Search results for: smart manufacturing
578 Voice of Customer: Mining Customers' Reviews on On-Line Car Community
Authors: Kim Dongwon, Yu Songjin
Abstract:
This study identifies the business value of VOC (Voice of Customer) on the business. Precisely, we intend to demonstrate how much negative and positive sentiment of VOC has an influence on car sales market share in the unites states. We extract 7 emotions such as sadness, shame, anger, fear, frustration, delight and satisfaction from the VOC data, 23,204 pieces of opinions, that had been posted on car-related on-line community from 2007 to 2009(a part of data collection from 2007 to 2015), and intend to clarify the correlation between negative and positive sentimental keywords and contribution to market share. In order to develop a lexicon for each category of negative and positive sentiment, we took advantage of Corpus program, Antconc 3.4.1.w and on-line sentimental data, SentiWordNet and identified the part of speech(POS) information of words in the customers' opinion by using a part-of-speech tagging function provided by TextAnalysisOnline. For the purpose of this present study, a total of 45,741 pieces of customers' opinions of 28 car manufacturing companies had been collected including titles and status information. We conducted an experiment to examine whether the inclusion, frequency and intensity of terms with negative and positive emotions in each category affect the adoption of customer opinions for vehicle organizations' market share. In the experiment, we statistically verified that there is correlation between customer ideas containing negative and positive emotions and variation of marker share. Particularly, "Anger," a domain of negative domains, is significantly influential to car sales market share. The domain "Delight" and "Satisfaction" increased in proportion to growth of market share.Keywords: data mining, opinion mining, sentiment analysis, VOC
Procedia PDF Downloads 214577 Undoped and Fluorine Doped Zinc Oxide (ZnO:F) Thin Films Deposited by Ultrasonic Chemical Spray: Effect of the Solution on the Electrical and Optical Properties
Authors: E. Chávez-Vargas, M. de la L. Olvera-Amador, A. Jimenez-Gonzalez, A. Maldonado
Abstract:
Undoped and fluorine doped zinc oxide (ZnO) thin films were deposited on sodocalcic glass substrates by the ultrasonic chemical spray technique. As the main goal is the manufacturing of transparent electrodes, the effects of both the solution composition and the substrate temperature on both the electrical and optical properties of ZnO thin films were studied. As a matter of fact, the effect of fluorine concentration ([F]/[F+Zn] at. %), solvent composition (acetic acid, water, methanol ratios) and ageing time, regarding solution composition, were varied. In addition, the substrate temperature and the deposition time, regarding the chemical spray technique, were also varied. Structural studies confirm the deposition of polycrystalline, hexagonal, wurtzite type, ZnO. The results show that the increase of ([F]/[F+Zn] at. %) ratio in the solution, decreases the sheet resistance, RS, of the ZnO:F films, reaching a minimum, in the order of 1.6 Ωcm, at 60 at. %; further increase in the ([F]/[F+Zn]) ratio increases the RS of the films. The same trend occurs with the variation in substrate temperature, as a minimum RS of ZnO:F thin films was encountered when deposited at TS= 450 °C. ZnO:F thin films deposited with aged solution show a significant decrease in the RS in the order of 100 ΩS. The transmittance of the films was also favorable affected by the solvent ratio and, more significantly, by the ageing of the solution. The whole evaluation of optical and electrical characteristics of the ZnO:F thin films deposited under different conditions, was done under Haacke’s figure of Merit in order to have a clear and quantitative trend as transparent conductors application.Keywords: zinc oxide, ZnO:F, TCO, Haacke’s figure of Merit
Procedia PDF Downloads 314576 Forgeability Study of Medium Carbon Micro-Alloyed Forging Steel
Authors: M. I. Equbal, R. K. Ohdar, B. Singh, P. Talukdar
Abstract:
Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Micro-alloying elements like vanadium, niobium or titanium have been added to medium carbon steels to achieve grain refinement with or without precipitation strengthening along with uniform microstructure throughout the matrix. Present study reports the applicability of medium carbon vanadium micro-alloyed steel in hot forging. Forgeability has been determined with respect to different cooling rates, after forging in a hydraulic press at 50% diameter reduction in temperature range of 900-11000C. Final microstructures, hardness, tensile strength, and impact strength have been evaluated. The friction coefficients of different lubricating conditions, viz., graphite in hydraulic oil, graphite in furnace oil, DF 150 (Graphite, Water-Based) die lubricant and dry or without any lubrication were obtained from the ring compression test for the above micro-alloyed steel. Results of ring compression tests indicate that graphite in hydraulic oil lubricant is preferred for free forging and dry lubricant is preferred for die forging operation. Exceptionally good forgeability and high resistance to fracture, especially for faster cooling rate has been observed for fine equiaxed ferrite-pearlite grains, some amount of bainite and fine precipitates of vanadium carbides and carbonitrides. The results indicated that the cooling rate has a remarkable effect on the microstructure and mechanical properties at room temperature.Keywords: cooling rate, hot forging, micro-alloyed, ring compression
Procedia PDF Downloads 361575 Study and Simulation of a Dynamic System Using Digital Twin
Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli
Abstract:
Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models
Procedia PDF Downloads 148574 Solar Collectors for Northern Countries
Authors: Ilze Pelece, Imants Ziemelis, Henriks Putans
Abstract:
Traditionally the solar energy has been used in southern countries, but it has been used also in northern ones. Most popular kind of use of solar energy in Latvia is solar collector for water heating. Traditionally flat-plate solar collectors are used because of simplicity of manufacturing. However, some peculiarities in use of solar energy in northern countries must be taken into account. In northern countries, there is lower irradiance, but longer day and longer path of the sun during summer. Therefore traditional flat-plate solar collectors are not appropriate enough in northern countries, but new forms must be developed. There are two forms of solar collectors - cylindrical and semi-spherical – proposed in this work. Such collectors can be made both for water or air heating. Theoretical calculations and measurements of energy gain from those two collectors have been done. Results show that daily energy sum received by the semi-spherical collector from the sun at the middle of summer is 1.43 times more than that of the flat one, but for the cylindrical collector, it is 1.74 times more than that of the flat one or equal to that of the tracking to sun flat-plate collector. The resulting difference in energy gain from collector will be not so large because of the difference in heat loses. Heat can be decreased by switching off the water circulation pump when the sun is covered by clouds. For this purpose solar batteries, powered pump can be used instead of complicated and expensive automatics. Even more important than overall energy gain is the fact that semi-spherical and cylindrical collectors work all day (17 hours in the middle of summer at 57 northern latitudes), while flat-plate collector only about 11 hours. Yearly energy sum received by the collector from the sun is 1.5 and 1.9 times larger for the semi-spherical and cylindrical collector respectively as for the flat one. The cylindrical solar collector is easier to manufacture, but semi-spherical one is more aesthetical and durable against the impact of the wind. Although solar collectors for water and air heating are studied in this article, main ideas are applicable also for solar batteries.Keywords: cylindric, semi-spherical, solar collector, solar energy, water heating
