. Furthermore, the abundance of Bacteroides and Lachnospiraceae nk4a136_group, Lachnospiraceae_UGC-001, RuminococcaceaeUCG-014, Rumnococcus-1, and Shewanella was also raised in the serum of RA patients relative to healthy control serum. These data support the notion of a blood microbiome and reveal RA-associated changes that may have significant implications for biomarker development and may present much-needed opportunities for novel therapeutic development.

Keywords: blood microbiome, gut and oral bacteria, Rheumatoid arthritis, 16S rRNA gene sequencing

Procedia PDF Downloads 101
330 Hope in the Ruins of 'Ozymandias': Reimagining Temporal Horizons in Felicia Hemans 'the Image in Lava'

Authors: Lauren Schuldt Wilson

Abstract:

Felicia Hemans’ memorializing of the unwritten lives of women and the consequent allowance for marginalized voices to remember and be remembered has been considered by many critics in terms of ekphrasis and elegy, terms which privilege the question of whether Hemans’ poeticizing can represent lost voices of history or only her poetic expression. Amy Gates, Brian Elliott, and others point out Hemans’ acknowledgement of the self-projection necessary for imaginatively filling the absences of unrecorded histories. Yet, few have examined the complex temporal positioning Hemans inscribes in these moments of self-projection and imaginative historicizing. In poems like ‘The Image in Lava,’ Hemans maps not only a lost past, but also a lost potential future onto the image of a dead infant in its mother’s arms, the discovery and consideration of which moves the imagined viewer to recover and incorporate the ‘hope’ encapsulated in the figure of the infant into a reevaluation of national time embodied by the ‘relics / Left by the pomps of old.’ By examining Hemans’ acknowledgement and response to Percy Bysshe Shelley’s ‘Ozymandias,’ this essay explores how Hemans’ depictions of imaginative historicizing open new horizons of possibility and reevaluate temporal value structures by imagining previously undiscovered or unexplored potentialities of the past. Where Shelley’s poem mocks the futility of national power and time, this essay outlines Hemans’ suggestion of alternative threads of identity and temporal meaning-making which, regardless of historical veracity, exist outside of and against the structures Shelley challenges. Counter to previous readings of Hemans’ poem as celebration of either recovered or poetically constructed maternal love, this essay argues that Hemans offers a meditation on sites of reproduction—both of personal reproductive futurity and of national reproduction of power. This meditation culminates in Hemans’ gesturing towards a method of historicism by which the imagined viewer reinvigorates the sterile, ‘shattered visage’ of national time by forming temporal identity through the imagining of trans-historical hope inscribed on the infant body of the universal, individual subject rather than the broken monument of the king.

Keywords: futurity, national temporalities, reproduction, revisionary histories

Procedia PDF Downloads 143
329 Growth Rates of Planktonic Organisms in “Yerevanyan Lich” Reservoir and the Hrazdan River in Yerevan City, Armenia

Authors: G. A. Gevorgyan, A. S. Mamyan, L. G. Stepanyan, L. R. Hambaryan

Abstract:

Bacterio- and phytoplankton growth rates in 'Yerevanyan lich' reservoir and the Hrazdan river in Yerevan city, Armenia were investigated in April and June-August, 2015. Phytoplankton sampling and analysis were performed by the standard methods accepted in hydrobiological studies. The quantitative analysis of aerobic, coliform and E. coli bacteria is done by the 'RIDA COUNT' medium sheets (coated with ready-to-use culture medium). The investigations showed that the insufficient management of household discharges in Yerevan city caused the organic and fecal pollution of the Hrazdan river in this area which in turn resulted in an increase in bacterial count and increased sanitary and pathogenic risks to the environment and human health. During the investigation in April, the representatives of diatom algae prevailed quantitatively in the coastal area of 'Yerevanyan lich' reservoir, nevertheless, a significant change in the phytoplankton community in June occurred: due to green algae bloom in the reservoir, the quantitative parameters of phytoplankton increased significantly. This was probably conditioned by a seasonal increase in the water temperature in the conditions of the sufficient concentration of nutrients. However, a succession in phytoplankton groups during July-August occurred, and a dominant group (according to quantitative parameters) in the phytoplankton community was changed as follows: green algae-diatom algae-blue-green algae. Rapid increase in the quantitative parameters of diatom and blue-green algae in the reservoir may have been conditioned by increased organic matter level resulted from green algae bloom. Algal bloom in 'Yerevanyan lich' reservoir caused changes in phytoplankton community and an increase in bacterioplankton count not only in the reservoir but also in the Hrazdan river sites located in the downstream from the reservoir. Thus, the insufficient management of urban discharges and aquatic ecosystems in Yerevan city led to unfavorable changes in water quality and microbial and phytoplankton communities in “Yerevanyan lich” reservoir and the Hrazdan river which in turn caused increased sanitary and pathogenic risks to the environment and human health.

