Search results for: healthcare data security
25108 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges
Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars
Abstract:
In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting
Procedia PDF Downloads 15625107 Safer Staff: A Survey of Staff Experiences of Violence and Aggression at Work in Coventry and Warwickshire Partnership National Health Service Trust
Authors: Rupinder Kaler, Faith Ndebele, Nadia Saleem, Hafsa Sheikh
Abstract:
Background: Workplace related violence and aggression seems to be considered an acceptable occupational hazard for staff in mental health services. There is literature evidence that healthcare workers in mental health settings are at higher risk from aggression from patients. Aggressive behaviours pose a physical and psychological threat to the psychiatric staff and can result in stress, burnout, sickness, and exhaustion. Further evidence informs that health professionals are the most exposed to psychological disorders such as anxiety, depression and post-traumatic stress disorder. Fear that results from working in a dangerous environment and exhaustion can have a damaging impact on patient care and healthcare relationship. Aim: The aim of this study is to investigate the prevalence and impact of aggressive behaviour on staff working at Coventry and Warwickshire Partnership Trust. Methodology: The study methodology included carrying out a manual, anonymised, multi-disciplinary cross-sectional survey questionnaire across all clinical and non-clinical staff at CWPT from both inpatient and community settings. Findings: The unsurprising finding was that of higher prevalence of aggressive behaviours in in-patients in comparison to community staff. Conclusion: There is a high rate of verbal and physical aggression at work and this has a negative impact on the staff emotional and physical well- being. There is also a higher reliance on colleagues for support on an informal basis than formal organisational support systems. Recommendations: A workforce that is well and functioning is the biggest resource for an organisation. Staff safety during working hours is everyone's responsibility and sits with both individual staff members and the organisation. Post-incident organisational support needs to be consolidated, and hands-on, timely support offered to help maintain emotionally well staff on CWPT. The authors recommend development of preventative and practical protocols for aggression with patient and carer involvement. Post-incident organisational support needs to be consolidated, and hands-on, timely support offered to help maintain emotionally well staff on CWPT.Keywords: safer staff, survey of staff experiences, violence and aggression, mental health
Procedia PDF Downloads 20525106 The Effect of Technology and Artifical Intelligence on Legal Securities and Privacy Issues
Authors: Kerolis Samoul Zaghloul Noaman
Abstract:
area law is the brand new access in the basket of worldwide law in the latter half of the 20 th Century. inside the last hundred and fifty years, courts and pupils advanced a consensus that, the custom is an vital supply of global law. Article 38(1) (b) of the statute of the international court of Justice identified global custom as a supply of global law. country practices and usages have a more role to play in formulating commonplace international regulation. This paper examines those country practices which may be certified to emerge as global standard law. due to the fact that, 1979 (after Moon Treaty) no hard law had been developed within the vicinity of space exploration. It attempts to link among country practices and custom in area exploration and development of standard global regulation in area activities. The paper makes use of doctrinal approach of felony research for inspecting the current questions of worldwide regulation. The paper explores exceptional worldwide prison files which include general meeting Resolutions, Treaty standards, working papers of UN, cases relating to commonplace global law and writing of jurists regarding area law and standard international law. it's far argued that, ideas such as common background of mankind, non-navy region, sovereign equality, nuclear weapon unfastened area and protection of outer area environment, etc. evolved nation practices a number of the worldwide community which can be certified to turn out to be international customary regulation.Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures
Procedia PDF Downloads 3025105 The Use of Complementary and Alternative Medicine for Pain Relief in the Elderly: An Investigational Analysis of Seniors Residing in an Independent/Assisted Seniors’ Living Facility
Authors: Carol Cameletti
Abstract:
