Search results for: automatic incident detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4486

Search results for: automatic incident detection

1786 Development of an Aerosol Protection Capsule for Patients with COVID-19

Authors: Isomar Lima da Silva, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Biological isolation capsules are equipment commonly used in the control and prevention of infectious diseases in the hospital environment. This type of equipment, combined with pre-established medical protocols, contributes significantly to the containment of highly transmissible pathogens such as COVID-19. Due to its hermetic isolation, it allows more excellent patient safety, protecting companions and the health team. In this context, this work presents the development, testing, and validation of a medical capsule to treat patients affected by COVID-19. To this end, requirements such as low cost and easy handling were considered to meet the demand of people infected with the virus in remote locations in the Amazon region and/or where there are no ICU beds and mechanical ventilators for orotracheal intubation. Conceived and developed in a partnership between SAMEL Planos de Saúde and Instituto Conecthus, the device entitled "Vanessa Capsule" was designed to be used together with the NIV protocol (non-invasive ventilation), has an automatic exhaust system and filters performing the CO2 exchange, in addition to having BiPaps ventilatory support equipment (mechanical fans) in the Cabin Kit. The results show that the degree of effectiveness in protecting against infection by aerosols, with the protection cabin, is satisfactory, implying the consideration of the Vanessa capsule as an auxiliary method to be evaluated by the health team. It should also be noted that the medical observation of the evaluated patients found that the treatment against the COVID-19 virus started earlier with non-invasive mechanical ventilation reduces the patient's suffering and contributes positively to their recovery, in association with isolation through the Vanessa capsule.

Keywords: COVID-19, mechanical ventilators, medical capsule, non-invasive ventilation

Procedia PDF Downloads 84
1785 Detection of Heroin and Its Metabolites in Urine Samples: A Chemiluminescence Approach

Authors: Sonu Gandhi, Neena Capalash, Prince Sharma, C. Raman Suri

Abstract:

A sensitive chemiluminescence immunoassay (CIA) for heroin and its major metabolites is reported. The method is based on the competitive reaction of horseradish peroxidase (HRP)-labeled anti-MAM antibody and free drug in spiked urine samples. A hapten-protein conjugate was synthesized by using acidic derivative of monoacetyl morphine (MAM) coupled to carrier protein BSA and was used as an immunogen for the generation of anti-MAM (monoacetyl morphine) antibody. A high titer of antibody (1:64,0000) was obtained and the relative affinity constant (Kaff) of antibody was 3.1×107 l/mol. Under the optimal conditions, linear range and reactivity for heroin, mono acetyl morphine (MAM), morphine and codeine were 0.08, 0.09, 0.095 and 0.092 ng/mL respectively. The developed chemiluminescence inhibition assay could detect heroin and its metabolites in standard and urine samples up to 0.01 ng/ml.

Keywords: heroin, metabolites, chemiluminescence immunoassay, horse radish peroxidase

Procedia PDF Downloads 270
1784 A Similarity/Dissimilarity Measure to Biological Sequence Alignment

Authors: Muhammad A. Khan, Waseem Shahzad

Abstract:

Analysis of protein sequences is carried out for the purpose to discover their structural and ancestry relationship. Sequence similarity determines similar protein structures, similar function, and homology detection. Biological sequences composed of amino acid residues or nucleotides provide significant information through sequence alignment. In this paper, we present a new similarity/dissimilarity measure to sequence alignment based on the primary structure of a protein. The approach finds the distance between the two given sequences using the novel sequence alignment algorithm and a mathematical model. The algorithm runs at a time complexity of O(n²). A distance matrix is generated to construct a phylogenetic tree of different species. The new similarity/dissimilarity measure outperforms other existing methods.

