Search results for: bare machine computing
1206 Red Dawn in the Desert: A World-Systems Analysis of the Maritime Silk Road Initiative
Authors: Toufic Sarieddine
Abstract:
The current debate on the hegemonic impact of China’s Belt and Road Initiative (BRI) is of two opposing strands: Resilient and absolute US hegemony on the one hand and various models of multipolar hegemony such as bifurcation on the other. Bifurcation theories illustrate an unprecedented division of hegemonic functions between China and the US, whereby Beijing becomes the world’s economic hegemon, leaving Washington the world’s military hegemon and security guarantor. While consensus points to China being the main driver of unipolarity’s rupturing, the debate among bifurcationists is on the location of the first rupture. In this regard, the Middle East and North Africa (MENA) region has seen increasing Chinese foreign direct investment in recent years while that to other regions has declined, ranking it second in 2018 as part of the financing for the Maritime Silk Road Initiative (MSRI). China has also become the top trade partner of 11 states in the MENA region, as well as its top source of machine imports, surpassing the US and achieving an overall trade surplus almost double that of Washington’s. These are among other features outlined in world-systems analysis (WSA) literature which correspond with the emergence of a new hegemon. WSA is further utilized to gauge other facets of China’s increasing involvement in MENA and assess whether bifurcation is unfolding therein. These features of hegemony include the adoption of China’s modi operandi, economic dominance in production, trade, and finance, military capacity, cultural hegemony in ideology, education, and language, and the promotion of a general interest around which to rally potential peripheries (MENA states in this case). China’s modi operandi has seen some adoption with regards to support against the United Nations Convention on the Law of the Sea, oil bonds denominated in the yuan, and financial institutions such as the Shanghai Gold Exchange enjoying increasing Arab patronage. However, recent elections in Qatar, as well as liberal reforms in Saudi Arabia, demonstrate Washington’s stronger normative influence. Meanwhile, Washington’s economic dominance is challenged by China’s sizable machine exports, increasing overall imports, and widening trade surplus, but retains some clout via dominant arms and transport exports, as well as free-trade deals across the region. Militarily, Washington bests Beijing’s arms exports, has a dominant and well-established presence in the region, and successfully blocked Beijing’s attempt to penetrate through the UAE. Culturally, Beijing enjoys higher favorability in Arab public opinion, and its broadcast networks have found some resonance with Arab audiences. In education, the West remains MENA students’ preferred destination. Further, while Mandarin has become increasingly available in schools across MENA, its usage and availability still lag far behind English. Finally, Beijing’s general interest in infrastructure provision and prioritizing economic development over social justice and democracy provides an avenue for increased incorporation between Beijing and the MENA region. The overall analysis shows solid progress towards bifurcation in MENA.Keywords: belt and road initiative, hegemony, Middle East and North Africa, world-systems analysis
Procedia PDF Downloads 1091205 Persistence of DNA on Clothes Contaminated by Semen Stains after Washing
Authors: Ashraf Shebl, Bassam Garah, Radah Youssef
Abstract:
Sexual assault is usually a hidden crime where the only witnesses are the victim and the assailant. For a variety of reasons, even the victim may be unable to provide a detailed account of the assault or the identity of the perpetrator. Often the case history deteriorates into one person’s word against another. With such limited initial information, the physical and biological evidence collected from the victim, from the crime scene, and from the suspect will play a pivotal role in the objective and scientific reconstruction of the events in question. The aim of work is to examine whether DNA profiles could be recovered from repeated washed clothes after contaminated by semen stains. Fresh semen about 1ml. ( <1 h old) taken from donor was deposited on four types of clothes (cotton, silk, polyester, and jeans). Then leave to dry in room temperature and washed by washing machine at temperature (30°C-60°C) and by hand washing. Some items of clothing were washed once, some twice and others three times. DNA could be extracted from some of these samples even after multiple washing. This study demonstrates that complete DNA profiles can be obtained from washed semen stains on different types of clothes, even after many repeated washing. These results indicated that clothes of the victims must be examined even if they were washed many times.Keywords: sexual assault, DNA, persistence, clothes
Procedia PDF Downloads 2001204 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.Keywords: opinion mining, opinion summarization, sentiment analysis, text mining