The goal of this study was to perform a pilot survey to assess pain frequency and intensity in an elderly population and to assess treatment options for chronic pain that include complementary and alternative medicines (CAM). Ten participants were recruited from an independent and supportive living housing facility in Northern Ontario and asked to complete two questionnaires: 1) a self-assessment on pain, and 2) the use of CAM for pain. Results from our study show that 80% of the participants experienced pains other than the regular everyday pains such as minor headaches, sprains or toothaches. Although participants stated that on average the highest level of pain they experienced within the past 24 hours had a score of 6.5 (0=no pain, 10=worst pain imaginable) the level of pain they experienced moderately interfered with their daily activities. Unfortunately, participants stated that they were only able to attain minimal levels of pain relief using treatments or medications causing some of the participants to seek alternative therapies or self-help practices. The most commonly used CAMs were vitamins/minerals, herbs and supplements, and self-help practices such as meditation, prayer, visualization and relaxation techniques. Although some of the participants stated that they had received complementary treatments directly from their physician, four of the nine participants said that they had not disclosed CAM use to their physician thereby indicating a need to open the lines of communication between healthcare providers and patients with regards to CAM use. It is our hope that the data generated from this study will serve as the platform for a pain management clinic that is client-centered, consumer-driven and truly integrative and tailored in order to meet the unique needs of older adults in Great Sudbury, Ontario.Keywords: alternative, complementary, elderly, medicine
Procedia PDF Downloads 18325104 Hospital 4.0 Maturity Assessment Model Development: Case of Moroccan Public Hospitals
Authors: T. Benazzouz, K. Auhmani
Abstract:
This paper presents a Hospital 4.0 Maturity Assessment Model based on the Industry 4.0 concepts. The self-assessment model defines current and target states of digital transformation by considering multiple aspects of a hospital and a healthcare supply chain. The developed model was validated and evaluated on real-life cases. The resulting model consisted of 5 domains: Technology, Strategy 4.0, Human resources 4.0 & Culture 4.0, Supply chain 4.0 management, and Patient journeys management. Each domain is further divided into several sub-domains, totally 34 sub-domains are identified, that reflect different facets of a hospital 4.0 mature organization.Keywords: hospital 4.0, Industry 4.0, maturity assessment model, supply chain 4.0, patient
Procedia PDF Downloads 9825103 Nuclear Decay Data Evaluation for 217Po
Authors: S. S. Nafee, A. M. Al-Ramady, S. A. Shaheen
Abstract:
Evaluated nuclear decay data for the 217Po nuclide ispresented in the present work. These data include recommended values for the half-life T1/2, α-, β--, and γ-ray emission energies and probabilities. Decay data from 221Rn α and 217Bi β—decays are presented. Q(α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012. In addition, the logft values were calculated using the Logft program from the ENSDF evaluation package. Moreover, the total internal conversion electrons has been calculated using Bricc program. Meanwhile, recommendation values or the multi-polarities have been assigned based on recently measurement yield a better intensity balance at the 254 keV and 264 keV gamma transitions.Keywords: nuclear decay data evaluation, mass evaluation, total converison coefficients, atomic mass evaluation
Procedia PDF Downloads 43625102 Geographic Information System Using Google Fusion Table Technology for the Delivery of Disease Data Information
Authors: I. Nyoman Mahayasa Adiputra
Abstract:
Data in the field of health can be useful for the purposes of data analysis, one example of health data is disease data. Disease data is usually in a geographical plot in accordance with the area. Where the data was collected, in the city of Denpasar, Bali. Disease data report is still published in tabular form, disease information has not been mapped in GIS form. In this research, disease information in Denpasar city will be digitized in the form of a geographic information system with the smallest administrative area in the form of district. Denpasar City consists of 4 districts of North Denpasar, East Denpasar, West Denpasar and South Denpasar. In this research, we use Google fusion table technology for map digitization process, where this technology can facilitate from the administrator and from the recipient information. From the administrator side of the input disease, data can be done easily and quickly. From the receiving end of the information, the resulting GIS application can be published in a website-based application so that it can be accessed anywhere and anytime. In general, the results obtained in this study, divided into two, namely: (1) Geolocation of Denpasar and all of Denpasar districts, the process of digitizing the map of Denpasar city produces a polygon geolocation of each - district of Denpasar city. These results can be utilized in subsequent GIS studies if you want to use the same administrative area. (2) Dengue fever mapping in 2014 and 2015. Disease data used in this study is dengue fever case data taken in 2014 and 2015. Data taken from the profile report Denpasar Health Department 2015 and 2016. This mapping can be useful for the analysis of the spread of dengue hemorrhagic fever in the city of Denpasar.Keywords: geographic information system, Google fusion table technology, delivery of disease data information, Denpasar city
