Search results for: energy challenges
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13244

Search results for: energy challenges

10574 The Challenges of Intercultural Transfer: The Italian Reception of Aotearoa/New Zealand Films

Authors: Martina Depentor

Abstract:

While the cinematic medium contributes to bringing images of a culture to foreign audiences, Audiovisual Translation contributes to deciphering those cultural representations to those same audiences. Through Audiovisual Translation, in fact, elements permeate the reception system and contribute to forging a cultural image of the original/source system in the target/reception system. By analyzing a number of Italian critical reviews, blogs and forum posts, this paper examines the impact and reception in Italy of five of the most successful and influential New Zealand films of the last two decades - An Angel at my Table (1990), The Piano (1993), Heavenly Creatures (1994), Once Were Warriors (1994), Whale Rider (2002) - with the aim of exploring how the adaptation of New Zealand films might condition the representation of New Zealand in the Italian imaginary. The analysis seeks to identify whether a certain degree of cultural loss results from the 'translation' of these films. The films selected share common ground in that they all reveal cultural, social and historical characteristics of New Zealand, from aspects that are unique to this country and that on the surface may render it difficult to penetrate (unfamiliar landscapes, aspects of indigenous culture) to more universal themes (intimate family stories, dysfunctional relationship). They contributed to situating New Zealand on an international stage and to bringing images of the country to many audiences, the Italian one included, with little previous cultural knowledge of the social and political history of New Zealand. Differences in film types pose clearly different levels of interpretative challenges to non-New Zealander audiences, and examples from the films will show how these challenges are or are not overcome if the adaptations display misinterpretations or rendition gaps, and how the process of intercultural transfer further 'domesticates' or 'exoticises' the source culture.

Keywords: audiovisual translation, cultural representation, intercultural transfer, New Zealand Films

Procedia PDF Downloads 285
10573 Variable Renewable Energy Droughts in the Power Sector – A Model-based Analysis and Implications in the European Context

Authors: Martin Kittel, Alexander Roth

Abstract:

The continuous integration of variable renewable energy sources (VRE) in the power sector is required for decarbonizing the European economy. Power sectors become increasingly exposed to weather variability, as the availability of VRE, i.e., mainly wind and solar photovoltaic, is not persistent. Extreme events, e.g., long-lasting periods of scarce VRE availability (‘VRE droughts’), challenge the reliability of supply. Properly accounting for the severity of VRE droughts is crucial for designing a resilient renewable European power sector. Energy system modeling is used to identify such a design. Our analysis reveals the sensitivity of the optimal design of the European power sector towards VRE droughts. We analyze how VRE droughts impact optimal power sector investments, especially in generation and flexibility capacity. We draw upon work that systematically identifies VRE drought patterns in Europe in terms of frequency, duration, and seasonality, as well as the cross-regional and cross-technological correlation of most extreme drought periods. Based on their analysis, the authors provide a selection of relevant historical weather years representing different grades of VRE drought severity. These weather years will serve as input for the capacity expansion model for the European power sector used in this analysis (DIETER). We additionally conduct robustness checks varying policy-relevant assumptions on capacity expansion limits, interconnections, and level of sector coupling. Preliminary results illustrate how an imprudent selection of weather years may cause underestimating the severity of VRE droughts, flawing modeling insights concerning the need for flexibility. Sub-optimal European power sector designs vulnerable to extreme weather can result. Using relevant weather years that appropriately represent extreme weather events, our analysis identifies a resilient design of the European power sector. Although the scope of this work is limited to the European power sector, we are confident that our insights apply to other regions of the world with similar weather patterns. Many energy system studies still rely on one or a limited number of sometimes arbitrarily chosen weather years. We argue that the deliberate selection of relevant weather years is imperative for robust modeling results.