Keywords: alignment, distance, homology, mathematical model, phylogenetic tree

Procedia PDF Downloads 178
1783 Using Augmented Reality to Enhance Doctor Patient Communication

Authors: Rutusha Bhutada, Gaurav Chavan, Sarvesh Kasat, Varsha Mujumdar

Abstract:

This software system will be an Augmented Reality application designed to maximize the doctor’s productivity by providing tools to assist in automating the patient recognition and updating patient’s records using face and voice recognition features, which would otherwise have to be performed manually. By maximizing the doctor’s work efficiency and production, the application will meet the doctor’s needs while remaining easy to understand and use. More specifically, this application is designed to allow a doctor to manage his productive time in handling the patient without losing eye-contact with him and communicate with a group of other doctors for consultation, for in-place treatments through video streaming, as a video study. The system also contains a relational database containing a list of doctor, patient and display techniques.

Keywords: augmented reality, hand-held devices, head-mounted devices, marker based systems, speech recognition, face detection

Procedia PDF Downloads 436
1782 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio

Authors: O. S. Omorogiuwa, E. J. Omozusi

Abstract:

The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.

Keywords: spectrum, interference, telecommunication, cognitive radio, frequency

Procedia PDF Downloads 224
1781 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction

Procedia PDF Downloads 407
1780 Tetracycline as Chemosensor for Simultaneous Recognition of Al³⁺: Application to Bio-Imaging for Living Cells

Authors: Jesus Alfredo Ortega Granados, Pandiyan Thangarasu

Abstract:

Antibiotic tetracycline presents as a micro-contaminant in fresh water, wastewater and soils, causing environmental and health problems. In this work, tetracycline (TC) has been employed as chemo-sensor for the recognition of Al³⁺ without interring other ions, and the results show that it enhances the fluorescence intensity for Al³⁺ and there is no interference from other coexisting cation ions (Cd²⁺, Ni²⁺, Co²⁺, Sr²⁺, Mg²⁺, Fe³⁺, K⁺, Sm³⁺, Ag⁺, Na⁺, Ba²⁺, Zn²⁺, and Mn²⁺). For the addition of Cu²⁺ to [TET-Al³⁺], it appears that the intensity of fluorescence has been quenched. Other combinations of metal ions in addition to TC do not change the fluorescence behavior. The stoichiometry determined by Job´s plot for the interaction of TC with Al³⁺ was found to be 1:1. Importantly, the detection of Al³⁺⁺ successfully employed in the real samples like living cells, and it was found that TC efficiently performs as a fluorescent probe for Al³⁺ ion in living systems, especially in Saccharomyces cerevisiae; this is confirmed by confocal laser scanning microscopy.

Keywords: chemo-sensor, recognition of Al³⁺ ion, Saccharomyces cerevisiae, tetracycline,

Procedia PDF Downloads 189
1779 Simulation and Experimentation Investigation of Infrared Non-Destructive Testing on Thermal Insulation Material

Authors: Bi Yan-Qiang, Shang Yonghong, Lin Boying, Ji Xinyan, Li Xiyuan

Abstract:

The heat-resistant material has important application in the aerospace field. The reliability of the connection between the heat-resisting material and the body determines the success or failure of the project. In this paper, lock-in infrared thermography non-destructive testing technology is used to detect the stability of the thermal-resistant structure. The phase relationship between the temperature and the heat flow is calculated by the numerical method, and the influence of the heating frequency and power is obtained. The correctness of the analysis is verified by the experimental method. Through the research, it can provide the basis for the parameter setting of heat flux including frequency and power, improve the efficiency of detection and the reliability of connection between the heat-resisting material and the body.

Keywords: infrared non-destructive, thermal insulation material, reliability, connection

Procedia PDF Downloads 385
1778 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: biometrics, genetic data, identity verification, k nearest neighbor

Procedia PDF Downloads 258
1777 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens

Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang

Abstract:

The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.

Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen

Procedia PDF Downloads 69
1776 Development of Electronic Services in Georgia: Analysis of Current Situation

Authors: Dato Surmanidze, Dato Antadze, Tornike Partenadze

Abstract:

Public online services in Georgia are concentrated on main target segments: public administration, business, population, non-governmental and other interested organizations. Therefore, the strategy of digital Georgia is focused on providing G2C, G2B/B2G, G2NGO and G2G services. In G2C framework sophisticated and high-technological online services have been developed in order to provide passports, identity cards, documentations concerning residence and civil acts (birth, marriage, divorce, child adoption, change of name and surname, death, etc) as well as other services. Websites like my.gov.ge and sda.gov.ge have distance services like electronic application, processing and decision making. In line with international standards automatic services like electronic tenders, product catalogues, invoices and payment have been developed. This creates better investment climate for foreign companies in Georgia in the framework of G2B politics. The website mybusiness.gov.ge creates better conditions for local business. Among electronic services is e-NRMS (electronic system for national resource management) which was introduced by the Ministry of Finance of Georgia. The system was created in order to ensure management of national resources by state and business organizations. It is integrated with bank services and provides G2C, G2B and B2G representatives with electronic services. Also a portal meteo.gov.ge was created which gives electronic services concerning air, geological, environmental and pollution issues. Also worknet.gov.ge should be mentioned which is an electronic hub of information management for employers and employees. The information portal of labor market will facilitate receipt of information, its analysis and delivery to interested people like employers and employees. However, nowadays it’s been two years that only employees portal is activated. Therefore, awareness about the portal, its competitiveness and success is undermined.

Keywords: electronic services, public administration, information technology, information society

Procedia PDF Downloads 268
1775 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem

Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães

Abstract:

This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.

Keywords: path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart

Procedia PDF Downloads 167
1774 Comparison of the Results of a Parkinson’s Holter Monitor with Patient Diaries, in Real Conditions of Use: A Sub-Analysis of the MoMoPa-EC Clinical Trial

Authors: Alejandro Rodríguez-Molinero, Carlos Pérez-López, Jorge Hernández-Vara, Àngels Bayes-Rusiñol, Juan Carlos Martínez-Castrillo, David A. Pérez-Martínez

Abstract:

Background: Monitoring motor symptoms in Parkinson's patients is often a complex and time-consuming task for clinicians, as Hauser's diaries are often poorly completed by patients. Recently, new automatic devices (Parkinson's holter: STAT-ON®) have been developed capable of monitoring patients' motor fluctuations. The MoMoPa-EC clinical trial (NCT04176302) investigates which of the two methods produces better clinical results. In this sub-analysis, the concordance between both methods is analyzed. Methods: In the MoMoPa-EC clinical trial, 164 patients with moderate-severe Parkinson's disease and at least two hours a day of Off will be included. At the time of patient recruitment, all of them completed a seven-day motor fluctuation diary at home (Hauser’s diary) while wearing the Parkinson's holter. In this sub-analysis, 71 patients with complete data for the purpose of this comparison were included. The intraclass correlation coefficient was calculated between the patient diary entries and the Parkinson's holter data in terms of time On, Off, and time with dyskinesias. Results: The intra-class correlation coefficient of both methods was 0.57 (95% CI: 0.3-0.74) for daily time in Off (%), 0.48 (95% CI: 0.14-0.68) for daily time in On (%), and 0.37 (95% CI %: -0.04-0.62) for daily time with dyskinesias (%). Conclusions: Both methods have a moderate agreement with each other. We will have to wait for the results of the MoMoPa-EC project to estimate which of them has the greatest clinical benefits. Acknowledgment: This work is supported by AbbVie S.L.U, the Instituto de Salud Carlos III [DTS17/00195], and the European Fund for Regional Development, 'A way to make Europe'.