Keywords: algal bloom, bacterioplankton, phytoplankton, Hrazdan river, Yerevanyan lich reservoir

Procedia PDF Downloads 248
328 Safety Climate Assessment and Its Impact on the Productivity of Construction Enterprises

Authors: Krzysztof J. Czarnocki, F. Silveira, E. Czarnocka, K. Szaniawska

Abstract:

Research background: Problems related to the occupational health and decreasing level of safety occur commonly in the construction industry. Important factor in the occupational safety in construction industry is scaffold use. All scaffolds used in construction, renovation, and demolition shall be erected, dismantled and maintained in accordance with safety procedure. Increasing demand for new construction projects unfortunately still is linked to high level of occupational accidents. Therefore, it is crucial to implement concrete actions while dealing with scaffolds and risk assessment in construction industry, the way on doing assessment and liability of assessment is critical for both construction workers and regulatory framework. Unfortunately, professionals, who tend to rely heavily on their own experience and knowledge when taking decisions regarding risk assessment, may show lack of reliability in checking the results of decisions taken. Purpose of the article: The aim was to indicate crucial parameters that could be modeling with Risk Assessment Model (RAM) use for improving both building enterprise productivity and/or developing potential and safety climate. The developed RAM could be a benefit for predicting high-risk construction activities and thus preventing accidents occurred based on a set of historical accident data. Methodology/Methods: A RAM has been developed for assessing risk levels as various construction process stages with various work trades impacting different spheres of enterprise activity. This project includes research carried out by teams of researchers on over 60 construction sites in Poland and Portugal, under which over 450 individual research cycles were carried out. The conducted research trials included variable conditions of employee exposure to harmful physical and chemical factors, variable levels of stress of employees and differences in behaviors and habits of staff. Genetic modeling tool has been used for developing the RAM. Findings and value added: Common types of trades, accidents, and accident causes have been explored, in addition to suitable risk assessment methods and criteria. We have found that the initial worker stress level is more direct predictor for developing the unsafe chain leading to the accident rather than the workload, or concentration of harmful factors at the workplace or even training frequency and management involvement.

Keywords: safety climate, occupational health, civil engineering, productivity

Procedia PDF Downloads 288
327 Assessment of the State of Hygiene in a Tunisian Hospital Kitchen: Interest of Mycological and Parasitological Samples from Food Handlers and Environment

Authors: Bouchekoua Myriam, Aloui Dorsaf, Trabelsi Sonia

Abstract:

Introduction Food hygiene in hospitals is important, particularly among patients who could be more vulnerable than healthy subjects to microbiological and nutritional risks. The consumption of contaminated food may be responsible for foodborne diseases, which can be severe among hospitalized patients, especially those immunocompromised. The aim of our study was to assess the state of hygiene in the internal catering department of a Tunisian hospital. Methodology and major results: A prospective study was conducted for one year in the Parasitology-Mycology laboratory of Charles Nicolle Hospital. Samples were taken from the kitchen staff, worktops, and cooking utensils used in the internal catering department. Thirty one employees have benefited from stool exams and scotch tape in order to evaluate the degree of infestation of parasites. 35% of stool exams were positive. Protozoa were the only parasites detected. Blastocystis sp was the species mostly found in nine food handlers. Its role as a human pathogen is still controversial. Pathogenic protozoa were detected in two food handlers (Giardia intestinalis in one person and Dientamoeba fragilis in the other one. Non-pathogenic protozoa were found in two cases; among them, only one had digestive symptoms without a statistically significant association with the carriage of intestinal parasites. Moreover, samples were performed from the hands of the staff in order to search for a fungal carriage. Thus, 25 employees (81%) were colonized by fungi, including molds. Besides, mycological examination among food handlers with a suspected dermatomycosis for diagnostic confirmation concluded foot onychomycosis in 32% of cases and interdigital intertrigo in 26%. Only one person had hand onychomycosis. Among the 17 samples taken from worktops and kitchen utensils, fungal contamination was detected in 13 sites. Hot and cold equipment were the most contaminated. Molds were mainly identified as belonging to five different genera. Cladosporium sp was predominant. Conclusion: In the view of the importance of intestinal parasites among food handlers, the intensity of fungi hand carriage among these employees, and the high level of fungal contamination in worktops and kitchen utensils, a reinforcement of hygiene measures is more than essential in order to minimize the alimentary contamination-risk.

Keywords: hospital kitchen, environment, intestinal parasitosis, fungal carriage, fungal contamination

Procedia PDF Downloads 83
326 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents

Authors: Rajesh Kumar Gautam, Debabrata Seth

Abstract:

Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.

Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant

Procedia PDF Downloads 143
325 Synthesis and Characterization of pH-Responsive Nanocarriers Based on POEOMA-b-PDPA Block Copolymers for RNA Delivery

Authors: Bruno Baptista, Andreia S. R. Oliveira, Patricia V. Mendonca, Jorge F. J. Coelho, Fani Sousa

Abstract:

Drug delivery systems are designed to allow adequate protection and controlled delivery of drugs to specific locations. These systems aim to reduce side effects and control the biodistribution profile of drugs, thus improving therapeutic efficacy. This study involved the synthesis of polymeric nanoparticles, based on amphiphilic diblock copolymers, comprising a biocompatible, poly (oligo (ethylene oxide) methyl ether methacrylate (POEOMA) as hydrophilic segment and a pH-sensitive block, the poly (2-diisopropylamino)ethyl methacrylate) (PDPA). The objective of this work was the development of polymeric pH-responsive nanoparticles to encapsulate and carry small RNAs as a model to further develop non-coding RNAs delivery systems with therapeutic value. The responsiveness of PDPA to pH allows the electrostatic interaction of these copolymers with nucleic acids at acidic pH, as a result of the protonation of the tertiary amine groups of this polymer at pH values below its pKa (around 6.2). Initially, the molecular weight parameters and chemical structure of the block copolymers were determined by size exclusion chromatography (SEC) and nuclear magnetic resonance (1H-NMR) spectroscopy, respectively. Then, the complexation with small RNAs was verified, generating polyplexes with sizes ranging from 300 to 600 nm and with encapsulation efficiencies around 80%, depending on the molecular weight of the polymers, their composition, and concentration used. The effect of pH on the morphology of nanoparticles was evaluated by scanning electron microscopy (SEM) being verified that at higher pH values, particles tend to lose their spherical shape. Since this work aims to develop systems for the delivery of non-coding RNAs, studies on RNA protection (contact with RNase, FBS, and Trypsin) and cell viability were also carried out. It was found that they induce some protection against constituents of the cellular environment and have no cellular toxicity. In summary, this research work contributes to the development of pH-sensitive polymers, capable of protecting and encapsulating RNA, in a relatively simple and efficient manner, to further be applied on drug delivery to specific sites where pH may have a critical role, as it can occur in several cancer environments.

Keywords: drug delivery systems, pH-responsive polymers, POEOMA-b-PDPA, small RNAs

Procedia PDF Downloads 238
324 Gilgel Gibe III: Dam-Induced Displacement in Ethiopia and Kenya

Authors: Jonny Beirne

Abstract:

Hydropower developments have come to assume an important role within the Ethiopian government's overall development strategy for the country during the last ten years. The Gilgel Gibe III on the Omo river, due to become operational in September 2014, represents the most ambitious, and controversial, of these projects to date. Further aspects of the government's national development strategy include leasing vast areas of designated 'unused' land for large-scale commercial agricultural projects and 'voluntarily' villagizing scattered, semi-nomadic agro-pastoralist groups to centralized settlements so as to use land and water more efficiently and to better provide essential social services such as education and healthcare. The Lower Omo valley, along the Omo River, is one of the sites of this villagization programme as well as of these large-scale commercial agricultural projects which are made possible owing to the regulation of the river's flow by Gibe III. Though the Ethiopian government cite many positive aspects of these agricultural and hydropower developments there are still expected to be serious regional and transnational effects, including on migration flows, in an area already characterized by increasing climatic vulnerability with attendant population movements and conflicts over scarce resources. The following paper is an attempt to track actual and anticipated migration flows resulting from the construction of Gibe III in the immediate vicinity of the dam, downstream in the Lower Omo Valley and across the border in Kenya around Lake Turkana. In the case of those displaced in the Lower Omo Valley, this will be considered in view of the distinction between voluntary villagization and forced resettlement. The research presented is not primary-source material. Instead, it is drawn from the reports and assessments of the Ethiopian government, rights-based groups, and academic researchers as well as media articles. It is hoped that this will serve to draw greater attention to the issue and encourage further methodological research on the dynamics of dam constructions (and associated large-scale irrigation schemes) on migration flows and on the ultimate experience of displacement and resettlement for environmental migrants in the region.

Keywords: forced displacement, voluntary resettlement, migration, human rights, human security, land grabs, dams, commercial agriculture, pastoralism, ecosystem modification, natural resource conflict, livelihoods, development

Procedia PDF Downloads 353
323 Correlation Between the Toxicity Grade of the Adverse Effects in the Course of the Immunotherapy of Lung Cancer and Efficiency of the Treatment in Anti-PD-L1 and Anti-PD-1 Drugs - Own Clinical Experience

Authors: Anna Rudzińska, Katarzyna Szklener, Pola Juchaniuk, Anna Rodzajweska, Katarzyna Machulska-Ciuraj, Monika Rychlik- Grabowska, Michał łOziński, Agnieszka Kolak-Bruks, SłAwomir Mańdziuk

Abstract:

Introduction: Immune checkpoint inhibition (ICI) belongs to the modern forms of anti-cancer treatment. Due to the constant development and continuous research in the field of ICI, many aspects of the treatment are yet to be discovered. One of the less researched aspects of ICI treatment is the influence of the adverse effects on the treatment success rate. It is suspected that adverse events in the course of the ICI treatment indicate a better response rate and correlate with longer progression-free- survival. Methodology: The research was conducted with the usage of the documentation of the Department of Clinical Oncology and Chemotherapy. Data of the patients with a lung cancer diagnosis who were treated between 2019-2022 and received ICI treatment were analyzed. Results: Out of over 133 patients whose data was analyzed, the vast majority were diagnosed with non-small cell lung cancer. The majority of the patients did not experience adverse effects. Most adverse effects reported were classified as grade 1 or grade 2 according to CTCAE classification. Most adverse effects involved skin, thyroid and liver toxicity. Statistical significance was found for the adverse effect incidence and overall survival (OS) and progression-free survival (PFS) (p=0,0263) and for the time of toxicity onset and OS and PFS (p<0,001). The number of toxicity sites was statistically significant for prolonged PFS (p=0.0315). The highest OS was noted in the group presenting grade 1 and grade 2 adverse effects. Conclusions: Obtained results confirm the existence of the prolonged OS and PFS in the adverse-effects-charged patients, mostly in the group presenting mild to intermediate (Grade 1 and Grade 2) adverse effects and late toxicity onset. Simultaneously our results suggest a correlation between treatment response rate and the toxicity grade of the adverse effects and the time of the toxicity onset. Similar results were obtained in several similar research conducted - with the proven tendency of better survival in mild and moderate toxicity; meanwhile, other studies in the area suggested an advantage in patients with any toxicity regardless of the grade. The contradictory results strongly suggest the need for further research on this topic, with a focus on additional factors influencing the course of the treatment.

Keywords: adverse effects, immunotherapy, lung cancer, PD-1/PD-L1 inhibitors

Procedia PDF Downloads 64
322 Architectural Identity in Manifestation of Tall-buildings' Design

Authors: Huda Arshadlamphon

Abstract:

Advancing frontiers of technology and industry is moving rapidly fast influenced by the economic and political phenomena. One vital phenomenon,which has had consolidated the world to a one single village, is Globalization. In response, architecture and the built-environment have faced numerous changes, adjustments, and developments. Tall-buildings, as a product of globalization, represent prestigious icons, symbols, and landmarks for highly economics and advanced countries. Despite the fact, this trend has been encountering several design challenges incorporating architectural identity, traditions, and characteristics that enhance the built-environments' sociocultural values and traditions. The necessity of these values and traditionsform self-solitarily, leading to visual and spatial creativity, independency, and individuality. In other words, they maintain the inherited identity and avoid replications in all means and aspects. This paper, firstly, defines globalization phenomenon, architectural identity, and the concerns of sociocultural values in relation to the traditional characteristics of the built-environment. Secondly, through three case-studies of tall-buildings located in Jeddah city, Saudi Arabia, the Queen's Building, the National Commercial Bank Building (NCB), and the Islamic Development Bank Building; design strategies and methodologies in acclimating architectural identity and characteristics in tall-buildings are discussed. The case-studies highlight buildings' sites and surroundings, concepts and inspirations, design elements, architectural forms and compositions, characteristics, issues, barriers, and trammels facing the designs' decisions, representation of facades, and selection of materials and colors. Furthermore, the research will elucidate briefs of the dominant factors that shape the architectural identity of Jeddah city. In conclusion, the study manifests four tall-buildings' design standards guideline in preserving and developing architectural identity in Jeddah city; the scale of urban and natural environment, the scale of architectural design elements, the integration of visual images, and the creation of spatial scenes and scenarios. The prosed guideline will encourage the development of architectural identity aligned with zeitgeist demands and requirements, supports the contemporary architectural movement toward tall-buildings, and shoresself-solitarily in representing sociocultural values and traditions of the built-environment.

Keywords: architectural identity, built-environment, globalization, sociocultural values and traditions, tall-buildings

Procedia PDF Downloads 140
321 Targeting Apoptosis by Novel Adamantane Analogs as an Emerging Therapy for the Treatment of Hepatocellular Carcinoma Through EGFR, Bcl-2/BAX Cascade

Authors: Hanan M. Hassan, Laila Abouzeid, Lamya H. Al-Wahaibi, George S. G. Shehatou, Ali A. El-Emam

Abstract:

Cancer is a major public health problem and the second leading cause of death worldwide. In 2020, cancer diagnosis and treatment have been negatively affected by the coronavirus 2019 (COVID-19) pandemic. During the quarantine, because of the limited access to healthcare and avoiding exposure to COVID-19 as a contagious disease; patients of cancer suffered deferments in follow-up and treatment regimens leading to substantial worsening of disease, death, and increased healthcare costs. Thus, this study is designed to investigate the molecular mechanisms by which adamantne derivatives attenuate hepatocllular carcinoma experimentally and theoretically. There is a close association between increased resistance to anticancer drugs and defective apoptosis that considered a causative factor for oncogenesis. Cancer cells use different molecular pathways to inhibit apoptosis, BAX and Bcl-2 proteins have essential roles in the progression or inhibition of intrinsic apoptotic pathways triggered by mitochondrial dysfunction. Therefore, their balance ratio can promote the cellular apoptotic fate. In this study, the in vitro cytotoxic effects of seven synthetic adamantyl isothiorea derivatives were evaluated against five human tumor cell lines by MTT assay. Compounds 5 and 6 showed the best results, mostly against hepatocellular carcinoma (HCC). Hence, in vivo studies were performed in male Sprague-Dawley (SD) rats in which experimental hepatocellular carcinoma was induced with thioacetamide (TAA) (200 mg/kg, i.p., twice weekly) for 16 weeks. The most promising compounds, 5 and 6, were administered to treat liver cancer rats at a dose of 10 mg/kg/day for an additional two weeks, and the effects were compared with doxorubicin (DR), the anticancer drug. Hepatocellular carcinoma was evidenced by a dramatic increase in liver indices, oxidative stress markers, and immunohistochemical studies that were accompanied by a plethora of inflammatory mediators and alterations in the apoptotic cascade. Our results showed that treatment with adamantane derivatives 5 and 6 significantly suppressed fibrosis, inflammation, and other histopathological insults resulting in the diminished formation of hepatocyte tumorigenesis. Moreover, administration of the tested compounds resulted in amelioration of EGFR protein expression, upregulation of BAX, and lessening down of Bcl-2 levels that prove their role as apoptosis inducers. Also, the docking simulations performed for adamantane showed good fit and binding to the EGFR protein through hydrogen bond formation with conservative amino acids, which gives a shred of strong evidence for its hepatoprotective effect. In most analyses, the effects of compound 6 were more comparable to DR than compound 5. Our findings suggest that adamantane derivatives 5 and 6 are shown to have cytotoxic activity against HCC in vitro and in vivo, by more than one mechanism, possibly by inhibiting the TLR4-MyD88-NF-κB pathway and targeting EGFR signaling.

Keywords: adamantane, EGFR, HCC, apoptosis

Procedia PDF Downloads 128
320 Land Degradation Vulnerability Modeling: A Study on Selected Micro Watersheds of West Khasi Hills Meghalaya, India

Authors: Amritee Bora, B. S. Mipun

Abstract:

Land degradation is often used to describe the land environmental phenomena that reduce land’s original productivity both qualitatively and quantitatively. The study of land degradation vulnerability primarily deals with “Environmentally Sensitive Areas” (ESA) and the amount of topsoil loss due to erosion. In many studies, it is observed that the assessment of the existing status of land degradation is used to represent the vulnerability. Moreover, it is also noticed that in most studies, the primary emphasis of land degradation vulnerability is to assess its sensitivity to soil erosion only. However, the concept of land degradation vulnerability can have different objectives depending upon the perspective of the study. It shows the extent to which changes in land use land cover can imprint their effect on the land. In other words, it represents the susceptibility of a piece of land to degrade its productive quality permanently or in the long run. It is also important to mention that the vulnerability of land degradation is not a single factor outcome. It is a probability assessment to evaluate the status of land degradation and needs to consider both biophysical and human induce parameters. To avoid the complexity of the previous models in this regard, the present study has emphasized on to generate a simplified model to assess the land degradation vulnerability in terms of its current human population pressure, land use practices, and existing biophysical conditions. It is a “Mixed-Method” termed as the land degradation vulnerability index (LDVi). It was originally inspired by the MEDALUS model (Mediterranean Desertification and Land Use), 1999, and Farazadeh’s 2007 revised version of it. It has followed the guidelines of Space Application Center, Ahmedabad / Indian Space Research Organization for land degradation vulnerability. The model integrates the climatic index (Ci), vegetation index (Vi), erosion index (Ei), land utilization index (Li), population pressure index (Pi), and cover management index (CMi) by giving equal weightage to each parameter. The final result shows that the very high vulnerable zone primarily indicates three (3) prominent circumstances; land under continuous population pressure, high concentration of human settlement, and high amount of topsoil loss due to surface runoff within the study sites. As all the parameters of the model are amalgamated with equal weightage further with the help of regression analysis, the LDVi model also provides a strong grasp of each parameter and how far they are competent to trigger the land degradation process.

Keywords: population pressure, land utilization, soil erosion, land degradation vulnerability

Procedia PDF Downloads 142
319 Evolution of Rock-Cut Caves of Dhamnar at Dhamnar, MP

Authors: Abhishek Ranka

Abstract:

Rock-cut Architecture is a manifestation of human endurance in constructing magnificent structures by sculpting and cutting entire hills. Cave Architecture in India form an important part of rock-cut development and is among the most prolific examples of rock-cut architecture in the world. There are more than 1500 rock-cut caves in various regions of India. Among them mostly are located in western India, more particularly in the state of Maharashtra. Some of the rock-cut caves are located in the central region of India, which is presently known as Malawa (Madhya Pradesh). The region is dominated by the vidhyachal hill ranges toward the west, dotted with the coarse laterite rock. Dhamnar Caves have been excavated in the central region of Mandsaur Dist. With a combination of shared sacred faiths. The earliest rock-cut activity began in the north, in Bihar, where caves were excavated in the Barabar and the Nagarjuni hills during the Mauryan period (3rd century BCE). The rock-cut activity then shifts to the central part of India in Madhya Pradesh, where the caves at Dhamnar, Bagh, Udayagiri, Poldungar, etc. excavated between 3rdto 9ᵗʰ CE. The rock-cut excavation continued to flourish in Madhya Pradesh till 10ᵗʰ century CE, simultaneously with monolithic Hindu temples. Dhamnar caves fall into four architectural typologies: the Lena caves, Chaitya caves, Viharas & Lena-Chaityagriha caves. The Buddhist rock-cutting activity in central India is divisible into two phases. In the first phase (2ndBCE-3rd CE), the Buddha image is conspicuously absent. After a lapse of about three centuries, activity begins again, and the Buddha images this time are carved. The former group belongs to the Hinayana (Lesser Vehicle) phase and the latter to the Mahayana (Greater Vehicle). Dhamnar caves has an elaborate facades, pillar capitals, and many more creative sculptures in various postures. These caves were excavated against the background of invigorating trade activities and varied socio-religious or Socio Cultural contexts. These caves also highlights the wealthy and varied patronage provided by the dynasties of the past. This paper speaks about the appraisal of the rock cut mechanisms, design strategies, and approaches while promoting a scope for further research in conservation practices. Rock-cut sites, with their physical setting and various functional spaces as a sustainable habitat for centuries, has a heritage footprint with a researchquotient.

Keywords: rock-cut architecture, buddhism, hinduism, Iconography, and architectural typologies, Jainism

Procedia PDF Downloads 119
318 Effect of Locally Injected Mesenchymal Stem Cells on Bone Regeneration of Rat Calvaria Defects

Authors: Gileade P. Freitas, Helena B. Lopes, Alann T. P. Souza, Paula G. F. P. Oliveira, Adriana L. G. Almeida, Paulo G. Coelho, Marcio M. Beloti, Adalberto L. Rosa

Abstract:

Bone tissue presents great capacity to regenerate when injured by trauma, infectious processes, or neoplasia. However, the extent of injury may exceed the inherent tissue regeneration capability demanding some kind of additional intervention. In this scenario, cell therapy has emerged as a promising alternative to treat challenging bone defects. This study aimed at evaluating the effect of local injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on bone regeneration of rat calvaria defects. BM-MSCs and AT-MSCs were isolated and characterized by expression of surface markers; cell viability was evaluated after injection through a 21G needle. Defects of 5 mm in diameter were created in calvaria and after two weeks a single injection of BM-MSCs, AT-MSCs or vehicle-PBS without cells (Control) was carried out. Cells were tracked by bioluminescence and at 4 weeks post-injection bone formation was evaluated by micro-computed tomography (μCT) and histology, nanoindentation, and through gene expression of bone remodeling markers. The data were evaluated by one-way analysis of variance (p≤0.05). BM-MSCs and AT-MSCs presented characteristics of mesenchymal stem cells, kept viability after passing through a 21G needle and remained in the defects until day 14. In general, injection of both BM-MSCs and AT-MSCs resulted in higher bone formation compared to Control. Additionally, this bone tissue displayed elastic modulus and hardness similar to the pristine calvaria bone. The expression of all evaluated genes involved in bone formation was upregulated in bone tissue formed by BM-MSCs compared to AT-MSCs while genes involved in bone resorption were upregulated in AT-MSCs-formed bone. We show that cell therapy based on the local injection of BM-MSCs or AT-MSCs is effective in delivering viable cells that displayed local engraftment and induced a significant improvement in bone healing. Despite differences in the molecular cues observed between BM-MSCs and AT-MSCs, both cells were capable of forming bone tissue at comparable amounts and properties. These findings may drive cell therapy approaches toward the complete bone regeneration of challenging sites.

Keywords: cell therapy, mesenchymal stem cells, bone repair, cell culture

Procedia PDF Downloads 155
317 Window Seat: Examining Public Space, Politics, and Social Identity through Urban Public Transportation

Authors: Sabrina Howard

Abstract:

'Window Seat' uses public transportation as an entry point for understanding the relationship between public space, politics, and social identity construction. This project argues that by bringing people of different races, classes, and genders in 'contact' with one another, public transit operates as a site of exposure, as people consciously and unconsciously perform social identity within these spaces. These performances offer a form of freedom that we associate with being in urban spaces while simultaneously rendering certain racialized, gendered, and classed bodies vulnerable to violence. Furthermore, due to its exposing function, public transit operates as a site through which we, as urbanites and scholars, can read social injustice and reflect on the work that is necessary to become a truly democratic society. The major questions guiding this research are: How does using public transit as the entry point provide unique insights into the relationship between social identity, politics, and public space? What ideas do Americans hold about public space and how might these ideas reflect a liberal yearning for a more democratic society? To address these research questions, 'Window Seat' critically examines ethnographic data collected on public buses and trains in Los Angeles, California, and online news media. It analyzes these sources through literature in socio-cultural psychology, sociology, and political science. It investigates the 'everyday urban hero' narrative or popular news stories that feature an individual or group of people acting against discriminatory or 'Anti-American' behavior on public buses and trains. 'Window Seat' studies these narratives to assert that by circulating stories of civility in news media, United Statsians construct and maintain ideas of the 'liberal city,' which is characterized by ideals of freedom and democracy. Furthermore, for those involved, these moments create an opportunity to perform the role of the Good Samaritan, an identity that is wrapped up in liberal beliefs in diversity and inclusion. This research expands conversations in urban studies by making a case for the political significance of urban public space. It demonstrates how these sites serve as spaces through which liberal beliefs are circulated and upheld through identity performance.