Procedia PDF Downloads 13525101 Inclusive Practices in Health Sciences: Equity Proofing Higher Education Programs
Authors: Mitzi S. Brammer
Abstract:
Given that the cultural make-up of programs of study in institutions of higher learning is becoming increasingly diverse, much has been written about cultural diversity from a university-level perspective. However, there are little data in the way of specific programs and how they address inclusive practices when teaching and working with marginalized populations. This research study aimed to discover baseline knowledge and attitudes of health sciences faculty, instructional staff, and students related to inclusive teaching/learning and interactions. Quantitative data were collected via an anonymous online survey (one designed for students and another designed for faculty/instructional staff) using a web-based program called Qualtrics. Quantitative data were analyzed amongst the faculty/instructional staff and students, respectively, using descriptive and comparative statistics (t-tests). Additionally, some participants voluntarily engaged in a focus group discussion in which qualitative data were collected around these same variables. Collecting qualitative data to triangulate the quantitative data added trustworthiness to the overall data. The research team analyzed collected data and compared identified categories and trends, comparing those data between faculty/staff and students, and reported results as well as implications for future study and professional practice.Keywords: inclusion, higher education, pedagogy, equity, diversity
Procedia PDF Downloads 6925100 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns
Authors: J. Suneetha, Vijayalaxmi
Abstract:
Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability
Procedia PDF Downloads 35125099 Subjective Well-Being among Family Caregivers of Prolonged Mechanical Ventilation Patients: Exploring the Role of Illness Representations and Coping Resources
Authors: Shiri Shinan-Altman, Tanya Lavrinenko
Abstract:
Purpose: Prolonged mechanical ventilation (PMV) places significant emotional, physical, and social burdens on family caregivers. Despite these challenges, limited attention has been given to their subjective well-being (SWB). The aim of this study was to explore the factors associated with SWB among family caregivers of hospitalized PMV patients, utilizing the Self-Regulation Model as a theoretical framework. Specifically, we examined how illness representations and coping resources—sense of coherence and perceived social support—are associated with SWB. Methods: The study involved 134 family caregivers who completed validated questionnaires measuring SWB, illness representations, sense of coherence, and perceived social support. Path analysis was employed to investigate the direct and indirect effects of illness representations on SWB and the mediating role of coping resources. Results: Positive illness representations, such as perceptions of shorter illness timelines and greater treatment control, were linked to higher SWB through a higher sense of coherence and social support. Conversely, negative representations, including severe perceived consequences and heightened emotional responses, negatively impacted SWB. Symptom burden and illness understanding did not significantly influence coping resources or SWB. Path analysis highlighted significant indirect effects, demonstrating the importance of coping resources in mediating these relationships. Conclusion: The findings highlight the need for interventions targeting adaptive illness representations and strengthening caregivers' coping resources. Enhancing the sense of coherence and social support can mitigate caregiver burden and improve SWB. Healthcare professionals should focus on developing tailored intervention programs aimed at reframing caregivers' illness perceptions, providing psychoeducational support, and fostering coping skills. Specific strategies could include structured support groups to enhance social networks, resilience-building workshops, and psychoeducational sessions on managing emotional responses to PMV care. Additionally, regular assessments of caregiver well-being and proactive referrals to support services should be integrated into the care plans of PMV patients. By implementing these strategies, healthcare providers can not only improve caregivers' quality of life but also contribute to better outcomes for patients and their families.Keywords: well-being, illness representations, coping resources, prolonged mechanical ventilation
Procedia PDF Downloads 725098 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System
Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal
Abstract:
Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks
Procedia PDF Downloads 39825097 Socio-Economic Influences on Soilless Agriculture
Authors: George Vernon Byrd, Bhim Bahadur Ghaley, Eri Hayashi
Abstract:
In urban farming, research and innovation are taking place at an unprecedented pace, and soilless growing technologies are emerging at different rates motivated by different objectives in various parts of the world. Local food production is ultimately a main objective everywhere, but adoption rates and expressions vary with socio-economic drivers. Herein, the status of hydroponics and aquaponics is summarized for four countries with diverse socio-economic settings: Europe (Denmark), Asia (Japan and Nepal) and North America (US). In Denmark, with a strong environmental ethic, soilless growing is increasing in urban agriculture because it is considered environmentally friendly. In Japan, soil-based farming is being replaced with commercial plant factories using advanced technology such as complete environmental control and computer monitoring. In Nepal, where rapid loss of agriculture land is occurring near cities, dozens of hydroponics and aquaponics systems have been built in the past decade, particularly in “non-traditional” sites such as roof tops to supplement family food. In the US, where there is also strong interest in locally grown fresh food, backyard and commercial systems have proliferated. Nevertheless, soilless growing is still in the research and development and early adopter stages, and the broad contribution of hydroponics and aquaponics to food security is yet to be fully determined. Nevertheless, current adoption of these technologies in diverse environments in different socio-economic settings highlights the potential contribution to food security with social and environmental benefits which contribute to several Sustainable Development Goals.Keywords: aquaponics, hydroponics, soilless agriculture, urban agriculture
Procedia PDF Downloads 10125096 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction
Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour
Abstract:
In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift
Procedia PDF Downloads 31825095 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman Electricity Transmission Company
Authors: Rahma Al Balushi
Abstract:
Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS dept. This paper will describe in detail the GIS data submission process and the journey to develop the current process. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting, and data alterations salso aided to reduce the missing attributes of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the year 2017 and the year 2021. Overall, concluding that by governance, asset information & GIS department can control GIS data process; collect, properly record, and manage asset data and information within OETC network. This control extends to other applications and systems integrated with/related to GIS systems.Keywords: asset management ISO55001, standard procedures process, governance, geodatabase, NOC, CMMS
Procedia PDF Downloads 21125094 The Feminism of Data Privacy and Protection in Africa
Authors: Olayinka Adeniyi, Melissa Omino
Abstract:
The field of data privacy and data protection in Africa is still an evolving area, with many African countries yet to enact legislation on the subject. While African Governments are bringing their legislation to speed in this field, how patriarchy pervades every sector of African thought and manifests in society needs to be considered. Moreover, the laws enacted ought to be inclusive, especially towards women. This, in a nutshell, is the essence of data feminism. Data feminism is a new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Feminising data privacy and protection will involve thinking women, considering women in the issues of data privacy and protection, particularly in legislation, as is the case in this paper. The line of thought of women inclusion is not uncommon when even international and regional human rights specific for women only came long after the general human rights. The consideration is that these should have been inserted or rather included in the original general instruments in the first instance. Since legislation on data privacy is coming in this century, having seen the rights and shortcomings of earlier instruments, then the cue should be taken to ensure inclusive wholistic legislation for data privacy and protection in the first instance. Data feminism is arguably an area that has been scantily researched, albeit a needful one. With the spate of increase in the violence against women spiraling in the cyber world, compounding the issue of COVID-19 and the needful response of governments, and the effect of these on women and their rights, fast forward, the research on the feminism of data privacy and protection in Africa becomes inevitable. This paper seeks to answer the questions, what is data feminism in the African context, why is it important in the issue of data privacy and