Keywords: energy systems, numerical optimization, variable renewable energy sources, energy drought, flexibility

Procedia PDF Downloads 58
10572 Analysis of Environmental Sustainability in Post- Earthquake Reconstruction : A Case of Barpak, Nepal

Authors: Sudikshya Bhandari, Jonathan K. London

Abstract:

Barpak in northern Nepal represents a unique identity expressed through the local rituals, values, lifeways and the styles of vernacular architecture. The traditional residential buildings and construction practices adopted by the dominant ethnic groups: Ghales and Gurungs, reflect environmental, social, cultural and economic concerns. However, most of these buildings did not survive the Gorkha earthquake in 2015 that made many residents skeptical about their strength to resist future disasters. This led Barpak residents to prefer modern housing designs primarily for the strength but additionally for convenience and access to earthquake relief funds. Post-earthquake reconstruction has transformed the cohesive community, developed over hundreds of years into a haphazard settlement with the imposition of externally-driven building models. Housing guidelines provided for the community reconstruction and earthquake resilience have been used as a singular template, similar to other communities on different geographical locations. The design and construction of these buildings do not take into account the local, historical, environmental, social, cultural and economic context of Barpak. In addition to the physical transformation of houses and the settlement, the consequences continue to develop challenges to sustainability. This paper identifies the major challenges for environmental sustainability with the construction of new houses in post-earthquake Barpak. Mixed methods such as interviews, focus groups, site observation, and documentation, and analysis of housing and neighborhood design have been used for data collection. The discernible changing situation of this settlement due to the new housing has included reduced climatic adaptation and thermal comfort, increased consumption of agricultural land and water, minimized use of local building materials, and an increase in energy demand. The research has identified that reconstruction housing practices happening in Barpak, while responding to crucial needs for disaster recovery and resilience, are also leading this community towards an unsustainable future. This study has also integrated environmental, social, cultural and economic parameters into an assessment framework that could be used to develop place-based design guidelines in the context of other post-earthquake reconstruction efforts. This framework seeks to minimize the unintended repercussions of unsustainable reconstruction interventions, support the vitality of vernacular architecture and traditional lifeways and respond to context-based needs in coordination with residents.

Keywords: earthquake, environment, reconstruction, sustainability

Procedia PDF Downloads 103
10571 Numerical Simulation of a Solar Photovoltaic Panel Cooled by a Forced Air System

Authors: Djamila Nebbali, Rezki Nebbali, Ahmed Ouibrahim

Abstract:

This study focuses on the cooling of a photovoltaic panel (PV). Indeed, the cooling improves the conversion capacity of this one and maintains, under extreme conditions of air temperature, the panel temperature at an appreciable level which avoids the altering. To do this, a fan provides forced circulation of air. Because the fan is supplied by the panel, it is necessary to determine the optimum operating point that unites efficiency of the PV with the consumption of the fan. For this matter, numerical simulations are performed at varying mass flow rates of air, under two extreme air temperatures (50°C, 25°C) and a fixed solar radiation (1000 W.m2) in a case of no wind.

Keywords: energy conversion, efficiency, balance energy, solar cell

Procedia PDF Downloads 403
10570 Compositional Dependence of Hydroxylated Indium-Oxide on the Reaction Rate of CO2/H2 Reduction

Authors: Joel Y. Y. Loh, Geoffrey A. Ozin, Charles A. Mims, Nazir P. Kherani

Abstract:

A major goal in the emerging field of solar fuels is to realize an ‘artificial leaf’ – a material that converts light energy in the form of solar photons into chemical energy – using CO2 as a feedstock to generate useful chemical species. Enabling this technology will allow the greenhouse gas, CO2, emitted from energy and manufacturing production exhaust streams to be converted into valuable solar fuels or chemical products. Indium Oxide (In2O3) with surface hydroxyl (OH) groups have been shown to reduce CO2 in the presence of H2 to CO with a reaction rate of 15 μmol gcat−1 h−1. The likely mechanism is via a Frustrated Lewis Pair sites heterolytically splitting H2 to be absorbed and form protonic and hydric sites that can dissociate CO2. In this study, we investigate the dependence of oxygen composition of In2O3 on the CO2 reduction rate. In2O3-x films on quartz fiber paper were DC sputtered with an Indium target and varying O2/Ar plasma mixture. OH surface groups were then introduced by immersing the In2O3-x samples in KOH. We show that hydroxylated In2O3-x reduces more CO2 than non-hydroxylated groups and that a hydroxylated and higher O2/Ar ratio sputtered In2O3-x has a higher reaction rate of 45 μmol gcat-1 h-1. We show by electrical resistivity-temperature curves that H2 is adsorbed onto the surface of In2O3 whereas CO2 itself does not affect the indium oxide surface. We also present activation and ionization energy levels of the hydroxylated In2O3-x under vacuum, CO2 and H2 atmosphere conditions.