Keywords: Parkinson, sensor, motor fluctuations, dyskinesia

Procedia PDF Downloads 232
1773 Durable Phantom Production Identical to Breast Tissue for Use in Breast Cancer Detection Research Studies

Authors: Hayrettin Eroglu, Adem Kara

Abstract:

Recently there has been significant attention given to imaging of the biological tissues via microwave imaging techniques. In this study, a phantom for the test and calibration of Microwave imaging used in detecting unhealthy breast structure or tumors was produced by using sol gel method. The liquid and gel phantoms being used nowadays are not durable due to evaporation and their organic ingredients, hence a new design was proposed. This phantom was fabricated from materials that were widely available (water, salt, gelatin, and glycerol) and was easy to make. This phantom was aimed to be better from the ones already proposed in the literature in terms of its durability and stability. S Parameters of phantom was measured with 1-18 GHz Probe Kit and permittivity was calculated via Debye method in “85070” commercial software. One, three, and five-week measurements were taken for this phantom. Finally, it was verified that measurement results were very close to the real biological tissue measurement results.

Keywords: phantom, breast tissue, cancer, microwave imaging

Procedia PDF Downloads 355
1772 Green Synthesis of Red-Fluorescent Gold Nanoclusters: Characterization and Application for Breast Cancer Detection

Authors: Agnė Mikalauskaitė, Renata Karpicz, Vitalijus Karabanovas, Arūnas Jagminas

Abstract:

The use of biocompatible precursors for the synthesis and stabilization of fluorescent gold nanoclusters (NCs) with strong red photoluminescence creates an important link between natural sciences and nanotechnology. Herein, we report the cost-effective synthesis of Au nanoclusters by templating and reduction of chloroauric acid with the cheap amino acid food supplements. This synthesis under the optimized conditions leads to the formation of biocompatible Au NCs having good stability and intense red photoluminescence, peaked at 680 to 705 nm, with a quantum yield (QY) of ≈7% and the average lifetime of up to several µs. The composition and luminescent properties of the obtained NCs were compared with ones formed via well-known bovine serum albumin reduction approach. Our findings implied that synthesized Au NCs tend to accumulate in more tumorigenic breast cancer cells (line MDA-MB-213) and after dialysis can be prospective for bio imagining.

Keywords: gold nanoclusters, proteins, materials chemistry, red-photoluminescence, bioimaging

Procedia PDF Downloads 278
1771 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions

Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju

Abstract:

Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.

Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism

Procedia PDF Downloads 165
1770 MRI Quality Control Using Texture Analysis and Spatial Metrics

Authors: Kumar Kanudkuri, A. Sandhya

Abstract:

Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.

Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy

Procedia PDF Downloads 170
1769 Inspection of Railway Track Fastening Elements Using Artificial Vision

Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux

Abstract:

In France, the railway network is one of the main transport infrastructures and is the second largest European network. Therefore, railway inspection is an important task in railway maintenance to ensure safety for passengers using significant means in personal and technical facilities. Artificial vision has recently been applied to several railway applications due to its potential to improve the efficiency and accuracy when analyzing large databases of acquired images. In this paper, we present a vision system able to detect fastening elements based on artificial vision approach. This system acquires railway images using a CCD camera installed under a control carriage. These images are stitched together before having processed. Experimental results are presented to show that the proposed method is robust for detection fasteners in a complex environment.

Keywords: computer vision, image processing, railway inspection, image stitching, fastener recognition, neural network

Procedia PDF Downloads 455
1768 Monitoring of Potato Rot Nematode (Ditylenchus destructor Thorne, 1945) in Southern Georgia Nematode Fauna Diversity of Rhizosphere

Authors: E. Tskitishvili, L. Jgenti, I. Eliava, T. Tskitishvili, N. Bagathuria, M. Gigolashvili

Abstract:

The nematode fauna of 20 agrocenosis (soil, tuber of potato, green parts of plant, roots) was studied in four regions in South Georgia (Akhaltsikhe, Aspindza, Akhalkalaki, Ninotsminda). In all, there were registered 173 forms of free-living and Phyto-parasitic nematodes, including 132 forms which were specified according to their species. A few exemplars of potato root nematode (Ditylenchus destructor) were identified in soil samples taken in Ninotsminda, Akhalkalaki and Aspinda stations, i.e. invasion is weak. Based on our data, potato Ditylenchus was not found in any of the researched tubers, while based on the data of previous years the most of tubers were infested. The cysts of 'golden nematodes' were not found during inspection of material for detection of Globoderosis

Keywords: ditylenchus, monitoring, nematoda, potato

Procedia PDF Downloads 357
1767 An Exploitation of Electrical Sensors in Monitoring Pool Chlorination

Authors: Fahad Alamoudi, Yaser Miaji

Abstract:

The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, water slides, and more recently, hydrotherapy and wave pools. In this research, a few simple equipment is used for test, detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, Rio 12HF and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates, the lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.

Keywords: photometer, electrode, electrolysis, swimming pool chlorination

Procedia PDF Downloads 363
1766 Reinforcement Learning the Born Rule from Photon Detection

Authors: Rodrigo S. Piera, Jailson Sales Ara´ujo, Gabriela B. Lemos, Matthew B. Weiss, John B. DeBrota, Gabriel H. Aguilar, Jacques L. Pienaar

Abstract:

The Born rule was historically viewed as an independent axiom of quantum mechanics until Gleason derived it in 1957 by assuming the Hilbert space structure of quantum measurements [1]. In subsequent decades there have been diverse proposals to derive the Born rule starting from even more basic assumptions [2]. In this work, we demonstrate that a simple reinforcement-learning algorithm, having no pre-programmed assumptions about quantum theory, will nevertheless converge to a behaviour pattern that accords with the Born rule, when tasked with predicting the output of a quantum optical implementation of a symmetric informationally-complete measurement (SIC). Our findings support a hypothesis due to QBism (the subjective Bayesian approach to quantum theory), which states that the Born rule can be thought of as a normative rule for making decisions in a quantum world [3].

Keywords: quantum Bayesianism, quantum theory, quantum information, quantum measurement

Procedia PDF Downloads 109
1765 Early Warning Signals: Role and Status of Risk Management in Small and Medium Enterprises

Authors: Alexander Kelíšek, Denisa Janasová, Veronika Mitašová

Abstract:

Weak signals using is often associated with early warning. It is possible to find a link between early warning, respectively early problems detection and risk management. The idea of early warning is very important in the context of crisis management because of the risk prevention possibility. Weak signals are likened to risk symptoms. Nowadays, their usefulness as a tool of proactive problems solving is emphasized. Based on it, it is possible to use weak signals not only in strategic planning, project management, or early warning system, but also as a subsidiary element in risk management. The main question is how to effectively integrate weak signals into risk management. The main aim of the paper is to point out the possibilities of weak signals using in small and medium enterprises risk management.

Keywords: early warning system, weak signals, risk management, small and medium enterprises (SMEs)

Procedia PDF Downloads 427
1764 The Impact of Brand Hate and Love: A Thematic Analysis of Online Emotions in Response to Disney’s Corporate Activism

Authors: Roxana D. Maiorescu-Murphy

Abstract:

Companies have recently embraced political activism as an alleged responsibility toward the communities they operate in. As a result of its recency, there is little understanding of the impact of corporate activism on consumers. In addition, embracing corporate activism engenders polarizing opinions, potentially leading to a crisis of morality shown in past literature to flourish in online settings. The present study contributes to the literature on communication management, which currently lacks research on stakeholder perceptions toward corporate activism in general and from the perspective of the stakeholders’ emotions of brand hate versus a love that they display before a specific corporate act of activism. For this purpose, the study analyzed online reactions on Twitter following Disney’s stance against Florida’s House Bill 1577 enacted in April 2022. Dubbed the “Don’t Say Gay Bill” by the left wing and the “Parental Rights Bill” by the conservative movement, the legislation triggered polarizing opinions in society and among Disney’s stakeholders, as the company announce it was taking action against it. Given the scarcity of research on corporate political activism and crises of morality, the current study enacted the case study methodology. Consequently, it answered to the research questions of how online stakeholders responded to Disney’s stance as well as why they formed such an opinion. The data were collected from Twitter over a seven-day period of analysis, namely from March 28- April 3, 2022. The period of analysis started on the day Disney announced its stance (March 28, 2022) until the reactions to its announcement petered out significantly (April 3, 2022). The final sample of analysis consisted of N=1,344 and represented Twitter comments in response to the company’s political announcement. The data were analyzed using the grounded theory methodology, which implied multiple exposures to the text and the undertaking of an inductive-deductive approach that led to the emergence of several recurrent themes. The findings revealed that the stakeholders’ prior emotions toward the company (brand hate versus brand love) did not play a greater role in their (dis)agreement with the latter’s activism than the users’ political stances. Specifically, whether they despised or hated Disney prior to this incident was less significant than their personal political stances. Above all, users were more inclined to transition from brand love to brand hate and vice versa based on the political side they viewed Disney to fall under.

Keywords: corporate political advocacy, crisis management, brand hate, brand love

Procedia PDF Downloads 119
1763 Sweepline Algorithm for Voronoi Diagram of Polygonal Sites

Authors: Dmitry A. Koptelov, Leonid M. Mestetskiy

Abstract:

Voronoi Diagram (VD) of finite set of disjoint simple polygons, called sites, is a partition of plane into loci (for each site at the locus) – regions, consisting of points that are closer to a given site than to all other. Set of polygons is a universal model for many applications in engineering, geoinformatics, design, computer vision, and graphics. VD of polygons construction usually done with a reduction to task of constructing VD of segments, for which there are effective O(n log n) algorithms for n segments. Preprocessing – constructing segments from polygons’ sides, and postprocessing – polygon’s loci construction by merging the loci of the sides of each polygon are also included in reduction. This approach doesn’t take into account two specific properties of the resulting segment sites. Firstly, all this segments are connected in pairs in the vertices of the polygons. Secondly, on the one side of each segment lies the interior of the polygon. The polygon is obviously included in its locus. Using this properties in the algorithm for VD construction is a resource to reduce computations. The article proposes an algorithm for the direct construction of VD of polygonal sites. Algorithm is based on sweepline paradigm, allowing to effectively take into account these properties. The solution is performed based on reduction. Preprocessing is the constructing of set of sites from vertices and edges of polygons. Each site has an orientation such that the interior of the polygon lies to the left of it. Proposed algorithm constructs VD for set of oriented sites with sweepline paradigm. Postprocessing is a selecting of edges of this VD formed by the centers of empty circles touching different polygons. Improving the efficiency of the proposed sweepline algorithm in comparison with the general Fortune algorithm is achieved due to the following fundamental solutions: 1. Algorithm constructs only such VD edges, which are on the outside of polygons. Concept of oriented sites allowed to avoid construction of VD edges located inside the polygons. 2. The list of events in sweepline algorithm has a special property: the majority of events are connected with “medium” polygon vertices, where one incident polygon side lies behind the sweepline and the other in front of it. The proposed algorithm processes such events in constant time and not in logarithmic time, as in the general Fortune algorithm. The proposed algorithm is fully implemented and tested on a large number of examples. The high reliability and efficiency of the algorithm is also confirmed by computational experiments with complex sets of several thousand polygons. It should be noted that, despite the considerable time that has passed since the publication of Fortune's algorithm in 1986, a full-scale implementation of this algorithm for an arbitrary set of segment sites has not been made. The proposed algorithm fills this gap for an important special case - a set of sites formed by polygons.