Keywords: social identity, public space, public transportation, liberalism

Procedia PDF Downloads 178
316 Delimitation of the Perimeters of PR Otection of the Wellfield in the City of Adrar, Sahara of Algeria through the Used Wyssling’s Method

Authors: Ferhati Ahmed, Fillali Ahmed, Oulhadj Younsi

Abstract:

delimitation of the perimeters of protection in the catchment area of the city of Adrar, which are established around the sites for the collection of water intended for human consumption of drinking water, with the objective of ensuring the preservation and reducing the risks of point and accidental pollution of the resource (Continental Intercalar groundwater of the Northern Sahara of Algeria). This wellfield is located in the northeast of the city of Adrar, it covers an area of 132.56 km2 with 21 Drinking Water Supply wells (DWS), pumping a total flow of approximately 13 Hm3/year. The choice of this wellfield is based on the favorable hydrodynamic characteristics and their location in relation to the agglomeration. The vulnerability to pollution of this slick is very high because the slick is free and suffers from the absence of a protective layer. In recent years, several factors have been introduced around the field that can affect the quality of this precious resource, including the presence of a strong centre for domestic waste and agricultural and industrial activities. Thus, its sustainability requires the implementation of protection perimeters. The objective of this study is to set up three protection perimeters: immediate, close and remote. The application of the Wyssling method makes it possible to calculate the transfer time (t) of a drop of groundwater located at any point in the aquifer up to the abstraction and thus to define isochrones which in turn delimit each type of perimeter, 40 days for the nearer and 100 days for the farther away. Special restrictions are imposed for all activities depending on the distance of the catchment. The application of this method to the Adrar city catchment field showed that the close and remote protection perimeters successively occupy areas of 51.14 km2 and 92.9 km2. Perimeters are delimited by geolocated markers, 40 and 46 markers successively. These results show that the areas defined as "near protection perimeter" are free from activities likely to present a risk to the quality of the water used. On the other hand, on the areas defined as "remote protection perimeter," there is some agricultural and industrial activities that may present an imminent risk. A rigorous control of these activities and the restriction of the type of products applied in industrial and agricultural is imperative.

Keywords: continental intercalaire, drinking water supply, groundwater, perimeter of protection, wyssling method

Procedia PDF Downloads 75
315 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study

Authors: Thomas Arink, Isam Janajreh

Abstract:

The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).

Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires

Procedia PDF Downloads 496
314 Bioefficiency of Cinnamomum verum Loaded Niosomes and Its Microbicidal and Mosquito Larvicidal Activity against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus

Authors: Aasaithambi Kalaiselvi, Michael Gabriel Paulraj, Ekambaram Nakkeeran

Abstract:

Emergences of mosquito vector-borne diseases are considered as a perpetual problem globally in tropical countries. The outbreak of several diseases such as chikungunya, zika virus infection and dengue fever has created a massive threat towards the living population. Frequent usage of synthetic insecticides like Dichloro Diphenyl Trichloroethane (DDT) eventually had its adverse harmful effects on humans as well as the environment. Since there are no perennial vaccines, prevention, treatment or drugs available for these pathogenic vectors, WHO is more concerned in eradicating their breeding sites effectively without any side effects on humans and environment by approaching plant-derived natural eco-friendly bio-insecticides. The aim of this study is to investigate the larvicidal potency of Cinnamomum verum essential oil (CEO) loaded niosomes. Cholesterol and surfactant variants of Span 20, 60 and 80 were used in synthesizing CEO loaded niosomes using Transmembrane pH gradient method. The synthesized CEO loaded niosomes were characterized by Zeta potential, particle size, Fourier Transform Infrared Spectroscopy (FT-IR), GC-MS and SEM analysis to evaluate charge, size, functional properties, the composition of secondary metabolites and morphology. The Z-average size of the formed niosomes was 1870.84 nm and had good stability with zeta potential -85.3 meV. The entrapment efficiency of the CEO loaded niosomes was determined by UV-Visible Spectrophotometry. The bio-potency of CEO loaded niosomes was treated and assessed against gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria and fungi (Aspergillus fumigatus and Candida albicans) at various concentrations. The larvicidal activity was evaluated against II to IV instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus at various concentrations for 24 h. The mortality rate of LC₅₀ and LC₉₀ values were calculated. The results exhibited that CEO loaded niosomes have greater efficiency against mosquito larvicidal activity. The results suggest that niosomes could be used in various applications of biotechnology and drug delivery systems with greater stability by altering the drug of interest.

