Search results for: computer networks
2297 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle
Authors: Mostafa Mjahed
Abstract:
Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV
Procedia PDF Downloads 1172296 Neural Rendering Applied to Confocal Microscopy Images
Authors: Daniel Li
Abstract:
We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques.Keywords: neural rendering, implicit neural representations, confocal microscopy, medical image processing
Procedia PDF Downloads 6552295 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning
Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu
Abstract:
This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning
Procedia PDF Downloads 772294 Enhancing Urban Sustainability through Integrated Green Spaces: A Focus on Tehran
Authors: Azadeh Mohajer Milani
Abstract:
Urbanization constitutes an irreversible global trend, presenting myriad challenges such as heightened energy consumption, pollution, congestion, and the depletion of natural resources. Today's urban landscapes have emerged as focal points for economic, social, and environmental challenges, underscoring the pressing need for sustainable development. This article delves into the realm of sustainable urban development, concentrating on the pivotal role played by integrated green spaces as an optimal solution to address environmental concerns within cities. The study utilizes Tehran as a case study. Our findings underscore the imperative of preserving and expanding green spaces in urban areas, coupled with the establishment of well-designed ecological networks, to enhance environmental quality and elevate the sustainability of cities. Notably, Tehran's urban green spaces exhibit a disjointed design, lacking a cohesive network to connect various patches and corridors, resulting in significant environmental impacts. The results emphasize the necessity of a balanced and proportional distribution of urban green spaces and the creation of a cohesive patch-corridor-matrix network tailored to the ecological and social needs of residents. This approach is crucial for fostering a more sustainable and livable urban environment for all species, with a specific focus on humans.Keywords: ecology, sustainable urban development, sustainable landscape, urban green space network
Procedia PDF Downloads 822293 Storage Method for Parts from End of Life Vehicles' Dismantling Process According to Sustainable Development Requirements: Polish Case Study
Authors: M. Kosacka, I. Kudelska
Abstract:
Vehicle is one of the most influential and complex product worldwide, which affects people’s life, state of the environment and condition of the economy (all aspects of sustainable development concept) during each stage of lifecycle. With the increase of vehicles’ number, there is growing potential for management of End of Life Vehicle (ELV), which is hazardous waste. From one point of view, the ELV should be managed to ensure risk elimination, but from another point, it should be treated as a source of valuable materials and spare parts. In order to obtain materials and spare parts, there are established recycling networks, which are an example of sustainable policy realization at the national level. The basic object in the polish recycling network is dismantling facility. The output material streams in dismantling stations include waste, which very often generate costs and spare parts, that have the biggest potential for revenues creation. Both outputs are stored into warehouses, according to the law. In accordance to the revenue creation and sustainability potential, it has been placed a strong emphasis on storage process. We present the concept of storage method, which takes into account the specific of the dismantling facility in order to support decision-making process with regard to the principles of sustainable development. The method was developed on the basis of case study of one of the greatest dismantling facility in Poland.Keywords: dismantling, end of life vehicles, sustainability, storage
Procedia PDF Downloads 2702292 Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser
Authors: Moustafa Ahmed, Fumio Koyama
Abstract:
Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos.Keywords: chirp, linewidth, optical feedback, semiconductor laser
Procedia PDF Downloads 4802291 Investigating the Factors Affecting the Innovation of Firms in Metropolitan Regions: The Case of Mashhad Metropolitan Region, Iran
Authors: Hashem Dadashpoor, Sadegh Saeidi Shirvan
Abstract:
While with the evolution of the economy towards a knowledge-based economy, innovation is a requirement for metropolitan regions, the adoption of an open innovation strategy is an option and a requirement for many industrial firms in these regions. Studies show that investing in research and development units cannot alone increase innovation. Within the framework of the theory of learning regions, this gap, which scholars call it the ‘innovation gap’, is filled with regional features of firms. This paper attempts to investigate the factors affecting the open innovation of firms in metropolitan regions, and it searches for these in territorial innovation models and, in particular, the theory of learning regions. In the next step, the effect of identified factors which is considered as regional learning factors in this research is analyzed on the innovation of sample firms by SPSS software using multiple linear regression. The case study of this research is constituted of industrial enterprises from two groups of food industry and auto parts in Toos industrial town in Mashhad metropolitan region. For data gathering of this research, interviews were conducted with managers of industrial firms using structured questionnaires. Based on this study, the effect of factors such as size of firms, inter-firm competition, the use of local labor force and institutional infrastructures were significant in the innovation of the firms studied, and 44% of the changes in the firms’ innovation occurred as a result of the change in these factors.Keywords: regional knowledge networks, learning regions, interactive learning, innovation
Procedia PDF Downloads 1782290 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques
Authors: Gurmail Singh
Abstract:
Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility
Procedia PDF Downloads 1272289 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 1872288 Intelligent Agent-Based Model for the 5G mmWave O2I Technology Adoption