Keywords: voronoi diagram, sweepline, polygon sites, fortunes' algorithm, segment sites

Procedia PDF Downloads 177
1762 A Polyphonic Look at Trends

Authors: Turquesa Topper

Abstract:

The reflection focuses on recording and explaining the considerations, conceptualizations and methodological approach with which from the University, that is to say, from the academic field, the study of Trends is addressed with the intention of training professionals in the area, an area that requires disciplinary boundaries and builds a polyphonic vision. When referring to the objective of our Laboratory the detection of aesthetic trends of consumption, we find ourselves in the requirement to define our object: trends, aesthetic trends of consumption, more specifically. The pages cover a conception of trends from a theoretical framework that incorporates contributions from linguistics, semiotics, sociology, cultural studies and project disciplines, in order to consolidate a polyphonic look. The text investigates in the pre-discursive aspect of the trends, in the circulation of the notion of style and in the dynamics of affirmation - denial as the constitutive dynamics of Fashion linked to any process of innovation. From such inquiry, it is presented to Fashion as a system that operates directly on the construction of socio-individual identities unfolding through the liquefaction of signs in trends.

Keywords: fashion, methodology, narrative, trends

Procedia PDF Downloads 250
1761 A Synthetic Strategy to Attach 2,6-Dichlorophenolindophenol onto Multi Walled Carbon Nanotubes and Their Application for Electrocatalytic Determination of Sulfide

Authors: Alireza Mohadesi, Ashraf Salmanipour

Abstract:

A chemically modified glassy carbon electrode for electrocatalytic determination of sulfide was developed using multiwalled carbon nanotubes (MWCNTs) covalently immobilized with 2,6-dichlorophenolindophenol (DPIP). The immobilization of 2,6-dichlorophenolindophenol with MWCNTs was performed with a new synthetic strategy and characterized by UV–visible absorption spectroscopy, Fourier transform infrared spectroscopy and cyclic voltammetry. The cyclic voltammetric response of DPIP grafted onto MWCNTs indicated that it promotes the low potential, sensitive and stable determination of sulfide. The dependence of response currents on the concentration of sulfide was examined and was linear in the range of 10 - 1100 µM. The detection limit of sulfide was 5 µM and RSD for 100 and 500 µM sulfides were 1.8 and 1.3 %. Many interfering species had little or no effect on the determination of sulfide. The procedure was applied to determination of sulfide in waters samples.

Keywords: functionalized carbon nanotubes, sulfide, biological samples, 2, 6-dichlorophenolindophenol

Procedia PDF Downloads 313
1760 Development on the Modeling Driven Architecture

Authors: Sahar Shahsavaripour Ghazanfarpour

Abstract:

As our daily life depends on quality of built services by systems and using devices in our environment; so education and model of software′s quality will be so important. By daily growth in software′s systems and using them so much, progressing process and requirements′ evaluation in primary level of progress especially architecture level in software get more important. Modern driver architecture changes an in dependent model of a level into some specific models that their purpose is reducing number of software changes into an executive model. Process of designing software engineering is mid-automated. The needed quality attribute in designing architecture and quality attribute in representation are in architecture models. The main problem is the relationship between needs, and elements in some aspect with implicit models and input sources in process. It’s because there is no detection ability. The MART profile is use to describe real-time properties and perform plat form modeling.

Keywords: MDA, DW, OMG, UML, AKB, software architecture, ontology, evaluation

Procedia PDF Downloads 495
1759 Variation of Inductance in a Switched-Reluctance Motor under Various Rotor Faults

Authors: Muhammad Asghar Saqib, Saad Saleem Khan, Syed Abdul Rahman Kashif

Abstract:

In order to have higher efficiency, performance and reliability the regular monitoring of an electrical motor is required. This article presents a novel view of the air-gap magnetic field analysis of a switched reluctance motor under rotor cracks and rotor tilt along its shaft axis. The fault diagnosis is illustrated on the basis of a 3-D model of the motor using finite element analysis (FEA). The analytical equations of flux linkages have been used to determine the inductance. The results of the 3-D finite element analysis on a 6/4 switched reluctance motor (SRM) shows the variation of mutual inductance with the tilting of the rotor shaft and cracked rotor conditions. These results present useful information regarding the detection of shaft tilting and cracked rotors.