Keywords: solar fuels, photocatalysis, indium oxide nanoparticles, carbon dioxide

Procedia PDF Downloads 227
10569 Correction Factor to Enhance the Non-Standard Hammer Effect Used in Standard Penetration Test

Authors: Khaled R. Khater

Abstract:

The weight of the SPT hammer is standard (0.623kN). The locally manufacturer drilling rigs use hammers, sometimes deviating off the standard weight. This affects the field measured blow counts (Nf) consequentially, affecting most of correlations previously obtained, as they were obtained based on standard hammer weight. The literature presents energy corrections factor (η2) to be applied to the SPT total input energy. This research investigates the effect of the hammer weight variation, as a single parameter, on the field measured blow counts (Nf). The outcome is a correction factor (ηk), equation, and correction chart. They are recommended to adjust back the measured misleading (Nf) to the standard one as if the standard hammer is used. This correction is very important to be done in such cases where a non-standard hammer is being used because the bore logs in any geotechnical report should contain true and representative values (Nf), let alone the long records of correlations, already in hand. The study here-in is achieved by using laboratory physical model to simulate the SPT dripping hammer mechanism. It is designed to allow different hammer weights to be used. Also, it is manufactured to avoid and eliminate the energy loss sources. This produces a transmitted efficiency up to 100%.

Keywords: correction factors, hammer weight, physical model, standard penetration test

Procedia PDF Downloads 370
10568 Waste to Biofuel by Torrefaction Technology

Authors: Jyh-Cherng Chen, Yu-Zen Lin, Wei-Zhi Chen

Abstract:

Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impurities and increase the energy density of biowaste effectively. To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric value of torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal.

Keywords: torrefaction, waste to energy, calorie, biofuel

Procedia PDF Downloads 357
10567 A Flexible Real-Time Eco-Drive Strategy for Electric Minibus

Authors: Felice De Luca, Vincenzo Galdi, Piera Stella, Vito Calderaro, Adriano Campagna, Antonio Piccolo

Abstract:

Sustainable mobility has become one of the major issues of recent years. The challenge in reducing polluting emissions as much as possible has led to the production and diffusion of vehicles with internal combustion engines that are less polluting and to the adoption of green energy vectors, such as vehicles powered by natural gas or LPG and, more recently, with hybrid and electric ones. While on the one hand, the spread of electric vehicles for private use is becoming a reality, albeit rather slowly, not the same is happening for vehicles used for public transport, especially those that operate in the congested areas of the cities. Even if the first electric buses are increasingly being offered on the market, it remains central to the problem of autonomy for battery fed vehicles with high daily routes and little time available for recharging. In fact, at present, solid-state batteries are still too large in size, heavy, and unable to guarantee the required autonomy. Therefore, in order to maximize the energy management on the vehicle, the optimization of driving profiles offer a faster and cheaper contribution to improve vehicle autonomy. In this paper, following the authors’ precedent works on electric vehicles in public transport and energy management strategies in the electric mobility area, an eco-driving strategy for electric bus is presented and validated. Particularly, the characteristics of the prototype bus are described, and a general-purpose eco-drive methodology is briefly presented. The model is firstly simulated in MATLAB™ and then implemented on a mobile device installed on-board of a prototype bus developed by the authors in a previous research project. The solution implemented furnishes the bus-driver suggestions on the guide style to adopt. The result of the test in a real case will be shown to highlight the effectiveness of the solution proposed in terms of energy saving.

Keywords: eco-drive, electric bus, energy management, prototype

Procedia PDF Downloads 122
10566 Performance and Structural Evaluation of the Torrefaction of Bamboo under a High Gravity (Higee) Environment Using a Rotating Packed Bed

Authors: Mark Daniel De Luna, Ma. Katreena Pillejera, Wei-Hsin Chen

Abstract:

The raw bamboo (Phyllostachys mankinoi), with a moisture content of 13.54 % and a higher heating value (HHV) of 17.657 MJ/kg, was subjected to torrefaction under a high gravity (higee) environment using a rotating packed bed. The performance of the higee torrefaction was explored in two parts: (1) effect of rotation and temperature and (2) effect of duration on the solid yield, HHV and energy yield. By statistical analyses, the results indicated that the rotation, temperature and their interaction has a significant effect on the three responses. Same remarks on the effect of duration where when the duration (temperature and rotation) increases, the HHV increases, while the solid yield and energy yield decreases. Graphical interpretations showed that at 300 °C, the rotating speed has no evident effect on the responses. At 30-min holding time, the highest HHV reached (28.389 MJ/kg) was obtained in the most severe torrefaction condition (the rotating speed at 1800 rpm and temperature at 300 °C) with an enhancement factor of HHV corresponding to 1.61 and an energy yield of 63.51%. Upon inspection, the recommended operating condition under a 30-min holding time is at 255 °C-1800 rpm since the enhancement factor of HHV (1.53), HHV (26.988 MJ/kg), and energy yield (65.21%) values are relatively close to that of the aforementioned torrefaction condition. The Van Krevelen diagram of the torrefied biomass showed that the ratios decrease as the torrefaction intensifies, hence improving the hydrophobicity of the product. The spreads of the results of the solid yield, enhancement factor (EF) of HHV, energy yield, and H/C and O/C ratios were in accordance with the trends of the responses. Overall, from the results presented, it can be concluded that the quality of the product from the process is at par to that of coal (i.e. HHV of coal is 21-35 MJ/kg). The Fourier transform infrared (FTIR) spectroscopy results indicated that cellulose and lignin may have been degraded at a lower temperature accompanied with a high rotating speed. The results suggested that torrefaction under higee environment indicates promising process for the utilization of bamboo.

Keywords: heat transfer, high gravity environment, FTIR, rotation, rotating speed, torrefaction

Procedia PDF Downloads 256
10565 The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics

Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan

Abstract:

The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).

Keywords: cloud forensics, data protection Laws, GDPR, IoT forensics, machine Learning

Procedia PDF Downloads 136
10564 Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport

Authors: C. Hall, J. Ramos, V. Ramasamy

Abstract:

Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations.

Keywords: cylinder, hydrogen, pre-cooling, refueling, thermodynamic model

Procedia PDF Downloads 84
10563 Uncontrolled Urbanization Leads to Main Challenge for Sustainable Development of Mongolia

Authors: Davaanyam Surenjav, Chinzolboo Dandarbaatar, Ganbold Batkhuyag

Abstract:

Primate city induced rapid urbanization has been become one of the main challenges in sustainable development in Mongolia like other developing countries since transition to market economy in 1990. According due to statistical yearbook, population number of Ulaanbaatar city has increased from 0.5 million to 1.5 million for last 30 years and contains now almost half (47%) of total Mongolian population. Rural-Ulaanbaatar and local Cities-Ulaanbaatar city migration leads to social issues like uncontrolled urbanization, income inequality, poverty, overwork of public service, economic over cost for redevelopment and limitation of transport and environmental degradation including air, noise, water and soil pollution. Most thresholds of all of the sustainable urban development main and sub-indicators over exceeded from safety level to unsafety level in Ulaanbaatar. So, there is an urgent need to remove migration pull factors including some administrative and high education functions from Ulaanbaatar city to its satellite cities or secondary cities. Moreover, urban smart transport system and green and renewable energy technologies should be introduced to urban development master plan of Ulaanbaatar city.

Keywords: challenge for sustainable urban development, migration factors, primate city , urban safety thresholds

Procedia PDF Downloads 114
10562 The New Family Law in Kuwait: A Step Towards International Standards

Authors: Dina Hadad

Abstract:

Women empowerment in the Arab world remains a central issue in the context of development and human rights. Akin to many societies around the globe, gender equality is yet to be achieved. This research will provide an introduction into the current legal stand of some Arab countries in terms of gender equality and women rights in the context of family law. It will look specifically into the recent family law in Kuwait and why many women consider it a positive step towards affirming their rights and their needs. Depending on comparative material from the area, the research argues that whilst some countries made efforts to promote women’s empowerment as a concept and practice throughout its policies, others have indeed some unique journeys that reflect organic and from within evolutions. Nonetheless, these efforts are yet to reflect a comprehensive structure that addresses women legal and political empowerment let alone social status. A contradiction in the realities of different Arab states is nothing new since the lack of comprehensive rights-based policy making in Arab countries has contributed to the disconnect between economic growth and development challenges.