Keywords: Cinnamomum verum, niosomes, entrapment efficiency, bactericidal and fungicidal, mosquito larvicidal activity

Procedia PDF Downloads 134
313 Strategic Analysis of Loss of Urban Heritage in Bhopal City Due to Infrastructure Development

Authors: Aishwarya K. V., Shreya Sudesh

Abstract:

Built along the edges of a 11th century CE man-made lake, the city of Bhopal has stood witness to historic layers dating back to Palaeolithic times; early and medieval kingdoms ranging from the Parmaras, Pratiharas to tribal Gonds; the Begum-Nawabs and finally became the Capital of Madhya Pradesh, post-Independence. The lake more popularly called the Upper Lake was created by the King Raja Bhoj from the Parmara dynasty in 1010 AD when he constructed a bund wall across the Kolans river. Atop this bund wall lies the Kamlapati Mahal - which was part of the royal enclosure built in 1702 belonging to the Gond Kingdom. The Mahal is the epicentre of development in the city because it lies in the centre of the axis joining the Old core and New City. Rapid urbanisation descended upon the city once it became the administrative capital of Madhya Pradesh, a newly-formed state of an Independent India. Industrial pockets began being set up and refugees from the Indo-Pakistan separation settled in various regions of the city. To cater to these sudden growth, there was a boom in infrastructure development in the late twentieth century which included precarious decisions made in terms of handling heritage sites causing the destruction of significant parts of the historic fabric. And this practice continues to this day as buffer/ protected zones are breached through exemptions and the absence of robust regulations allow further deterioration of urban heritage. The aim of the research is to systematically study in detail the effect of the urban infrastructure development of the city and its adverse effect on the existing heritage fabric. Through the paper, an attempt to study the parameters involved in preparing the Masterplan of the city and other development projects is done. The research would follow a values-led approach to study the heritage fabric where the significance of the place is assessed based on the values attributed by stakeholders. This approach will involve collection and analysis of site data, assessment of the significance of the site and listing of potential. The study would also attempt to arrive at a solution to deal with urban development along with the protection of the heritage fabric.

Keywords: heritage management, infrastructure development, urban conservation, urban heritage

Procedia PDF Downloads 208
312 Non-Steroidal Microtubule Disrupting Analogues Induce Programmed Cell Death in Breast and Lung Cancer Cell Lines

Authors: Marcel Verwey, Anna M. Joubert, Elsie M. Nolte, Wolfgang Dohle, Barry V. L. Potter, Anne E. Theron

Abstract:

A tetrahydroisoquinolinone (THIQ) core can be used to mimic the A,B-ring of colchicine site-binding microtubule disruptors such as 2-methoxyestradiol in the design of anti-cancer agents. Steroidomimeric microtubule disruptors were synthesized by introducing C'2 and C'3 of the steroidal A-ring to C'6 and C'7 of the THIQ core and by introducing a decorated hydrogen bond acceptor motif projecting from the steroidal D-ring to N'2. For this in vitro study, four non-steroidal THIQ-based analogues were investigated and comparative studies were done between the non-sulphamoylated compound STX 3450 and the sulphamoylated compounds STX 2895, STX 3329 and STX 3451. The objective of this study was to investigate the modes of cell death induced by these four THIQ-based analogues in A549 lung carcinoma epithelial cells and metastatic breast adenocarcinoma MDA-MB-231 cells. Cytotoxicity studies to determine the half maximal growth inhibitory concentrations were done using spectrophotometric quantification via crystal violet staining and lactate dehydrogenase (LDH) assays. Microtubule integrity and morphologic changes of exposed cells were investigated using polarization-optical transmitted light differential interference contrast microscopy, transmission electron microscopy and confocal microscopy. Flow cytometric quantification was used to determine apoptosis induction and the effect that THIQ-based analogues have on cell cycle progression. Signal transduction pathways were elucidated by quantification of the mitochondrial membrane integrity, cytochrome c release and caspase 3, -6 and -8 activation. Induction of autophagic cell death by the THIQ-based analogues was investigated by morphological assessment of fluorescent monodansylcadaverine (MDC) staining of acidic vacuoles and by quantifying aggresome formation via flow cytometry. Results revealed that these non-steroidal microtubule disrupting analogues inhibited 50% of cell growth at nanomolar concentrations. Immunofluorescence microscopy indicated microtubule depolarization and the resultant mitotic arrest was further confirmed through cell cycle analysis. Apoptosis induction via the intrinsic pathway was observed due to depolarization of the mitochondrial membrane, induction of cytochrome c release as well as, caspase 3 activation. Potential involvement of programmed cell death type II was observed due to the presence of acidic vacuoles and aggresome formation. Necrotic cell death did not contribute significantly, indicated by stable LDH levels. This in vitro study revealed the induction of the intrinsic apoptotic pathway as well as possible involvement of autophagy after exposure to these THIQ-based analogues in both MDA-MB-231- and A549 cells. Further investigation of this series of anticancer drugs still needs to be conducted to elucidate the temporal, mechanistic and functional crosstalk mechanisms between the two observed programmed cell deaths pathways.

Keywords: apoptosis, autophagy, cancer, microtubule disruptor

Procedia PDF Downloads 226