protection legislation; what are the laws, if any, existing on data privacy and protection in Africa, are they women inclusive, if not, why; what are the measures put in place for the privacy and protection of women in Africa, and how can this be made possible. The paper aims to investigate the issue of data privacy and protection in Africa, the legal framework, and the protection or provision that it has for women if any. It further aims to research the importance and necessity of feminizing data privacy and protection, the effect of lack of it, the challenges or bottlenecks in attaining this feat and the possibilities of accessing data privacy and protection for African women. The paper also researches the emerging practices of data privacy and protection of women in other jurisprudences. It approaches the research through the methodology of review of papers, analysis of laws, and reports. It seeks to contribute to the existing literature in the field and is explorative in its suggestion. It suggests a draft of some clauses to make any data privacy and protection legislation women inclusive. It would be useful for policymaking, academic, and public enlightenment.Keywords: feminism, women, law, data, Africa
Procedia PDF Downloads 21225093 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 7825092 Evaluation of Practicality of On-Demand Bus Using Actual Taxi-Use Data through Exhaustive Simulations
Authors: Jun-ichi Ochiai, Itsuki Noda, Ryo Kanamori, Keiji Hirata, Hitoshi Matsubara, Hideyuki Nakashima
Abstract:
We conducted exhaustive simulations for data assimilation and evaluation of service quality for various setting in a new shared transportation system, called SAVS. Computational social simulation is a key technology to design recent social services like SAVS as new transportation service. One open issue in SAVS was to determine the service scale through the social simulation. Using our exhaustive simulation framework, OACIS, we did data-assimilation and evaluation of effects of SAVS based on actual tax-use data at Tajimi city, Japan. Finally, we get the conditions to realize the new service in a reasonable service quality.Keywords: on-demand bus sytem, social simulation, data assimilation, exhaustive simulation
Procedia PDF Downloads 32325091 Six Years Antimicrobial Resistance Trends among Bacterial Isolates in Amhara National Regional State, Ethiopia
Authors: Asrat Agalu Abejew
Abstract:
Background: Antimicrobial resistance (AMR) is a silent tsunami and one of the top global threats to health care and public health. It is one of the common agendas globally and in Ethiopia. Emerging AMR will be a double burden to Ethiopia, which is facing a series of problems from infectious disease morbidity and mortality. In Ethiopia, although there are attempts to document AMR in healthcare institutions, comprehensive and all-inclusive analysis is still lacking. Thus, this study is aimed to determine trends in AMR from 2016-2021. Methods: A retrospective analysis of secondary data recorded in the Amhara Public Health Institute (APHI) from 2016 to 2021 G.C was conducted. Blood, Urine, Stool, Swabs, Discharge, body effusions, and other Microbiological specimens were collected from each study participants, and Bacteria identification and Resistance tests were done using the standard microbiologic procedure. Data was extracted from excel in August 2022, Trends in AMR were analyzed, and the results were described. In addition, the chi-square (X2) test and binary logistic regression were used, and a P. value < 0.05 was used to determine a significant association. Results: During 6 years period, there were 25143 culture and susceptibility tests. Overall, 265 (46.2%) bacteria were resistant to 2-4 antibiotics, 253 (44.2%) to 5-7 antibiotics, and 56 (9.7%) to >=8 antibiotics. The gram-negative bacteria were 166 (43.9%), 155 (41.5%), and 55 (14.6%) resistant to 2-4, 5-7, and ≥8 antibiotics, respectively, whereas 99(50.8%), 96(49.2% and 1 (0.5%) of gram-positive bacteria were resistant to 2-4, 5-7 and ≥8 antibiotics respectively. K. pneumonia 3783 (15.67%) and E. coli 3199 (13.25%) were the most commonly isolated bacteria, and the overall prevalence of AMR was 2605 (59.9%), where K. pneumonia 743 (80.24%), E. cloacae 196 (74.81%), A. baumannii 213 (66.56%) being the most common resistant bacteria for antibiotics tested. Except for a slight decline during 2020 (6469 (25.4%)), the overall trend of AMR is rising from year to year, with a peak in 2019 (8480 (33.7%)) and in 2021 (7508 (29.9%). If left un-intervened, the trend in AMR will increase by 78% of variation from the study period, as explained by the differences in years (R2=0.7799). Ampicillin, Augmentin, ciprofloxacin, cotrimoxazole, tetracycline, and Tobramycin were almost resistant to common bacteria they were tested. Conclusion: AMR is linearly increasing during the last 6 years. If left as it is without appropriate intervention after 15 years (2030 E.C), AMR will increase by 338.7%. A growing number of multi-drug resistant bacteria is an alarm to awake policymakers and those who do have the concern to intervene before it is too late. This calls for a periodic, integrated, and continuous system to determine the prevalence of AMR in commonly used antibiotics.Keywords: AMR, trend, pattern, MDR