Keywords: women empowerment, cultural challenges, gender equality, Islamic law, international standards, family law

Procedia PDF Downloads 179
10561 X-Ray Energy Release in the Solar Eruptive Flare from 6th of September 2012

Authors: Mirabbos Mirkamalov, Zavkiddin Mirtoshev

Abstract:

The M 1.6 class flare occurred on 6th of September 2012. Our observations correspond to the active region NOAA 11560 with the heliographic coordinates N04W71. The event took place between 04:00 UT and 04:45 UT, and was close to the solar limb at the western region. The flare temperature correlates with flux peak, increases for a short period (between 04:08 UT and 04:12 UT), rises impulsively, attains a maximum value of about 17 MK at 04:12 UT and gradually decreases after peak value. Around the peak we observe significant emissions of X-ray sources. Flux profiles of the X-ray emission exhibit a progressively faster raise and decline as the higher energy channels are considered.

Keywords: magnetic reconnection, solar atmosphere, solar flare, X-ray emission

Procedia PDF Downloads 308
10560 Experimental Investigation of Visual Comfort Requirement in Garment Factories and Identify the Cost Saving Opportunities

Authors: M. A. Wijewardane, S. A. N. C. Sudasinghe, H. K. G. Punchihewa, W. K. D. L. Wickramasinghe, S. A. Philip, M. R. S. U. Kumara

Abstract:

Visual comfort is one of the major parameters that can be taken to measure the human comfort in any environment. If the provided illuminance level in a working environment does not meet the workers visual comfort, it will lead to eye-strain, fatigue, headache, stress, accidents and finally, poor productivity. However, improvements in lighting do not necessarily mean that the workplace requires more light. Unnecessarily higher illuminance levels will also cause poor visual comfort and health risks. In addition, more power consumption on lighting will also result in higher energy costs. So, during this study, visual comfort and the illuminance requirement for the workers in textile/apparel industry were studied to perform different tasks (i.e. cutting, sewing and knitting) at their workplace. Experimental studies were designed to identify the optimum illuminance requirement depending upon the varied fabric colour and type and finally, energy saving potentials due to controlled illuminance level depending on the workforce requirement were analysed. Visual performance of workers during the sewing operation was studied using the ‘landolt ring experiment’. It was revealed that around 36.3% of the workers would like to work if the illuminance level varies from 601 lux to 850 lux illuminance level and 45.9% of the workers are not happy to work if the illuminance level reduces less than 600 lux and greater than 850 lux. Moreover, more than 65% of the workers who do not satisfy with the existing illuminance levels of the production floors suggested that they have headache, eye diseases, or both diseases due to poor visual comfort. In addition, findings of the energy analysis revealed that the energy-saving potential of 5%, 10%, 24%, 8% and 16% can be anticipated for fabric colours, red, blue, yellow, black and white respectively, when the 800 lux is the prevailing illuminance level for sewing operation.

Keywords: Landolt Ring experiment, lighting energy consumption, illuminance, textile and apparel industry, visual comfort

Procedia PDF Downloads 195
10559 HEXAFLY-INT Project: Design of a High Speed Flight Experiment

Authors: S. Di Benedetto, M. P. Di Donato, A. Rispoli, S. Cardone, J. Riehmer, J. Steelant, L. Vecchione

Abstract:

Thanks to a coordinated funding by the European Space Agency (ESA) and the European Commission (EC) within the 7th framework program, the High-Speed Experimental Fly Vehicles – International (HEXAFLY-INT) project is aimed at the flight validation of hypersonics technologies enabling future trans-atmospheric flights. The project, which is currently involving partners from Europe, Russian Federation and Australia operating under ESA/ESTEC coordination, will achieve the goal of designing, manufacturing, assembling and flight testing an unpowered high speed vehicle in a glider configuration by 2018. The main technical challenges of the project are specifically related to the design of the vehicle gliding configuration and to the complexity of integrating breakthrough technologies with standard aeronautical technologies, e.g. high temperature protection system and airframe cold structures. Also, the sonic boom impact, which is one of the environmental challenges of the high speed flight, will be assessed. This paper provides a comprehensive and detailed update on all the current projects activities carried out to date on both the vehicle and mission design.