Procedia PDF Downloads 3321203 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network
Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan
Abstract:
Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.Keywords: deep convolution networks, Yolo, machine learning, agriculture
Procedia PDF Downloads 1191202 Automated CNC Part Programming and Process Planning for Turned Components
Authors: Radhey Sham Rajoria
Abstract:
Pressure to increase the competitiveness in the manufacturing sector and for the survival in the market has led to the development of machining centres, which enhance productivity, improve quality, shorten the lead time, and reduce the manufacturing cost. With the innovation of machining centres in the manufacturing sector the production lines have been replaced by these machining centers, having the ability to machine various processes and multiple tooling with automatic tool changer (ATC) for the same part. Also the process plans can be easily generated for complex components. Some means are required to utilize the machining center at its best. The present work is concentrated on the automated part program generation, and in turn automated process plan generation for the turned components on Denford “MIRAC” 8 stations ATC lathe machining centre. A package in C++ on DOS platform is developed which generates the complete CNC part program, process plan and process sequence for the turned components. The input to this system is in the form of a blueprint in graphical format with machining parameters and variables, and the output is the CNC part program which is stored in a .mir file, ready for execution on the machining centre.Keywords: CNC, MIRAC, ATC, process planning
Procedia PDF Downloads 2701201 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER
Procedia PDF Downloads 181200 Fuzzy Approach for the Evaluation of Feasibility Levels of Vehicle Movement on the Disaster-Streaking Zone’s Roads
Authors: Gia Sirbiladze
Abstract:
Route planning problems are among the activities that have the highest impact on logistical planning, transportation, and distribution because of their effects on efficiency in resource management, service levels, and client satisfaction. In extreme conditions, the difficulty of vehicle movement between different customers causes the imprecision of time of movement and the uncertainty of the feasibility of movement. A feasibility level of vehicle movement on the closed route of the disaster-streaking zone is defined for the construction of an objective function. Experts’ evaluations of the uncertain parameters in q-rung ortho-pair fuzzy numbers (q-ROFNs) are presented. A fuzzy bi-objective combinatorial optimization problem of fuzzy vehicle routine problem (FVRP) is constructed based on the technique of possibility theory. The FVRP is reduced to the bi-criteria partitioning problem for the so-called “promising” routes which were selected from the all-admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in real-time computing. For the numerical solution of the bi-criteria partitioning problem, the -constraint approach is used. The main results' support software is designed. The constructed model is illustrated with a numerical example.Keywords: q-rung ortho-pair fuzzy sets, facility location selection problem, multi-objective combinatorial optimization problem, partitioning problem
Procedia PDF Downloads 1361199 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization
Authors: Hebberly Ahatlan
Abstract:
The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, IT/OT convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.Keywords: digitalization, IT/OT convergence, semantic interoperability, VPP, energy blockchain
Procedia PDF Downloads 1841198 Effect of Arch-Wire Qualities and Bracket Design on the Force Systems during Sliding Mechanics
Authors: Davender Kumar
Abstract:
Aim: It is important for the orthodontist to be familiar with the sliding resistance (SR) generated by the ligation method used during the space closure phase with sliding mechanics. To determine new, experimental non-conventional (slide) ligature demonstrates less friction in vitro when compared other ligatures on the market. Methods: Experimental in vitro were carried out to test the performance of the low-friction system with regard to assess the forces released by different bracket–ligature systems with bonded in iron plate mounted on an Instron machine. Results: The outcomes of experimental testing showed that the combination of the low-friction ligatures with the super elastic nickel-titanium and SS wires produced a significantly smaller amount of binding at the bracket/arch wire/ligature unit when compared to conventional elastomeric ligatures. Conclusion: The biomechanical consequences of the use of low-friction ligatures were shorter duration of orthodontic treatment during the levelling and aligning phase, concurrent dentoalveolar expansion of the dental arch, and the possibility of using biologically adequate orthodontic forces.Keywords: archwire, bracket, friction, ligation
Procedia PDF Downloads 3231197 Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding
Authors: Ziad. Sh. Al Sarraf
Abstract:
Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.Keywords: ultrasonic welding, vibration amplitude, welding force, weld strength
Procedia PDF Downloads 3681196 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines
Procedia PDF Downloads 2941195 Evaluation of Computed Tomographic Anatomy of Respiratory System in Caspian Pond Turtle (Mauremys caspica)
Authors: Saghar Karimi, Mohammad Saeed Ahrari Khafi, Amin Abolhasani Foroughi
Abstract:
In recent decades, keeping exotic species as pet animals has become widespread. Turtles are exotic species from chelonians, which are interested by many people. Caspian pond and European pond turtles from Emydidea family are commonly kept as pets in Iran. Presence of the shell in turtles makes achievement to a comprehensive clinical examination impossible. Respiratory system is one of the most important structures to be examined completely. Presence of the air in the respiratory system makes radiography the first modality to think of; however, image quality would be affected by the shell. Computed tomography (CT) as a radiography-based and non-invasive technique provides cross-sectional scans with little superimposition. The aim of this study was to depict normal computed tomographic anatomy of the respiratory system in Caspian Pond Turtle. Five adult Caspian pond turtle were scanned using a 16-detector CT machine. Our results showed that computed tomography is able to well illustrated different parts of respiratory system in turtle and can be used for detecting abnormalities and disorders.Keywords: anatomy, computed tomography, respiratory system, turtle
Procedia PDF Downloads 2011194 Artificial Intelligence in Management Simulators
Authors: Nuno Biga
Abstract:
Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant
Procedia PDF Downloads 1051193 Julia-Based Computational Tool for Composite System Reliability Assessment
Authors: Josif Figueroa, Kush Bubbar, Greg Young-Morris
Abstract:
The reliability evaluation of composite generation and bulk transmission systems is crucial for ensuring a reliable supply of electrical energy to significant system load points. However, evaluating adequacy indices using probabilistic methods like sequential Monte Carlo Simulation can be computationally expensive. Despite this, it is necessary when time-varying and interdependent resources, such as renewables and energy storage systems, are involved. Recent advances in solving power network optimization problems and parallel computing have improved runtime performance while maintaining solution accuracy. This work introduces CompositeSystems, an open-source Composite System Reliability Evaluation tool developed in Julia™, to address the current deficiencies of commercial and non-commercial tools. This work introduces its design, validation, and effectiveness, which includes analyzing two different formulations of the Optimal Power Flow problem. The simulations demonstrate excellent agreement with existing published studies while improving replicability and reproducibility. Overall, the proposed tool can provide valuable insights into the performance of transmission systems, making it an important addition to the existing toolbox for power system planning.Keywords: open-source software, composite system reliability, optimization methods, Monte Carlo methods, optimal power flow
Procedia PDF Downloads 751192 Grid-Connected Doubly-Fed Induction Generator under Integral Backstepping Control Combined with High Gain Observer
Authors: Oluwaseun Simon Adekanle, M'hammed Guisser, Elhassane Abdelmounim, Mohamed Aboulfatah
Abstract:
In this paper, modeling and control of a grid connected 660KW Doubly-Fed Induction Generator wind turbine is presented. Stator flux orientation is used to realize active-reactive power decoupling to enable independent control of active and reactive power. The recursive Integral Backstepping technique is used to control generator speed to its optimum value and to obtain unity power factor. The controller is combined with High Gain Observer to estimate the mechanical torque of the machine. The most important advantage of this combination of High Gain Observer and the Integral Backstepping controller is the annulation of static error that may occur due to incertitude between the actual value of a parameter and its estimated value by the controller. Simulation results under Matlab/Simulink show the robustness of this control technique in presence of parameter variation.Keywords: doubly-fed induction generator, field orientation control, high gain observer, integral backstepping control
Procedia PDF Downloads 3631191 Shear Strength Characterization of Coal Mine Spoil in Very-High Dumps with Large Scale Direct Shear Testing
Authors: Leonie Bradfield, Stephen Fityus, John Simmons
Abstract:
The shearing behavior of current and planned coal mine spoil dumps up to 400m in height is studied using large-sample-high-stress direct shear tests performed on a range of spoils common to the coalfields of Eastern Australia. The motivation for the study is to address industry concerns that some constructed spoil dump heights ( > 350m) are exceeding the scale ( ≤ 120m) for which reliable design information exists, and because modern geotechnical laboratories are not equipped to test representative spoil specimens at field-scale stresses. For more than two decades, shear strength estimation for spoil dumps has been based on either infrequent, very small-scale tests where oversize particles are scalped to comply with device specimen size capacity such that the influence of prototype-sized particles on shear strength is not captured; or on published guidelines that provide linear shear strength envelopes derived from small-scale test data and verified in practice by slope performance of dumps up to 120m in height. To date, these published guidelines appear to have been reliable. However, in the field of rockfill dam design there is a broad acceptance of a curvilinear shear strength envelope, and if this is applicable to coal mine spoils, then these industry-accepted guidelines may overestimate the strength and stability of dumps at higher stress levels. The pressing need to rationally define the shearing behavior of more representative spoil specimens at field-scale stresses led to the successful design, construction and operation of a large direct shear machine (LDSM) and its subsequent application to provide reliable design information for current and planned very-high dumps. The LDSM can test at a much larger scale, in terms of combined specimen size (720mm x 720mm x 600mm) and stress (σn up to 4.6MPa), than has ever previously been achieved using a direct shear machine for geotechnical testing of rockfill. The results of an extensive LDSM testing program on a wide range of coal-mine spoils are compared to a published framework that widely accepted by the Australian coal mining industry as the standard for shear strength characterization of mine spoil. A critical outcome is that the LDSM data highlights several non-compliant spoils, and stress-dependent shearing behavior, for which the correct application of the published framework will not provide reliable shear strength parameters for design. Shear strength envelopes developed from the LDSM data are also compared with dam engineering knowledge, where failure envelopes of rockfills are curved in a concave-down manner. The LDSM data indicates that shear strength envelopes for coal-mine spoils abundant with rock fragments are not in fact curved and that the shape of the failure envelope is ultimately determined by the strength of rock fragments. Curvilinear failure envelopes were found to be appropriate for soil-like spoils containing minor or no rock fragments, or hard-soil aggregates.Keywords: coal mine, direct shear test, high dump, large scale, mine spoil, shear strength, spoil dump
Procedia PDF Downloads 1631190 A Unified Webcam Proctoring Solution on Edge
Authors: Saw Thiha, Jay Rajasekera
Abstract:
A boom in video conferencing generated millions of hours of video data daily to be analyzed. However, such enormous data pose certain scalability issues to be analyzed efficiently, let alone do it in real-time, as online conferences can involve hundreds of people and can last for hours. This paper proposes an efficient online proctoring solution that can analyze the online conferences real-time on edge devices such as Android, iOS, and desktops. Since the computation can be done upfront on the devices where online conferences take place, it can scale well without requiring intensive resources such as GPU servers and complex cloud infrastructure. According to the linear models, face orientation does indeed impact the perceived eye openness. Also, the proposed z score facial landmark standardization was proven to be functional in detecting face orientation and contributed to classifying eye blinks with single eyelid distance computation while achieving a better f1 score and accuracy than the Eye Aspect Ratio (EAR) threshold method. Last but not least, the authors implemented the solution natively in the MediaPipe framework and open-sourced it along with the reproducible experimental results on GitHub. The solution provides face orientation, eye blink, facial activity, and translation detections out of the box and is highly customizable and extensible.Keywords: android, desktop, edge computing, blink, face orientation, facial activity and translation, MediaPipe, open source, real-time, video conference, web, iOS, Z score facial landmark standardization
Procedia PDF Downloads 971189 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning
Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka
Abstract:
Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.Keywords: road conditions, built-in vehicle technology, deep learning, drones
Procedia PDF Downloads 1271188 The Analysis of Loss-of-Excitation Algorithm for Synchronous Generators
Authors: Pavle Dakić, Dimitrije Kotur, Zoran Stojanović
Abstract:
This paper presents the results of the study in which the excitation system fault of synchronous generator is simulated. In a case of excitation system fault (loss of field), distance relay is used to prevent further damage. Loss-of-field relay calculates complex impedance using measured voltage and current at the generator terminals. In order to obtain phasors from sampled measured values, discrete Fourier transform is used. All simulations are conducted using Matlab and Simulink software package. The analysis is conducted on the two machine system which supplies equivalent load. While simulating loss of excitation on one generator in different conditions (at idle operation, weakly loaded, and fully loaded), diagrams of active power, reactive power, and measured impedance are analyzed and monitored. Moreover, in the simulations, the effect of generator load on relay tripping time is investigated. In conclusion, the performed tests confirm that the fault in the excitation system can be detected by measuring the impedance.Keywords: loss-of-excitation, synchronous generator, distance protection, Fourier transformation
Procedia PDF Downloads 3331187 Symbolic Partial Differential Equations Analysis Using Mathematica
Authors: Davit Shahnazaryan, Diogo Gomes, Mher Safaryan
Abstract:
Many symbolic computations and manipulations required in the analysis of partial differential equations (PDE) or systems of PDEs are tedious and error-prone. These computations arise when determining conservation laws, entropies or integral identities, which are essential tools for the study of PDEs. Here, we discuss a new Mathematica package for the symbolic analysis of PDEs that automate multiple tasks, saving time and effort. Methodologies: During the research, we have used concepts of linear algebra and partial differential equations. We have been working on creating algorithms based on theoretical mathematics to find results mentioned below. Major Findings: Our package provides the following functionalities; finding symmetry group of different PDE systems, generation of polynomials invariant with respect to different symmetry groups; simplification of integral quantities by integration by parts and null Lagrangian cleaning, computing general forms of expressions by integration by parts; finding equivalent forms of an integral expression that are simpler or more symmetric form; determining necessary and sufficient conditions on the coefficients for the positivity of a given symbolic expression. Conclusion: Using this package, we can simplify integral identities, find conserved and dissipated quantities of time-dependent PDE or system of PDEs. Some examples in the theory of mean-field games and semiconductor equations are discussed.Keywords: partial differential equations, symbolic computation, conserved and dissipated quantities, mathematica
Procedia PDF Downloads 1641186 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 671185 Different Goals and Strategies of Smart Cities: Comparative Study between European and Asian Countries
Authors: Yountaik Leem, Sang Ho Lee
Abstract:
In this paper, different goals and the ways to reach smart cities shown in many countries during planning and implementation processes will be discussed. Each country dealt with technologies which have been embedded into space as development of ICTs (information and communication technologies) for their own purposes and by their own ways. For example, European countries tried to adapt technologies to reduce greenhouse gas emission to overcome global warming while US-based global companies focused on the way of life using ICTs such as EasyLiving of Microsoft™ and CoolTown of Hewlett-Packard™ during last decade of 20th century. In the North-East Asian countries, urban space with ICTs were developed in large scale on the viewpoint of capitalism. Ubiquitous city, first introduced in Korea which named after Marc Weiser’s concept of ubiquitous computing pursued new urban development with advanced technologies and high-tech infrastructure including wired and wireless network. Japan has developed smart cities as comprehensive and technology intensive cities which will lead other industries of the nation in the future. Not only the goals and strategies but also new directions to which smart cities are oriented also suggested at the end of the paper. Like a Finnish smart community whose slogan is ‘one more hour a day for citizens,’ recent trend is forwarding everyday lives and cultures of human beings, not capital gains nor physical urban spaces.Keywords: smart cities, urban strategy, future direction, comparative study
Procedia PDF Downloads 2621184 Statistical Mechanical Approach in Modeling of Hybrid Solar Cells for Photovoltaic Applications
Authors: A. E. Kobryn
Abstract:
We present both descriptive and predictive modeling of structural properties of blends of PCBM or organic-inorganic hybrid perovskites of the type CH3NH3PbX3 (X=Cl, Br, I) with P3HT, P3BT or squaraine SQ2 dye sensitizer, including adsorption on TiO2 clusters having rutile (110) surface. In our study, we use a methodology that allows computing the microscopic structure of blends on the nanometer scale and getting insight on miscibility of its components at various thermodynamic conditions. The methodology is based on the integral equation theory of molecular liquids in the reference interaction site representation/model (RISM) and uses the universal force field. Input parameters for RISM, such as optimized molecular geometries and charge distribution of interaction sites, are derived with the use of the density functional theory methods. To compare the diffusivity of the PCBM in binary blends with P3HT and P3BT, respectively, the study is complemented with MD simulation. A very good agreement with experiment and the reports of alternative modeling or simulation is observed for PCBM in P3HT system. The performance of P3BT with perovskites, however, seems as expected. The calculated nanoscale morphologies of blends of P3HT, P3BT or SQ2 with perovskites, including adsorption on TiO2, are all new and serve as an instrument in rational design of organic/hybrid photovoltaics. They are used in collaboration with experts who actually make prototypes or devices for practical applications.Keywords: multiscale theory and modeling, nanoscale morphology, organic-inorganic halide perovskites, three dimensional distribution