Keywords: switched reluctance motor, finite element analysis, cracked rotor, 3-D modelling of a srm

Procedia PDF Downloads 665
1758 Bridge Members Segmentation Algorithm of Terrestrial Laser Scanner Point Clouds Using Fuzzy Clustering Method

Authors: Donghwan Lee, Gichun Cha, Jooyoung Park, Junkyeong Kim, Seunghee Park

Abstract:

3D shape models of the existing structure are required for many purposes such as safety and operation management. The traditional 3D modeling methods are based on manual or semi-automatic reconstruction from close-range images. It occasions great expense and time consuming. The Terrestrial Laser Scanner (TLS) is a common survey technique to measure quickly and accurately a 3D shape model. This TLS is used to a construction site and cultural heritage management. However there are many limits to process a TLS point cloud, because the raw point cloud is massive volume data. So the capability of carrying out useful analyses is also limited with unstructured 3-D point. Thus, segmentation becomes an essential step whenever grouping of points with common attributes is required. In this paper, members segmentation algorithm was presented to separate a raw point cloud which includes only 3D coordinates. This paper presents a clustering approach based on a fuzzy method for this objective. The Fuzzy C-Means (FCM) is reviewed and used in combination with a similarity-driven cluster merging method. It is applied to the point cloud acquired with Lecia Scan Station C10/C5 at the test bed. The test-bed was a bridge which connects between 1st and 2nd engineering building in Sungkyunkwan University in Korea. It is about 32m long and 2m wide. This bridge was used as pedestrian between two buildings. The 3D point cloud of the test-bed was constructed by a measurement of the TLS. This data was divided by segmentation algorithm for each member. Experimental analyses of the results from the proposed unsupervised segmentation process are shown to be promising. It can be processed to manage configuration each member, because of the segmentation process of point cloud.

Keywords: fuzzy c-means (FCM), point cloud, segmentation, terrestrial laser scanner (TLS)

Procedia PDF Downloads 234
1757 Alignment and Antagonism in Flux: A Diachronic Sentiment Analysis of Attitudes towards the Chinese Mainland in the Hong Kong Press

Authors: William Feng, Qingyu Gao

Abstract:

Despite the extensive discussions about Hong Kong’s sentiments towards the Chinese Mainland since the sovereignty transfer in 1997, there has been no large-scale empirical analysis of the changing attitudes in the mainstream media, which both reflect and shape sentiments in the society. To address this gap, the present study uses an optimised semantic-based automatic sentiment analysis method to examine a corpus of news about China from 1997 to 2020 in three main Chinese-language newspapers in Hong Kong, namely Apple Daily, Ming Pao, and Oriental Daily News. The analysis shows that although the Hong Kong press had a positive emotional tone toward China in general, the overall trend of sentiment was becoming increasingly negative. Meanwhile, the alignment and antagonism toward China have both increased, providing empirical evidence of attitudinal polarisation in the Hong Kong society. Specifically, Apple Daily’s depictions of China have become increasingly negative, though with some positive turns before 2008, whilst Oriental Daily News has consistently expressed more favourable sentiments. Ming Pao maintained an impartial stance toward China through an increased but balanced representation of positive and negative sentiments, with its subjectivity and sentiment intensity growing to an industry-standard level. The results provide new insights into the complexity of sentiments towards China in the Hong Kong press and media attitudes in general in terms of the “us” and “them” positioning by explicating the cross-newspaper and cross-period variations using an enhanced sentiment analysis method which incorporates sentiment-oriented and semantic role analysis techniques.

Keywords: media attitude, sentiment analysis, Hong Kong press, one country two systems

Procedia PDF Downloads 121