Procedia PDF Downloads 265573 Economic Expansion and Land Use Change in Thailand: An Environmental Impact Analysis Using Computable General Equilibrium Model
Authors: Supakij Saisopon
Abstract:
The process of economic development incurs spatial transformation. This spatial alternation also causes environmental impacts, leading to higher pollution. In the case of Thailand, there is still a lack of price-endogenous quantitative analysis incorporating relationships among economic growth, land-use change, and environmental impact. Therefore, this paper aimed at developing the Computable General Equilibrium (CGE) model with the capability of stimulating such mutual effects. The developed CGE model has also incorporated the nested constant elasticity of transformation (CET) structure that describes the spatial redistribution mechanism between agricultural land and urban area. The simulation results showed that the 1% decrease in the availability of agricultural land lowers the value-added of agricultural by 0.036%. Similarly, the 1% reduction of availability of urban areas can decrease the value-added of manufacturing and service sectors by 0.05% and 0.047%, respectively. Moreover, the outcomes indicate that the increasing farming and urban areas induce higher volumes of solid waste, wastewater, and air pollution. Specifically, the 1% increase in the urban area can increase pollution as follows: (1) the solid waste increase by 0.049%, (2) water pollution ̶ indicated by biochemical oxygen demand (BOD) value ̶ increase by 0.051% and (3) air pollution ̶ indicated by the volumes of CO₂, N₂O, NOₓ, CH₄, and SO₂ ̶ increase within the range of 0.045%–0.051%. With the simulation for exploring the sustainable development path, a 1% increase in agricultural land use efficiency leads to the shrinking demand for agricultural land. But this is not happening in urban, a 1% scale increase in urban utilization results in still increasing demand for land. Therefore, advanced clean production technology is necessary to align the increasing land-use efficiency with the lowered pollution density.Keywords: CGE model, CET structure, environmental impact, land use
Procedia PDF Downloads 231572 Virtual Reality in COVID-19 Stroke Rehabilitation: Preliminary Outcomes
Authors: Kasra Afsahi, Maryam Soheilifar, S. Hossein Hosseini
Abstract:
Background: There is growing evidence that Cerebral Vascular Accident (CVA) can be a consequence of Covid-19 infection. Understanding novel treatment approaches are important in optimizing patient outcomes. Case: This case explores the use of Virtual Reality (VR) in the treatment of a 23-year-old COVID-positive female presenting with left hemiparesis in August 2020. Imaging showed right globus pallidus, thalamus, and internal capsule ischemic stroke. Conventional rehabilitation was started two weeks later, with virtual reality (VR) included. This game-based virtual reality (VR) technology developed for stroke patients was based on upper extremity exercises and functions for stroke. Physical examination showed left hemiparesis with muscle strength 3/5 in the upper extremity and 4/5 in the lower extremity. The range of motion of the shoulder was 90-100 degrees. The speech exam showed a mild decrease in fluency. Mild lower lip dynamic asymmetry was seen. Babinski was positive on the left. Gait speed was decreased (75 steps per minute). Intervention: Our game-based VR system was developed based on upper extremity physiotherapy exercises for post-stroke patients to increase the active, voluntary movement of the upper extremity joints and improve the function. The conventional program was initiated with active exercises, shoulder sanding for joint ROMs, walking shoulder, shoulder wheel, and combination movements of the shoulder, elbow, and wrist joints, alternative flexion-extension, pronation-supination movements, Pegboard and Purdo pegboard exercises. Also, fine movements included smart gloves, biofeedback, finger ladder, and writing. The difficulty of the game increased at each stage of the practice with progress in patient performances. Outcome: After 6 weeks of treatment, gait and speech were normal and upper extremity strength was improved to near normal status. No adverse effects were noted. Conclusion: This case suggests that VR is a useful tool in the treatment of a patient with covid-19 related CVA. The safety of newly developed instruments for such cases provides new approaches to improve the therapeutic outcomes and prognosis as well as increased satisfaction rate among patients.Keywords: covid-19, stroke, virtual reality, rehabilitation
Procedia PDF Downloads 141571 Scheduling Jobs with Stochastic Processing Times or Due Dates on a Server to Minimize the Number of Tardy Jobs
Authors: H. M. Soroush
Abstract:
The problem of scheduling products and services for on-time deliveries is of paramount importance in today’s competitive environments. It arises in many manufacturing and service organizations where it is desirable to complete jobs (products or services) with different weights (penalties) on or before their due dates. In such environments, schedules should frequently decide whether to schedule a job based on its processing time, due-date, and the penalty for tardy delivery to improve the system performance. For example, it is common to measure the weighted number of late jobs or the percentage of on-time shipments to evaluate the performance of a semiconductor production facility or an automobile assembly line. In this paper, we address the problem of scheduling a set of jobs on a server where processing times or due-dates of jobs are random variables and fixed weights (penalties) are imposed on the jobs’ late deliveries. The goal is to find the schedule that minimizes the expected weighted number of tardy jobs. The problem is NP-hard to solve; however, we explore three scenarios of the problem wherein: (i) both processing times and due-dates are stochastic; (ii) processing times are stochastic and due-dates are deterministic; and (iii) processing times are deterministic and due-dates are stochastic. We prove that special cases of these scenarios are solvable optimally in polynomial time, and introduce efficient heuristic methods for the general cases. Our computational results show that the heuristics perform well in yielding either optimal or near optimal sequences. The results also demonstrate that the stochasticity of processing times or due-dates can affect scheduling decisions. Moreover, the proposed problem is general in the sense that its special cases reduce to some new and some classical stochastic single machine models.Keywords: number of late jobs, scheduling, single server, stochastic