Procedia PDF Downloads 1561183 Improving Flash Flood Forecasting with a Bayesian Probabilistic Approach: A Case Study on the Posina Basin in Italy
Authors: Zviad Ghadua, Biswa Bhattacharya
Abstract:
The Flash Flood Guidance (FFG) provides the rainfall amount of a given duration necessary to cause flooding. The approach is based on the development of rainfall-runoff curves, which helps us to find out the rainfall amount that would cause flooding. An alternative approach, mostly experimented with Italian Alpine catchments, is based on determining threshold discharges from past events and on finding whether or not an oncoming flood has its magnitude more than some critical discharge thresholds found beforehand. Both approaches suffer from large uncertainties in forecasting flash floods as, due to the simplistic approach followed, the same rainfall amount may or may not cause flooding. This uncertainty leads to the question whether a probabilistic model is preferable over a deterministic one in forecasting flash floods. We propose the use of a Bayesian probabilistic approach in flash flood forecasting. A prior probability of flooding is derived based on historical data. Additional information, such as antecedent moisture condition (AMC) and rainfall amount over any rainfall thresholds are used in computing the likelihood of observing these conditions given a flash flood has occurred. Finally, the posterior probability of flooding is computed using the prior probability and the likelihood. The variation of the computed posterior probability with rainfall amount and AMC presents the suitability of the approach in decision making in an uncertain environment. The methodology has been applied to the Posina basin in Italy. From the promising results obtained, we can conclude that the Bayesian approach in flash flood forecasting provides more realistic forecasting over the FFG.Keywords: flash flood, Bayesian, flash flood guidance, FFG, forecasting, Posina
Procedia PDF Downloads 1371182 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines
Procedia PDF Downloads 3591181 Evolution of Fashion Design in the Era of High-Tech Culture
Authors: Galina Mihaleva, C. Koh
Abstract:
Fashion, like many other design fields, undergoes numerous evolutions throughout the ages. This paper aims to recognize and evaluate the significance of advance technology in fashion design and examine how it changes the role of modern fashion designers by modifying the creation process. It also touches on how modern culture is involved in such developments and how it affects fashion design in terms of conceptualizing and fabrication. The methodology used is through surveying the various examples of technological applications to fashion design and drawing parallels between what was achievable then and what is achievable now. By comparing case studies, existing fashion design examples and crafting method experimentations; we then spot patterns in which to predict the direction of future developments in the field. A breakdown on the elements of technology in fashion design helps us understand the driving force behind such a trend. The results from explorations in the paper have shown that there is an observed pattern of a distinct increase in interest and progress in the field of fashion technology, which leads to the birth of hybrid crafting methods. In conclusion, it is shown that as fashion technology continues to evolve, their role in clothing crafting becomes more prominent and grows far beyond the humble sewing machine.Keywords: fashion design, functional aesthetics, smart textiles, 3D printing
Procedia PDF Downloads 4111180 Artificial Intelligence for Generative Modelling
Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta
Abstract:
As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques
Procedia PDF Downloads 1501179 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence
Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar
Abstract:
This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves
Procedia PDF Downloads 1971178 Improvement of GVPI Insulation System Characteristics by Curing Process Modification
Authors: M. Shadmand
Abstract:
The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time.Keywords: insulation system, GVPI, PDC, aging
Procedia PDF Downloads 2681177 A Highly Efficient Broadcast Algorithm for Computer Networks
Authors: Ganesh Nandakumaran, Mehmet Karaata
Abstract:
A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms
Procedia PDF Downloads 505