Keywords: design, flight testing, HEXAFLY-INT, hypersonics

Procedia PDF Downloads 455
10558 Nonlinear Passive Shunt for Electroacoustic Absorbers Using Nonlinear Energy Sink

Authors: Diala Bitar, Emmanuel Gourdon, Claude H. Lamarque, Manuel Collet

Abstract:

Acoustic absorber devices play an important role reducing the noise at the propagation and reception paths. An electroacoustic absorber consists of a loudspeaker coupled to an electric shunt circuit, where the membrane is playing the role of an absorber/reflector of sound. Although the use of linear shunt resistors at the transducer terminals, has shown to improve the performances of the dynamical absorbers, it is nearly efficient in a narrow frequency band. Therefore, and since nonlinear phenomena are promising for their ability to absorb the vibrations and sound on a larger frequency range, we propose to couple a nonlinear electric shunt circuit at the loudspeaker terminals. Then, the equivalent model can be described by a 2 degrees of freedom system, consisting of a primary linear oscillator describing the dynamics of the loudspeaker membrane, linearly coupled to a cubic nonlinear energy sink (NES). The system is analytically treated for the case of 1:1 resonance, using an invariant manifold approach at different time scales. The proposed methodology enables us to detect the equilibrium points and fold singularities at the first slow time scales, providing a predictive tool to design the nonlinear circuit shunt during the energy exchange process. The preliminary results are promising; a significant improvement of acoustic absorption performances are obtained.

Keywords: electroacoustic absorber, multiple-time-scale with small finite parameter, nonlinear energy sink, nonlinear passive shunt

Procedia PDF Downloads 212
10557 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort

Authors: Xiaohua Zou, Yongxin Su

Abstract:

The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.

Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response

Procedia PDF Downloads 58
10556 Bio-Oil Production and Chromatographic Characterization from the Pyrolysis of Oil Palm Empty Fruit Bunches

Authors: Arif Ferdiyanto, Fajar Hamida, Arif Hidayat

Abstract:

Oil palm empty fruit bunches, derived biomass available in Indonesia, is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. An interesting alternative of utilising the oil palm empty fruit bunches is in the production of bio-oil by pyrolysis. Pyrolysis of oil palm empty fruit bunches to bio-oil is being considered for national energy security and environmental advantages. The aim of this study was to produce bio-oil by pyrolysis of oil palm empty fruit bunches at various temperature and observe its detailed chemical composition. The biomass was submitted to a pyrolysis in a batch reactor. Experiments were carried out at a temperature range of 450–600°C and heating rate range of 10-20°C/min. The yield of bio-oil was found to be maximum at the temperature of 600°C. The bio-oils detailed compositions were investigated using FTIR and GC-MS. The bio-char produced as a co-product can be a potential soil amendment with multiple benefits including soil fertility and for solid fuel applications that also contributes to the preservation of the environment. The present investigation suggests the suitability of oil palm empty fruit bunches as a potential feedstock for exploitation of energy and biomaterials through pyrolysis process.

Keywords: bio-oil, oil palm empty fruit bunches, pyrolysis, renewable energy

Procedia PDF Downloads 322
10555 Constructal Enhancement of Fins Design Integrated to Phase Change Materials

Authors: Varun Joshi, Manish K. Rathod

Abstract:

The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital.

Keywords: constructal theory, enthalpy porosity approach, phase change materials, fins

Procedia PDF Downloads 165
10554 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network

Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima

Abstract:

Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.

Keywords: mobile sensor node, relay of sensing data, residual energy, virtual rail, wireless sensor network

Procedia PDF Downloads 317
10553 Irrigation and Thermal Buffering Mathematical Modeling

Authors: Yara Elborolosy, Harsho Sanyal, Joseph Cataldo

Abstract:

Two methods of irrigation, drip and sprinkler, were studied to determine the response of the Javits green roof to irrigation. The control study were dry unirrigated plots. Drip irrigation consisted of irrigation tubes running through the green roof that would water the soil throughout, and sprinkler irrigation used a sprinkler system to irrigate the green roof from above. In all cases, the irrigated roofs had increased the soil moisture, reduced temperatures of both the upper and lower surfaces, reduced growing medium temperatures and reduced air temperatures above the green roof relative to the unirrigated roof. The buffered temperature fluctuations were also studied via air conditioner energy consumption. There was a 28% reductionin air conditioner energy consumption and 33% reduction in overall energy consumption between dry and irrigated plots. Values of thermal resistance or S were determined for accuracy, and for this study, there was little change which is ideal. A series of infra-red and thermal probe measurements were used to determine temperatures in the air and sedum. It was determined that the sprinkler irrigation did a better job than the drip irrigation in keeping cooler temperatures within the green roof.

Keywords: green infrastructure, black roof, thermal buffering, irrigation

Procedia PDF Downloads 51
10552 A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator

Authors: Xiaobo Rui, Zhoumo Zeng, Yibo Li

Abstract:

A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment.