Procedia PDF Downloads 497570 The Effect of Acute Consumption of a Nutritional Supplement Derived from Vegetable Extracts Rich in Nitrate on Athletic Performance
Authors: Giannis Arnaoutis, Dimitra Efthymiopoulou, Maria-Foivi Nikolopoulou, Yannis Manios
Abstract:
AIM: Nitrate-containing supplements have been used extensively as ergogenic in many sports. However, extract fractions from plant-based nutritional sources high in nitrate and their effect on athletic performance, has not been systematically investigated. The purpose of the present study was to examine the possible effect of acute consumption of a “smart mixture” from beetroot and rocket on exercise capacity. MATERIAL & METHODS: 12 healthy, nonsmoking, recreationally active, males (age: 25±4 years, % fat: 15.5±5.7, Fat Free Mass: 65.8±5.6 kg, VO2 max: 45.46.1 mL . kg -1 . min -1) participated in a double-blind, placebo-controlled trial study, in a randomized and counterbalanced order. Eligibility criteria for participation in this study included normal physical examination, and absence of any metabolic, cardiovascular, or renal disease. All participants completed a time to exhaustion cycling test at 75% of their maximum power output, twice. The subjects consumed either capsules containing 360 mg of nitrate in total or placebo capsules, in the morning, under fasted state. After 3h of passive recovery the performance test followed. Blood samples were collected upon arrival of the participants and 3 hours after the consumption of the corresponding capsules. Time until exhaustion, pre- and post-test lactate concentrations, and rate of perceived exertion for the same time points were assessed. RESULTS: Paired-sample t-test analysis found a significant difference in time to exhaustion between the trial with the nitrate consumption versus placebo [16.1±3.0 Vs 13.5±2.6 min, p=0.04] respectively. No significant differences were observed for the concentrations of lactic acid as well as for the values in the Borg scale between the two trials (p>0.05). CONCLUSIONS: Based on the results of the present study, it appears that a nutritional supplement derived from vegetable extracts rich in nitrate, improves athletic performance in recreationally active young males. However, the precise mechanism is not clear and future studies are needed. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code:T2EDK-00843).Keywords: sports performance, ergogenic supplements, nitrate, extract fractions
Procedia PDF Downloads 66569 Finite Element Analysis of Resonance Frequency Shift of Laminated Composite Beam
Authors: Cheng Yang Kwa, Yoke Rung Wong
Abstract:
Laminated composite materials are widely employed in automotive, aerospace, and other industries. These materials provide distinct benefits due to their high specific strength, high specific modulus, and ability to be customized for a specific function. However, delamination of laminated composite materials is one of the main defects which can occur during manufacturing, regular operations, or maintenance. Delamination can bring about considerable internal damage, unobservable by visual check, that causes significant loss in strength and stability, leading to composite structure catastrophic failure. Structural health monitoring (SHM) is known to be the automated method for monitoring and evaluating the condition of a monitored object. There are several ways to conduct SHM in aerospace. One of the effective methods is to monitor the natural frequency shift of structure due to the presence of defect. This study investigated the mechanical resonance frequency shift of a multi-layer composite cantilever beam due to interlaminar delamination. ANSYS Workbench® was used to create a 4-plies laminated composite cantilever finite element model with [90/0]s fiber setting. Epoxy Carbon UD (230GPA) Prepreg was chosen, and the thickness was 2.5mm for each ply. The natural frequencies of the finite element model with various degree of delamination were simulated based on modal analysis and then validated by using literature. It was shown that the model without delamination had natural frequency of 40.412 Hz, which was 1.55% different from the calculated result (41.050 Hz). Thereafter, the various degree of delamination was mimicked by changing the frictional conditions at the middle ply-to-ply interface. The results suggested that delamination in the laminated composite cantilever induced a change in its stiffness which alters its mechanical resonance frequency.Keywords: structural health monitoring, NDT, cantilever, laminate
Procedia PDF Downloads 101568 Time of Week Intensity Estimation from Interval Censored Data with Application to Police Patrol Planning
Authors: Jiahao Tian, Michael D. Porter
Abstract:
Law enforcement agencies are tasked with crime prevention and crime reduction under limited resources. Having an accurate temporal estimate of the crime rate would be valuable to achieve such a goal. However, estimation is usually complicated by the interval-censored nature of crime data. We cast the problem of intensity estimation as a Poisson regression using an EM algorithm to estimate the parameters. Two special penalties are added that provide smoothness over the time of day and day of the week. This approach presented here provides accurate intensity estimates and can also uncover day-of-week clusters that share the same intensity patterns. Anticipating where and when crimes might occur is a key element to successful policing strategies. However, this task is complicated by the presence of interval-censored data. The censored data refers to the type of data that the event time is only known to lie within an interval instead of being observed exactly. This type of data is prevailing in the field of criminology because of the absence of victims for certain types of crime. Despite its importance, the research in temporal analysis of crime has lagged behind the spatial component. Inspired by the success of solving crime-related problems with a statistical approach, we propose a statistical model for the temporal intensity estimation of crime with censored data. The model is built on Poisson regression and has special penalty terms added to the likelihood. An EM algorithm was derived to obtain maximum likelihood estimates, and the resulting model shows superior performance to the competing model. Our research is in line with the smart policing initiative (SPI) proposed by the Bureau Justice of Assistance (BJA) as an effort to support law enforcement agencies in building evidence-based, data-driven law enforcement tactics. The goal is to identify strategic approaches that are effective in crime prevention and reduction. In our case, we allow agencies to deploy their resources for a relatively short period of time to achieve the maximum level of crime reduction. By analyzing a particular area within cities where data are available, our proposed approach could not only provide an accurate estimate of intensities for the time unit considered but a time-variation crime incidence pattern. Both will be helpful in the allocation of limited resources by either improving the existing patrol plan with the understanding of the discovery of the day of week cluster or supporting extra resources available.Keywords: cluster detection, EM algorithm, interval censoring, intensity estimation