Procedia PDF Downloads 8125090 Timely Screening for Palliative Needs in Ambulatory Oncology
Authors: Jaci Mastrandrea
Abstract:
Background: The National Comprehensive Cancer Network (NCCN) recommends that healthcare institutions have established processes for integrating palliative care (PC) into cancer treatment and that all cancer patients be screened for PC needs upon initial diagnosis as well as throughout the entire continuum of care (National Comprehensive Cancer Network, 2021). Early PC screening is directly correlated with improved patient outcomes. The Sky Lakes Cancer Treatment Center (SLCTC) is an institution that has access to PC services yet does not have protocols in place for identifying patients with palliative needs or a standardized referral process. The aim of this quality improvement project is to improve early access to PC services by establishing a standardized screening and referral process for outpatient oncology patients. Method: The sample population included all adult patients with an oncology diagnosis who presented to the SLCTC for treatment during the project timeline from March 15th, 2022, to April 29th, 2022. The “Palliative and Supportive Needs Assessment'' (PSNA) screening tool was developed from validated and evidence-based PC referral criteria. The tool was initially implemented using paper forms and later was integrated into the Epic-Beacon EHR system. Patients were screened by registered nurses on the SLCTC treatment team. Nurses responsible for screening patients received an educational inservice prior to implementation. Patients with a PSNA score of three or higher were considered to be a positive screen. Scores of five or higher triggered a PC referral order in the patient’s EHR for the oncologist to review and approve. All patients with a positive screen received an educational handout on the topic of PC, and the EHR was flagged for follow-up. Results: Prior to implementation of the PSCNA screening tool, the SLCTC had zero referrals to PC in the past year, excluding referrals to hospice. Data was collected from the first 100 patient screenings completed within the eight-week data collection period. Seventy-three percent of patients met criteria for PC referral with a score greater than or equal to three. Of those patients who met referral criteria, 53.4% (39 patients) were referred for a palliative and supportive care consultation. Patients that were not referred to PC upon meeting the criteria were flagged in the EHR for re-screening within one to three months. Patients with lung cancer, chronic hematologic malignancies, breast cancer, and gastrointestinal malignancy most frequently met criteria for PC referral and scored highest overall on the scale of 0-12. Conclusion: The implementation of a standardized PC screening tool at the SLCTC significantly increased awareness of PC needs among cancer patients in the outpatient setting. Additionally, data derived from this quality improvement project supports the national recommendation for PC to be an integral component of cancer treatment across the entire continuum of care.Keywords: oncology, palliative care, symptom management, symptom screening, ambulatory oncology, cancer, supportive care
Procedia PDF Downloads 7825089 Optimal Pricing Based on Real Estate Demand Data
Authors: Vanessa Kummer, Maik Meusel
Abstract:
Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning
Procedia PDF Downloads 29125088 The Curse of Vigilante Justice: Killings of Rape Suspects in India and Its Impact on the Discourse on Sexual Violence
Authors: Hrudaya Kamasani
Abstract:
The cultural prevalence of vigilante justice is sustained through the social sanction for foregoing a judicial trial to determine guilt. Precisely due to its roots in social sanction, it has repercussions as more than just being symptomatic of cultural values that condone violence. In the long term, the practice of vigilante justice as a response to incidents of sexual violence, while veiled in civic discontent over the standards of women’s security in society, can adversely affect the discourse on sexual violence. To illustrate the impact that acts of vigilante justice can have in prematurely ending a budding discourse on sexual violence, the paper reviews three cases of heinous crimes committed against women in India that gained popular attention in the discursive spaces. The 2012 Nirbhaya rape and murder case in Delhi demonstrates how the criminal justice system can spur a social movement and can result in legislative changes and a discourse that challenged a wide range of socio-cultural issues of women’s security and treatment. The paper compares it with two incidents of sexual violence in India that ended with the suspects being killed in the name of vigilante justice that had wide social sanction. The two cases are the 2019 extrajudicial killing of Priyanka Reddy rape and murder case suspects in Hyderabad and the 2015 mob lynching of an accused in a rape case in Dimapur. The paper explains why the absence of judicial trials in sexual violence cases results in ending any likelihood of the instances inspiring civic engagement with the discourse on sexual violence.Keywords: sexual violence, vigilante justice, extrajudicial killing, cultural values of violence, Nirbhaya rape case, mob violence