Keywords: tri-cantilever, ambient vibration, energy harvesting, magnetic oscillator

Procedia PDF Downloads 141
10551 Ecotourism Development as an Alternative Livelihood for Guassa Community, Ethiopia

Authors: Abraham Kidane

Abstract:

The study aims at assessing the prospects and challenges of community-based ecotourism development in and around the Guassa Community Conservation Area (GCCA) for the establishment of alternative sources of livelihood for local people and the conservation of natural resources. The Guassa area and its surrounding area are endowed with natural, cultural, and religious tourism resources. The study is descriptive in its design and uses both qualitative and quantitative research methods. Interviews and questionnaires were used as an instrument for data gathering. The interview was undertaken with government officials, NGO officials, and experts, with three local community representatives. The three Kebeles of Guassa were chosen using purposive sampling because of the fact that they are immediate neighbors to GCCA, and hence, 150 questionnaires were administered proportionally to the household numbers in each kebeles. The perspectives of the MoCT, EWCA, and some Tour Operation agencies were uncovered through questionnaires; for each of them, five questionnaires were administered, and all the returns were used in the analysis. Frequency, percentage, average mean, One Way-ANOVA, and independent t-test are used to analyze quantitative data. The findings revealed that food insecurity is commonplace in the study area. The local people's reliance on the conservation area’s resources has been increasing, and the area size is also dwindling from time to time. On the other hand, the local people's levels of awareness about Community-Based Ecotourism (CBET) are low. In addition, the local capacity in relation to conservation and CBET development is also low, even though there is inadequate training offered by the government and NGOs. In general, tourism is not yet considered an alternative source of income and a means of conserving natural resources. In addition, the challenges for CBET development apart from low awareness level about CBET and low capacity, poor infrastructure, and poor tourism facilities were also identified as challenges in the study area.

Keywords: ecotourism, CBET, alternative livelihood, conservation

Procedia PDF Downloads 85
10550 Technological Developments to Reduce Wind Blade Turbine Levelized Cost of Energy

Authors: Pedro Miguel Cardoso Carneiro, Ricardo André Nunes Borges, João Pedro Soares Loureiro, Hermínio Maio Graça Fernandes

Abstract:

Wind energy has been exponentially growing over the last years and will allow countries to progress regarding the decarbonization objective. In parallel, the maintenance activities have also been increasing in consequence of ageing and deterioration of the wind farms. The time available for wind blade maintenance is given by the weather window that is based upon weather conditions. Most of the wind blade repair and maintenance activities require a narrow window of temperature and humidity. Due to this limitation, the current weather windows result only on approximately 35% days/year are used for maintenance, that takes place mostly during summertime. This limitation creates large economic losses in the energy production of the wind towers, since they can be inoperative or with the energy production output reduced for days or weeks due to existing damages. Another important aspect is that the maintenance costs are higher due to the high standby time and seasonality imposed on the technicians. To reduce the relevant maintenance costs of blades and energy loses some technological developments were carried out to significantly improve this reality. The focus of this activity was to develop a series of key developments to have in the near future a suspended access equipment that can operate in harsh conditions, wind rain, cold/hot environment. To this end we have identified key areas that need to be revised and require new solutions to be found; a habitat system, multi-configurable roof and floor, roof and floor interface to blade, secondary attachment solutions to the blade and to the tower. On this paper we will describe the advances produced during a national R&D project made in partnership with an end-user (Onrope) and a test center (ISQ).

Keywords: wind turbine maintenance, cost reduction, technological innovations, wind turbine blade

Procedia PDF Downloads 75
10549 Working in Multidisciplinary Care Teams: Perspectives from Health Care and Social Service Providers

Authors: Lindy Van Vliet, Saloni Phadke, Anthea Nelson, Ann Gallant

Abstract:

Holistic and patient-centred palliative care and support require an integrated system of care that includes health and social service providers working together to ensure that patients and families have access to the care they need. The objective of this study is to further explore and understand the benefits and challenges of mobilizing multidisciplinary care teams for health care professionals and social service providers. Drawing on an interpretivist, exploratory, qualitative design, our multidisciplinary research team (medicine, nursing and social work) conducted interviews with 15 health care and social service providers in the Ottawa region. Interview data was audio-recorded, transcribed, and analyzed using a reflexive thematic analysis approach. The data deepens our understandings of the facilitators and barriers posed by multidisciplinary care teams. Three main findings emerged: First, the data highlighted the benefits of multidisciplinary care teams for both patient outcomes and quality of life and provider mental health; second, the data showed that the lack of a system-wide integrated communication system reduces the quality of patient care and increases provider stress while working in multidisciplinary care teams; finally, the data demonstrated the existence of implicit hierarchies between disciplines, this coupled with different disciplinary perspectives of palliative care provision can lead to friction and challenges within care teams. These findings will have important implications for the future of palliative care as they will help to facilitate and build stronger person-centred/relationship-centred palliative care practices by naming the challenges faced by multidisciplinary palliative care teams and providing examples of best practices.