Procedia PDF Downloads 66567 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics
Procedia PDF Downloads 109566 Climate Change and Food Security in Nigeria: The World Bank Assisted Third National Fadama Development Programme (Nfdp Iii) Approach in Rivers State, Niger Delta, Nigeria
Authors: Temple Probyne Abali
Abstract:
Port Harcourt, Rivers State in the Niger Delta region of Nigeria is bedeviled by the phenomenon of climatechange, posing threat to food security and livelihood. This study examined a 4 decadel (1980-2020) trend of climate change as well as its socio-economic impact on food security in the region. Furthermore, to achieve sustainable food security and livelihood amidst the phenomenon, the study adopted the World Bank Assisted Third National Fadama Development Programme approach. The data source for climate change involved secondary data from Nigeria Meteorological Agency (NIMET). Consequently, the results for climate change over the 4decade period were displayed in tables, charts and maps for the expected changes. Data sources on socio-economic impact of food security and livelihood were acquired through questionnairedesign. A purposive random sampling technique was used in selecting 5 coastal communities inthe region known for viable economic potentials for agricultural development and the resultswere analyzed using Analysis of Variance (ANOVA). The Participatory Rural Appraisal (PRA) technique of the World Bank for needs assessment wasadopted in selecting 5 agricultural sub-project proposals/activities based on groups’ commoneconomic interest from a total of 1,000 farmers each drawn from the 5 communities of differentage groups including men, women, youths and the vulnerable. Based on the farmers’ sub-projectinterests, the various groups’ Strength, Weakness, Opportunities and Threats (SWOT), Problem Listing Matrix, Skill Gap Analysis as well as EIAson their sub-project proposals/activities were analyzed with substantialMonitoring and Evaluation (M & E), using the Specific, Measurable, Attribute, Reliable and Time bound (SMART)approach. Based on the findings from the PRA technique, the farmers recorded considerableincreaseinincomeofover200%withinthe5yearprojectplan(2008-2013).Thestudyrecommends capacity building and advisory services on this PRA innovation. By so doing, there would be a sustainable increase in agricultural production and assured food security in an environmental friendly manner, in line with the United Nation’s Sustainable Development Goals(SDGs).Keywords: climate change, food security, fadama, world bank, agriculture, sdgs
Procedia PDF Downloads 93565 Geographical Indication (Gi) as a Means of Protecting Traditional Right of Muga Silk (Antheria Assamensis) of Assam-India
Authors: Niranjan Das
Abstract:
‘Geographical indication’ is a sign which is used on products that have a specific geographical origin and possess qualities or a reputation that are due to that origin. Geographical Indication is primarily granted to agricultural, natural, manufactured, handicrafts originating from a definite geographical territory. It is defined in Article 22(1) of the World Trade Organization's (WTO) 1995 Agreement on ‘Trade-Related Aspects of Intellectual Property Rights (TRIPS)’. Assam is literally a ‘Silk country’ where silk culture is rooted in the rural life and culture of Assamese people. This is the only state in India and the world where Muga silk (Antheraea assamensis) is grown. Out of the total production of India’s Muga silk, Assam has the credit of being the sole producer of this 100 percent output, and thus occupies a unique position in the sericulture map of the world. Muga production has been an effective means for generating gainful employment in rural Assam and it has enormous potential in the context of building the rural economy and generating livelihood of this region. Muga, the unique golden-yellow silk of Assam was granted the ‘Geographical Indication (GI)’ registration in 2007. It is the first item from the state of Assam to obtain the GI tag. Besides manufacturing of Muga Silk cloths, the industry is also giving employment to thousands of people, and the silk industry is playing a leading role in the economy of the state. As Brahmaputra Valley is also known for tourist destination, tourists are visiting the valley every year and now the Muga Silk has reached each corner of the country and also in the other parts of the world. This paper tries to emphasizes how the Geographical Indication tag is protecting the traditional right of the Muga Silk of Assam as it has been practised by the Assamese people since times immemorial.Keywords: Geographical Indication, environment, Muga silk, traditional right and livelihood
Procedia PDF Downloads 268564 Assessment of Physical and Mechanical Properties of Perlite Mortars with Recycled Cement
Authors: Saca Nastasia, Radu Lidia, Dobre Daniela, Calotă Razvan
Abstract:
In order to achieve the European Union's sustainable and circular economy goals, strategies for reducing raw material consumption, reusing waste, and lowering CO₂ emissions have been developed. In this study, expanded perlite mortars with recycled cement (RC) were obtained and characterized. The recycled cement was obtained from demolition concrete waste. The concrete waste was crushed in a jaw and grinded in a horizontal ball mill to reduce the material's average grain size. Finally, the fine particles were sieved through a 125 µm sieve. The recycled cement was prepared by heating demolition concrete waste at 550°C for 3 hours. At this temperature, the decarbonization does not occur. The utilization of recycled cement can minimize the negative environmental effects of demolished concrete landfills as well as the demand for natural resources used in cement manufacturing. Commercial cement CEM II/A-LL 42.5R was substituted by 10%, 20%, and 30% recycled cement. By substituting reference cement (CEM II/A-LL 42.5R) by RC, a decrease in cement aqueous suspension pH, electrical conductivity, and Ca²⁺ concentration was observed for all measurements (2 hours, 6 hours, 24 hours, 4 days, and 7 days). After 2 hours, pH value was 12.42 for reference and conductivity of 2220 µS/cm and decreased to 12.27, respectively 1570 µS/cm for 30% RC. The concentration of Ca²⁺ estimated by complexometric titration was 20% lower in suspension with 30% RC in comparison to reference for 2 hours. The difference significantly diminishes over time. The mortars have cement: expanded perlite volume ratio of 1:3 and consistency between 140 mm and 200 mm. The density of fresh mortar was about 1400 kg/m3. The density, flexural and compressive strengths, water absorption, and thermal conductivity of hardened mortars were tested. Due to its properties, expanded perlite mortar is a good thermal insulation material.Keywords: concrete waste, expanded perlite, mortar, recycled cement, thermal conductivity, mechanical strength