Procedia PDF Downloads 20925087 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials
Authors: Rajesh Kumar G
Abstract:
A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.Keywords: adaptive design, simulation, borrowing data, bayesian model
Procedia PDF Downloads 8125086 Three Year Pedometer Based Physical Activity Intervention of the Adult Population in Qatar
Authors: Mercia I. Van Der Walt, Suzan Sayegh, Izzeldin E. L. J. Ibrahim, Mohamed G. Al-Kuwari, Manaf Kamil
Abstract:
Background: Increased physical activity is associated with improvements in health conditions. Walking is recognized as an easy form of physical activity and a strategy used in health promotion. Step into Health (SIH), a national community program, was established in Qatar to support physical activity promotion through the monitoring of step counts. This study aims to assess the physical activity levels of the adult population in Qatar through a pedometer-based community program over a three-year-period. Methodology: This cross-sectional longitudinal study was conducted between from January 2013 and December 2015 based on daily step counts. A total of 15,947 adults (8,551 males and 7,396 females), from different nationalities enrolled in the program and aged 18 to 64, are included. The program involves free distribution of pedometers to members who voluntarily choose to register. It is also supported by a self-monitoring online account and linked to a web-database. All members are informed about the 10,000 steps/day target and automated emails as well as text messages are sent as reminders to upload data. Daily step counts were measured through the Omron HJ-324U pedometer (Omron Healthcare Co., Ltd., Japan). Analyses are done on the data extracted from the web-database. Results: Daily average step count for the overall community increased from 4,830 steps/day (2013) to 6,124 steps /day (2015). This increase was also observed within the three age categories (18–30), (31-45) and (>45) years. Average steps per day were found to be more among males compared with females in each of the aforementioned age groups. Moreover, males and females in the age group (>45 years) show the highest average step count with 7,010 steps/day and 5,564 steps/day respectively. The 21% increase in overall step count throughout the study period is associated with well-resourced program and ongoing impact in smaller communities such as workplaces and universities, a step in the right direction. However, the average step count of 6,124 steps/day in the third year is still classified as the low active category. Although the program showed an increase step count we found, 33% of the study population are low active, 35 % are sedentary with only 32% being active. Conclusion: This study indicates that the pedometer-based intervention was effective in increasing the daily physical activity of participants. However, alternative approaches need to be incorporated within the program to educate and encourage the community to meet the physical activity recommendations in relation to step count.Keywords: pedometer, physical activity, Qatar, step count
Procedia PDF Downloads 25425085 Analyzing Test Data Generation Techniques Using Evolutionary Algorithms
Authors: Arslan Ellahi, Syed Amjad Hussain
Abstract:
Software Testing is a vital process in software development life cycle. We can attain the quality of software after passing it through software testing phase. We have tried to find out automatic test data generation techniques that are a key research area of software testing to achieve test automation that can eventually decrease testing time. In this paper, we review some of the approaches presented in the literature which use evolutionary search based algorithms like Genetic Algorithm, Particle Swarm Optimization (PSO), etc. to validate the test data generation process. We also look into the quality of test data generation which increases or decreases the efficiency of testing. We have proposed test data generation techniques for model-based testing. We have worked on tuning and fitness function of PSO algorithm.Keywords: search based, evolutionary algorithm, particle swarm optimization, genetic algorithm, test data generation
Procedia PDF Downloads 19425084 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential
Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag
Abstract:
Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.Keywords: climate, reanalysis, renewable energy, solar radiation
Procedia PDF Downloads 21125083 Spray Drying: An Innovative and Sustainable Method of Preserving Fruits
Authors: Adepoju Abiola Lydia, Adeyanju James Abiodun, Abioye A. O.