Keywords: public health palliative care, palliative care nursing, care networks, integrated health care, palliative care approach, public health, multidisciplinary work, care teams

Procedia PDF Downloads 71
10548 Subsea Control Module (SCM) - A Vital Factor for Well Integrity and Production Performance in Deep Water Oil and Gas Fields

Authors: Okoro Ikechukwu Ralph, Fuat Kara

Abstract:

The discoveries of hydrocarbon reserves has clearly drifted offshore, and in deeper waters - areas where the industry still has limited knowledge; and that were hitherto, regarded as being out of reach. This shift presents significant and increased challenges in technology requirements needed to guarantee safety of personnel, environment and equipment; ensure high reliability of installed equipment; and provide high level of confidence in security of investment and company reputation. Nowhere are these challenges more apparent than on subsea well integrity and production performance. The past two decades has witnessed enormous rise in deep and ultra-deep water offshore field developments for the recovery of hydrocarbons. Subsea installed equipment at the seabed has been the technology of choice for these developments. This paper discusses the role of Subsea Control module (SCM) as a vital factor for deep-water well integrity and production performance. A case study for Deep-water well integrity and production performance is analysed.

Keywords: offshore reliability, production performance, subsea control module, well integrity

Procedia PDF Downloads 492
10547 Unpowered Knee Exoskeleton with Compliant Joints for Stair Descent Assistance

Authors: Pengfan Wu, Xiaoan Chen, Ye He, Tianchi Chen

Abstract:

This paper introduces the design of an unpowered knee exoskeleton to assist human walking by redistributing the moment of the knee joint during stair descent (SD). Considering the knee moment varying with the knee joint angle and the work of the knee joint is all negative, the custom-built spring was used to convert negative work into the potential energy of the spring during flexion, and the obtained energy work as assistance during extension to reduce the consumption of lower limb muscles. The human-machine adaptability problem was left by traditional rigid wearable due to the knee involves sliding and rotating without a fixed-axis rotation, and this paper designed the two-direction grooves to follow the human-knee kinematics, and the wire spring provides a certain resistance to the pin in the groove to prevent extra degrees of freedom. The experiment was performed on a normal stair by healthy young wearing the device on both legs with the surface electromyography recorded. The results show that the quadriceps (knee extensor) were reduced significantly.

Keywords: unpowered exoskeleton, stair descent, knee compliant joint, energy redistribution

Procedia PDF Downloads 113
10546 Performance Analysis of Compression Socks Strips

Authors: Hafiz Faisal Siddique, Adnan Ahmed Mazari, Antonin Havelka

Abstract:

Compression socks are highly recommended textile garment for pressure exertion on the lower part of leg. The extent of compression that a patient can easily manage depends on stage (limb size and shape) of venous disease and his activities (mobility, age). Due to dynamic mechanical influence, the socks destroy their extent of pressure exertion around the leg. The main aim of this research is to investigate how the performance of compression socks is deteriorated due to expected induced wearing mechanical impacts. Wearing mechanical impacts influence the durability parameter i.e. tensile energy loss. For tensile energy loss, cut-strip samples were interacted to constant rate of loading and un-loading, cyclic-loading upto 15th cycles for ±5mm extension (considering muscles expansion and relaxation) and were dwelled (stayed) for 3 minutes at 25%, 50% and 75% extension levels, simultaneously. Statistical validation of tensile energy loss was performed by introducing measures of correlation, p-value (≤ 0.05), R-square values using MINITAB 17 software.

Keywords: compression socks, loading and unloading, 15th cyclic loading, Dwell time effect

Procedia PDF Downloads 143
10545 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines

Authors: Alexander Guzman Urbina, Atsushi Aoyama

Abstract:

The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.

Keywords: deep learning, risk assessment, neuro fuzzy, pipelines

Procedia PDF Downloads 282