Procedia PDF Downloads 89563 Evaluation of Life Cycle Assessment in Furniture Manufacturing by Analytical Hierarchy Process
Authors: Majid Azizi, Payam Ghorbannezhad, Mostafa Amiri, Mohammad Ghofrani
Abstract:
Environmental issues in the furniture industry are of great importance due to the use of natural materials such as wood and chemical substances like adhesives and paints. These issues encompass environmental conservation and managing pollution and waste generated. Improper use of wood resources, along with the use of chemicals and their release, leads to the depletion of natural resources, damage to forests, and the emission of greenhouse gases. Therefore, identifying influential indicators in the life cycle assessment of classic furniture and proposing solutions to reduce environmental impacts becomes crucial. In this study, the life cycle of classic furniture was evaluated using a hierarchical analytical process from cradle to grave. The life cycle assessment was employed to assess the environmental impacts of the furniture industry, ranging from raw material extraction to waste disposal and recycling. The most significant indicators in the furniture industry's production chain were also identified. The results indicated that the wood quality indicator is the most essential factor in the life cycle of classic furniture. Furthermore, the relative contribution of each type of traditional furniture was proposed concerning impact categories in the life cycle assessment. The results showed that among the three proposed types, the design and production of furniture with prefabricated parts had the most negligible impact in categories such as global warming potential and ozone layer depletion compared to furniture design with solid wood and furniture design with recycled components. Among the three suggested types of furniture to reduce environmental impacts, producing furniture with solid wood or other woods was chosen as the most crucial solution.Keywords: life cycle assessment, analytic hierarchy process, environmental issues, furniture
Procedia PDF Downloads 65562 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction
Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain
Abstract:
As climate change and environmental pressures are now well established as major international issues, to which governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies; the need to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste are just some of the pressures impacting significantly on the construction industry. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to engineering, financial, environmental and ecological importance. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate .Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3888.68 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.Keywords: waste glass, recycling, environmentally friendly, glass aggregate, strength development
Procedia PDF Downloads 386561 Preparation and Properties of Gelatin-Bamboo Fibres Foams for Packaging Applications
Authors: Luo Guidong, Song Hang, Jim Song, Virginia Martin Torrejon
Abstract:
Due to their excellent properties, polymer packaging foams have become increasingly essential in our current lifestyles. They are cost-effective and lightweight, with excellent mechanical and thermal insulation properties. However, they constitute a major environmental and health concern due to litter generation, ocean pollution, and microplastic contamination of the food chain. In recent years, considerable efforts have been made to develop more sustainable alternatives to conventional polymer packaging foams. As a result, biobased and compostable foams are increasingly becoming commercially available, such as starch-based loose-fill or PLA trays. However, there is still a need for bulk manufacturing of bio-foams planks for packaging applications as a viable alternative to their fossil fuel counterparts (i.e., polystyrene, polyethylene, and polyurethane). Gelatin is a promising biopolymer for packaging applications due to its biodegradability, availability, and biocompatibility, but its mechanical properties are poor compared to conventional plastics. However, as widely reported for other biopolymers, such as starch, the mechanical properties of gelatin-based bioplastics can be enhanced by formulation optimization, such as the incorporation of fibres from different crops, such as bamboo. This research aimed to produce gelatin-bamboo fibre foams by mechanical foaming and to study the effect of fibre content on the foams' properties and structure. As a result, foams with virtually no shrinkage, low density (<40 kg/m³), low thermal conductivity (<0.044 W/m•K), and mechanical properties comparable to conventional plastics were produced. Further work should focus on developing formulations suitable for the packaging of water-sensitive products and processing optimization, especially the reduction of the drying time.Keywords: biobased and compostable foam, sustainable packaging, natural polymer hydrogel, cold chain packaging
Procedia PDF Downloads 105560 Enhancement of Interface Properties of Thermoplastic Composite Materials
Authors: Reyhan Ozbask, Emek Moroydor Derin, Mustafa Dogu
Abstract:
There are a limited number of global companies in the world that manufacture and commercially offer thermoplastic composite prepregs in accordance with aerospace requirements. High-performance thermoplastic materials supplied for aerospace structural applications are PEEK (polyetheretherketone), PPS (polyphenylsulfite), PEI (polyetherimide), and PEKK (polyetherketoneketone). Among these, PEEK is the raw material used in the first applications and has started to become widespread. However, the use of these thermoplastic raw materials in composite production is very difficult due to their high processing temperatures and impregnation difficulties. This study, it is aimed to develop carbon fiber-reinforced thermoplastic PEEK composites that comply with the requirements of the aviation industry that are superior mechanical properties as well as being lightweight. Therefore, it is aimed to obtain high-performance thermoplastic composite materials with improved interface properties by using the sizing method (suspension development through chemical synthesis and functionalization), to optimize the production process. The use of boron nitride nanotube as a bonding agent by modifying its surface constitutes the original aspect of the study as it has not been used in composite production with high-performance thermoplastic materials yet. For this purpose, laboratory-scale studies on the application of thermoplastic compatible sizing will be carried out in order to increase the fiber-matrix interfacial adhesion. The method respectively consists of the selection of appropriate sizing type, laboratory-scale carbon fiber (CF) / poly ether ether ketone (PEEK) polymer interface enhancement studies, manufacturing of laboratory-scale BNNT coated CF/PEEK woven prepreg composites and their tests.Keywords: carbon fiber reinforced composite, interface enhancement, boron nitride nanotube, thermoplastic composite
Procedia PDF Downloads 225559 Effects of Ubiquitous 360° Learning Environment on Clinical Histotechnology Competence
Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen
Abstract:
Rapid technological development and digitalization has affected also on higher education. During last twenty years multiple of electronic and mobile learning (e-learning, m-learning) platforms have been developed and have become prevalent in many universities and in the all fields of education. Ubiquitous learning (u-learning) is not that widely known or used. Ubiquitous learning environments (ULE) are the new era of computer-assisted learning. They are based on ubiquitous technology and computing that fuses the learner seamlessly into learning process by using sensing technology as tags, badges or barcodes and smart devices like smartphones and tablets. ULE combines real-life learning situations into virtual aspects and can be flexible used in anytime and anyplace. The aim of this study was to assess the effects of ubiquitous 360 o learning environment on higher education students’ clinical histotechnology competence. A quasi-experimental study design was used. 57 students in biomedical laboratory science degree program was assigned voluntarily to experiment (n=29) and to control group (n=28). Experimental group studied via ubiquitous 360o learning environment and control group via traditional web-based learning environment (WLE) in a 8-week educational intervention. Ubiquitous 360o learning environment (ULE) combined authentic learning environment (histotechnology laboratory), digital environment (virtual laboratory), virtual microscope, multimedia learning content, interactive communication tools, electronic library and quick response barcodes placed into authentic laboratory. Web-based learning environment contained equal content and components with the exception of the use of mobile device, interactive communication tools and quick response barcodes. Competence of clinical histotechnology was assessed by using knowledge test and self-report developed for this study. Data was collected electronically before and after clinical histotechnology course and analysed by using descriptive statistics. Differences among groups were identified by using Wilcoxon test and differences between groups by using Mann-Whitney U-test. Statistically significant differences among groups were identified in both groups (p<0.001). Competence scores in post-test were higher in both groups, than in pre-test. Differences between groups were very small and not statistically significant. In this study the learning environment have developed based on 360o technology and successfully implemented into higher education context. And students’ competence increases when ubiquitous learning environment were used. In the future, ULE can be used as a learning management system for any learning situation in health sciences. More studies are needed to show differences between ULE and WLE.Keywords: competence, higher education, histotechnology, ubiquitous learning, u-learning, 360o
Procedia PDF Downloads 286558 Corrosion Resistance of 17-4 Precipitation Hardenable Stainless Steel Fabricated by Selective Laser Melting
Authors: Michella Alnajjar, Frederic Christien, Krzysztof Wolski, Cedric Bosch
Abstract:
Additive manufacturing (AM) has gained more interest in the past few years because it allows 3D parts often having a complex geometry to be directly fabricated, layer by layer according to a CAD model. One of the AM techniques is the selective laser melting (SLM) which is based on powder bed fusion. In this work, the corrosion resistance of 17-4 PH steel obtained by SLM is investigated. Wrought 17-4 PH steel is a martensitic precipitation hardenable stainless steel. It is widely used in a variety of applications such as aerospace, medical and food industries, due to its high strength and relatively good corrosion resistance. However, the combined findings of X-Ray diffraction and electron backscatter diffraction (EBSD) proved that SLM-ed 17-4 PH steel has a fully ferritic microstructure, more specifically δ ferrite. The microstructure consists of coarse ferritic grains elongated along the build direction, with a pronounced solidification crystallographic texture. These results were associated with the high cooling and heating rates experienced throughout the SLM process (10⁵-10⁶ K/s) that suppressed the austenite formation and produced a 'by-passing' phenomenon of this phase during the numerous thermal cycles. Furthermore, EDS measurements revealed a uniform distribution of elements without any dendritic structure. The extremely high cooling kinetics induced a diffusionless solidification, resulting in a homogeneous elemental composition. Consequently, the corrosion properties of this steel are altered from that of conventional ones. By using electrochemical means, it was found that SLM-ed 17-4 PH is more resistant to general corrosion than the wrought steel. However, the SLM-ed material exhibits metastable pitting due to its high porosity density. In addition, the hydrogen embrittlement of SLM-ed 17-4 PH steel is investigated, and a correlation between its behavior and the observed microstructure is made.Keywords: corrosion resistance, 17-4 PH stainless steel, selective laser melting, hydrogen embrittlement
Procedia PDF Downloads 141557 Modeling and Characterization of Organic LED
Authors: Bouanati Sidi Mohammed, N. E. Chabane Sari, Mostefa Kara Selma
Abstract:
It is well-known that Organic light emitting diodes (OLEDs) are attracting great interest in the display technology industry due to their many advantages, such as low price of manufacturing, large-area of electroluminescent display, various colors of emission included white light. Recently, there has been much progress in understanding the device physics of OLEDs and their basic operating principles. In OLEDs, Light emitting is the result of the recombination of electron and hole in light emitting layer, which are injected from cathode and anode. For improve luminescence efficiency, it is needed that hole and electron pairs exist affluently and equally and recombine swiftly in the emitting layer. The aim of this paper is to modeling polymer LED and OLED made with small molecules for studying the electrical and optical characteristics. The first simulation structures used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2’-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode usually an indium tin oxide (ITO) substrate, and a cathode, such as Al. In the second structure we replace MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). We choose MEH-PPV because of it's solubility in common organic solvents, in conjunction with a low operating voltage for light emission and relatively high conversion efficiency and Alq3 because it is one of the most important host materials used in OLEDs. In this simulation, the Poole-Frenkel- like mobility model and the Langevin bimolecular recombination model have been used as the transport and recombination mechanism. These models are enabled in ATLAS -SILVACO software. The influence of doping and thickness on I(V) characteristics and luminescence, are reported.Keywords: organic light emitting diode, polymer lignt emitting diode, organic materials, hexoxy-phenylenevinylene