Abstract:
Spray drying, an innovative and sustainable preservation method, is increasingly gaining recognition for its potential to enhance food security by extending the shelf life of fruits. This technique involves the atomization of fruit pulp into fine droplets, followed by rapid drying with hot air, resulting in a powdered product that retains much of the original fruit's nutritional value, flavor, and color. By encapsulating sensitive bioactive compounds within a dry matrix, spray drying mitigates nutrient degradation and extends product usability. This technology aligns with sustainability goals by reducing post-harvest losses, minimizing the need for preservatives, and lowering energy consumption compared to conventional drying methods. Furthermore, spray drying enables the use of imperfect or surplus fruits, contributing to waste reduction and providing a continuous supply of nutritious fruit-based ingredients regardless of seasonal variations. The powdered form enhances versatility, allowing incorporation into various food products, thus broadening the scope of fruit utilization. Innovations in spray drying, such as the use of novel carrier agents and optimization of processing parameters, enhance the quality and functionality of the final product. Moreover, the scalability of spray drying makes it suitable for both industrial applications and smaller-scale operations, supporting local economies and food systems. In conclusion, spray drying stands out as a key technology in enhancing food security by ensuring a stable supply of high-quality, nutritious food ingredients while fostering sustainable agricultural practices.Keywords: spray drying, sustainable, process parameters, carrier agents, fruits
Procedia PDF Downloads 3425082 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 37625081 Factors Associated with Rural-Urban Migration and Its Associated Health Hazards on the Female Adolescents in Kumasi Metropolis
Authors: Freda Adomaa, Samuel Oppong Boampong, Charles Gyamfi Rahman
Abstract:
The living and working environment of migrants and their access to healthcare services induce good or poor health. This study was conducted to assess the factors associated with rural-urban migration and its associated health hazards among female adolescents. A sample size of two hundred (200) was chosen in which all responded to questionnaires comprising closed-ended questions, which were distributed to gather data from the respondents, after which it was analyzed using the Statistical Package for Social Sciences (SPSS) version 20. The utilized three causes of rural-urban migration thus political, economic and socio-cultural. The study revealed that political situations such as regional inequality (65.4%) and ethnic conflicts (78.2%) whereas economic factors such as lack of amenities (82.3%), lack of employment in rural communities (77.4%), lack of education (74%), and poverty (85.3%) as well as socio-cultural factors such as divorced parents (65.6%), media influence (79.1%), family conflicts (59.4%) and appealing urban informal sector (65.2%) are major causes of migration. Respondents’ encountered challenges such as poor remuneration for services (87.2%), being maltreated by a colleague or worker (69%), sleeping in open space (73.3%), and harassment by the task force (71.4%) and teenage pregnancies (58.5%). The study concluded that the three variables play a key role in adolescent migration and when they travel they end up getting involved in serious health hazardous behaviors such as rapes as well as physical and psychological harassments’. The study, therefore, recommends that vocational training of the rural people on small scale industries (non-farm) activities that could generate an income for the rural household should be introduced.Keywords: rural, urban, migration, female health hazards
Procedia PDF Downloads 13825080 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool
Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi
Abstract:
The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.Keywords: data analysis, deep learning, LSTM neural network, netflix
Procedia PDF Downloads 26325079 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks
Authors: Jayesh M. Patel, Bharat P. Modi
Abstract:
The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.Keywords: cellular, Wi-Fi, mobile, smart phone
Procedia PDF Downloads 369