Procedia PDF Downloads 554556 Attempts for the Synthesis of Indol-Ring Fluorinated Tryptophan Derivatives to Enhance the Activity of Antimicrobial Peptides
Authors: Anita K. Kovacs, Peter Hegyes, Zsolt Bozso, Gabor Toth
Abstract:
Fluorination has been used extensively by the pharmaceutical industry as a strategy to improve the pharmacokinetics of drugs due to its effectiveness in increasing the potency of antimicrobial peptides (AMPs). Multiple-fluorinated indole-ring-containing tryptophan derivatives have the potential of having better antimicrobial activity than the widely used mono-fluorinated indole-ring containing tryptophan derivatives, but they are not available commercially. Therefore, our goal is to synthesize multiple-fluorinated indole-ring containing tryptophan derivatives to incorporate them into AMPs to enhance their antimicrobial activity. During our work, we are trying several methods (classical organic synthesis, enzymic synthesis, and solid phase peptide synthesis) for the synthesis of the said compounds, with mixed results. With classical organic synthesis (four different routes), we did not get the desired results. The reaction of serin with substituted indole in the presence of acetic anhydride led to racemic tryptophane; with the reaction of protected serin with indole in the presence of nickel complex was unsuccessful; the reaction of serin containing protected dipeptide with disuccinimidyl carbonate we achieved a tryptophane containing dipeptide, its chiral purity is being examined; the reaction of alcohol with substituted indole in the presence of copper complex was successful, but it was only a test reaction, we could not reproduce the same result with serine. The undergoing tryptophan-synthase method has shown some potential, but our work has not been finished yet. The successful synthesis of the desired multiple-fluorinated indole-ring-containing tryptophan will be followed by solid phase peptide synthesis in order to incorporate it into AMPs to enhance their antimicrobial activity. The successful completion of these phases will mean the possibility of manufacturing new, effective AMPs.Keywords: halogenation, fluorination, tryptophan, enhancement of antimicrobial activity
Procedia PDF Downloads 97555 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model
Authors: Didier Auroux, Vladimir Groza
Abstract:
This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization
Procedia PDF Downloads 316554 Competency Model as a Key Tool for Managing People in Organizations: Presentation of a Model
Authors: Andrea ČopíKová
Abstract:
Competency Based Management is a new approach to management, which solves organization’s challenges with complexity and with the aim to find and solve organization’s problems and learn how to avoid these in future. They teach the organizations to create, apart from the state of stability – that is temporary, vital organization, which is permanently able to utilize and profit from internal and external opportunities. The aim of this paper is to propose a process of competency model design, based on which a competency model for a financial department manager in a production company will be created. Competency models are very useful tool in many personnel processes in any organization. They are used for acquiring and selection of employees, designing training and development activities, employees’ evaluation, and they can be used as a guide for a career planning and as a tool for succession planning especially for managerial positions. When creating a competency model the method AHP (Analytic Hierarchy Process) and quantitative pair-wise comparison (Saaty’s method) will be used; these methods belong among the most used methods for the determination of weights, and it is used in the AHP procedure. The introduction part of the paper consists of the research results pertaining to the use of competency model in practice and then the issue of competency and competency models is explained. The application part describes in detail proposed methodology for the creation of competency models, based on which the competency model for the position of financial department manager in a foreign manufacturing company, will be created. In the conclusion of the paper, the final competency model will be shown for above mentioned position. The competency model divides selected competencies into three groups that are managerial, interpersonal and functional. The model describes in detail individual levels of competencies, their target value (required level) and the level of importance.Keywords: analytic hierarchy process, competency, competency model, quantitative pairwise comparison
Procedia PDF Downloads 244553 Safety Tolerance Zone for Driver-Vehicle-Environment Interactions under Challenging Conditions
Authors: Matjaž Šraml, Marko Renčelj, Tomaž Tollazzi, Chiara Gruden
Abstract:
Road safety is a worldwide issue with numerous and heterogeneous factors influencing it. On the side, driver state – comprising distraction/inattention, fatigue, drowsiness, extreme emotions, and socio-cultural factors highly affect road safety. On the other side, the vehicle state has an important role in mitigating (or not) the road risk. Finally, the road environment is still one of the main determinants of road safety, defining driving task complexity. At the same time, thanks to technological development, a lot of detailed data is easily available, creating opportunities for the detection of driver state, vehicle characteristics and road conditions and, consequently, for the design of ad hoc interventions aimed at improving driver performance, increase awareness and mitigate road risks. This is the challenge faced by the i-DREAMS project. i-DREAMS, which stands for a smart Driver and Road Environment Assessment and Monitoring System, is a 3-year project funded by the European Union’s Horizon 2020 research and innovation program. It aims to set up a platform to define, develop, test and validate a ‘Safety Tolerance Zone’ to prevent drivers from getting too close to the boundaries of unsafe operation by mitigating risks in real-time and after the trip. After the definition and development of the Safety Tolerance Zone concept and the concretization of the same in an Advanced driver-assistance system (ADAS) platform, the system was tested firstly for 2 months in a driving simulator environment in 5 different countries. After that, naturalistic driving studies started for a 10-month period (comprising a 1-month pilot study, 3-month baseline study and 6 months study implementing interventions). Currently, the project team has approved a common evaluation approach, and it is developing the assessment of the usage and outcomes of the i-DREAMS system, which is turning positive insights. The i-DREAMS consortium consists of 13 partners, 7 engineering universities and research groups, 4 industry partners and 2 partners (European Transport Safety Council - ETSC - and POLIS cities and regions for transport innovation) closely linked to transport safety stakeholders, covering 8 different countries altogether.Keywords: advanced driver assistant systems, driving simulator, safety tolerance zone, traffic safety
Procedia PDF Downloads 67552 Quoting Jobshops Due Dates Subject to Exogenous Factors in Developing Nations
Authors: Idris M. Olatunde, Kareem B.
Abstract:
In manufacturing systems, especially job shops, service performance is a key factor that determines customer satisfaction. Service performance depends not only on the quality of the output but on the delivery lead times as well. Besides product quality enhancement, delivery lead time must be minimized for optimal patronage. Quoting accurate due dates is sine quo non for job shop operational survival in a global competitive environment. Quoting accurate due dates in job shops has been a herculean task that nearly defiled solutions from many methods employed due to complex jobs routing nature of the system. This class of NP-hard problems possessed no rigid algorithms that can give an optimal solution. Jobshop operational problem is more complex in developing nations due to some peculiar factors. Operational complexity in job shops emanated from political instability, poor economy, technological know-how, and the non-promising socio-political environment. The mentioned exogenous factors were hardly considered in the previous studies on scheduling problem related to due date determination in job shops. This study has filled the gap created in the past studies by developing a dynamic model that incorporated the exogenous factors for accurate determination of due dates for varying jobs complexity. Real data from six job shops selected from the different part of Nigeria, were used to test the efficacy of the model, and the outcomes were analyzed statistically. The results of the analyzes showed that the model is more promising in determining accurate due dates than the traditional models deployed by many job shops in terms of patronage and lead times minimization.Keywords: due dates prediction, improved performance, customer satisfaction, dynamic model, exogenous factors, job shops
Procedia PDF Downloads 412551 Adaptative Metabolism of Lactic Acid Bacteria during Brewers' Spent Grain Fermentation
Authors: M. Acin-Albiac, P. Filannino, R. Coda, Carlo G. Rizzello, M. Gobbetti, R. Di Cagno
Abstract:
Demand for smart management of large amounts of agro-food by-products has become an area of major environmental and economic importance worldwide. Brewers' spent grain (BSG), the most abundant by-product generated in the beer-brewing process, represents an example of valuable raw material and source of health-promoting compounds. To the date, the valorization of BSG as a food ingredient has been limited due to poor technological and sensory properties. Tailored bioprocessing through lactic acid bacteria (LAB) fermentation is a versatile and sustainable means for the exploitation of food industry by-products. Indigestible carbohydrates (e.g., hemicelluloses and celluloses), high phenolic content, and mostly lignin make of BSG a hostile environment for microbial survival. Hence, the selection of tailored starters is required for successful fermentation. Our study investigated the metabolic strategies of Leuconostoc pseudomesenteroides and Lactobacillus plantarum strains to exploit BSG as a food ingredient. Two distinctive BSG samples from different breweries (Italian IT- and Finish FL-BSG) were microbially and chemically characterized. Growth kinetics, organic acid profiles, and the evolution of phenolic profiles during the fermentation in two BSG model media were determined. The results were further complemented with gene expression targeting genes involved in the degradation cellulose, hemicelluloses building blocks, and the metabolism of anti-nutritional factors. Overall, the results were LAB genus dependent showing distinctive metabolic capabilities. Leuc. pseudomesenteroides DSM 20193 may degrade BSG xylans while sucrose metabolism could be furtherly exploited for extracellular polymeric substances (EPS) production to enhance BSG pro-technological properties. Although L. plantarum strains may follow the same metabolic strategies during BSG fermentation, the mode of action to pursue such strategies was strain-dependent. L. plantarum PU1 showed a great preference for β-galactans compared to strain WCFS1, while the preference for arabinose occurred at different metabolic phases. Phenolic compounds profiling highlighted a novel metabolic route for lignin metabolism. These findings will allow an improvement of understanding of how lactic acid bacteria transform BSG into economically valuable food ingredients.Keywords: brewery by-product valorization, metabolism of plant phenolics, metabolism of lactic acid bacteria, gene expression
Procedia PDF Downloads 129550 Fused Deposition Modelling as the Manufacturing Method of Fully Bio-Based Water Purification Filters
Authors: Natalia Fijol, Aji P. Mathew
Abstract:
We present the processing and characterisation of three-dimensional (3D) monolith filters based on polylactic acid (PLA) reinforced with various nature-derived nanospecies such as hydroxyapatite, modified cellulose fibers and chitin fibers. The nanospecies of choice were dispersed in PLA through Thermally Induced Phase Separation (TIPS) method. The biocomposites were developed via solvent-assisted blending and the obtained pellets were further single-screw extruded into 3D-printing filaments and processed into various geometries using Fused Deposition Modelling (FDM) technique. The printed prototypes included cubic, cylindrical and hour-glass shapes with diverse patterns of printing infill as well as varying pore structure including uniform and multiple level gradual pore structure. The pores and channel structure as well as overall shape of the prototypes were designed in attempt to optimize the flux and maximize the adsorption-active time. FDM is a cost and energy-efficient method, which does not require expensive tools and elaborated post-processing maintenance. Therefore, FDM offers the possibility to produce customized, highly functional water purification filters with tuned porous structures suitable for removal of wide range of common water pollutants. Moreover, as 3D printing becomes more and more available worldwide, it allows producing portable filters at the place and time where they are most needed. The study demonstrates preparation route for the PLA-based, fully biobased composite and their processing via FDM technique into water purification filters, addressing water treatment challenges on an industrial scale.Keywords: fused deposition modelling, water treatment, biomaterials, 3D printing, nanocellulose, nanochitin, polylactic acid
Procedia PDF Downloads 115549 Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field
Authors: Inês N. Peça , A. Bicho, Rui Gardner, M. Margarida Cardoso
Abstract:
Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application.Keywords: drug delivery, magnetic nanoparticles, PLGA nanoparticles, controlled release rate
Procedia PDF Downloads 259