Authors: Robert Joseph M. Licup
Abstract:
The deployment of the fifth-generation (5G) mobile system through mmWave frequencies is the new solution in the requirement to provide higher bandwidth readily available for all users. The usage pattern of the mobile users has moved towards either the work from home or online classes set-up because of the pandemic. Previous mobile technologies can no longer meet the high speed, and bandwidth requirement needed, given the drastic shift of transactions to the home. The millimeter-wave (mmWave) underutilized frequency is utilized by the fifth-generation (5G) cellular networks that support multi-gigabit-per-second (Gbps) transmission. However, due to its short wavelengths, high path loss, directivity, blockage sensitivity, and narrow beamwidth are some of the technical challenges that need to be addressed. Different tools, technologies, and scenarios are explored to support network design, accurate channel modeling, implementation, and deployment effectively. However, there is a big challenge on how the consumer will adopt this solution and maximize the benefits offered by the 5G Technology. This research proposes to study the intricacies of technology diffusion, individual attitude, behaviors, and how technology adoption will be attained. The agent based simulation model shaped by the actual applications, technology solution, and related literature was used to arrive at a computational model. The research examines the different attributes, factors, and intricacies that can affect each identified agent towards technology adoption.Keywords: agent-based model, AnyLogic, 5G O21, 5G mmWave solutions, technology adoption
Procedia PDF Downloads 1072287 Using Crowd-Sourced Data to Assess Safety in Developing Countries: The Case Study of Eastern Cairo, Egypt
Authors: Mahmoud Ahmed Farrag, Ali Zain Elabdeen Heikal, Mohamed Shawky Ahmed, Ahmed Osama Amer
Abstract:
Crowd-sourced data refers to data that is collected and shared by a large number of individuals or organizations, often through the use of digital technologies such as mobile devices and social media. The shortage in crash data collection in developing countries makes it difficult to fully understand and address road safety issues in these regions. In developing countries, crowd-sourced data can be a valuable tool for improving road safety, particularly in urban areas where the majority of road crashes occur. This study is -to our best knowledge- the first to develop safety performance functions using crowd-sourced data by adopting a negative binomial structure model and the Full Bayes model to investigate traffic safety for urban road networks and provide insights into the impact of roadway characteristics. Furthermore, as a part of the safety management process, network screening has been undergone through applying two different methods to rank the most hazardous road segments: PCR method (adopted in the Highway Capacity Manual HCM) as well as a graphical method using GIS tools to compare and validate. Lastly, recommendations were suggested for policymakers to ensure safer roads.Keywords: crowdsourced data, road crashes, safety performance functions, Full Bayes models, network screening
Procedia PDF Downloads 512286 Effectiveness of Opuntia ficus indica Cladodes Extract for Wound-Healing
Authors: Giuffrida Graziella, Pennisi Stefania, Coppa Federica, Iannello Giulia, Cartelli Simone, Lo Faro Riccardo, Ferruggia Greta, Brundo Maria Violetta
Abstract:
Cladode chemical composition may vary according to soil factors, cultivation season, and plant age. The primary metabolites of cladodes are water, carbohydrates, and proteins. The carbohydrates in cladodes are divided into two types: structural and storage. Polysaccharides from Opuntia ficus‐indica (L.) Mill plants build molecular networks with the capacity to retain water; thus, they act as mucoprotective agents. Mucilage is the main polysaccharide of cladodes; it contains polymers of β‐d‐galacturonic acid bound in positions (1–4) and traces of R‐linked l‐rhamnose (1-2). Mucilage regulates both the cell water content during prolonged drought and the calcium flux in the plant cells. The in vitro analysis of keratinocytes in monolayer, through the scratch-wound-healing assay, provided promising results. After 48 hours of exposure, the wound scratch was almost completely closed in cells treated with cladode extract. After 72 hours, the treated cells reached complete confluence, while in the untreated cells (negative control) the confluence was reached after 96 hours. We also added a positive control group of cells treated with colchicine, which inhibited wound closure for a more comprehensive analysis.Keywords: cladodes, metabolites, polysaccharide, scratch-wound-healing assay
Procedia PDF Downloads 522285 Reduce the Impact of Wildfires by Identifying Them Early from Space and Sending Location Directly to Closest First Responders
Authors: Gregory Sullivan
Abstract:
The evolution of global warming has escalated the number and complexity of forest fires around the world. As an example, the United States and Brazil combined generated more than 30,000 forest fires last year. The impact to our environment, structures and individuals is incalculable. The world has learned to try to take this in stride, trying multiple ways to contain fires. Some countries are trying to use cameras in limited areas. There are discussions of using hundreds of low earth orbit satellites and linking them together, and, interfacing them through ground networks. These are all truly noble attempts to defeat the forest fire phenomenon. But there is a better, simpler answer. A bigger piece of the solutions puzzle is to see the fires while they are small, soon after initiation. The approach is to see the fires while they are very small and report their location (latitude and longitude) to local first responders. This is done by placing a sensor at geostationary orbit (GEO: 26,000 miles above the earth). By placing this small satellite in GEO, we can “stare” at the earth, and sense temperature changes. We do not “see” fires, but “measure” temperature changes. This has already been demonstrated on an experimental scale. Fires were seen at close to initiation, and info forwarded to first responders. it were the first to identify the fires 7 out of 8 times. The goal is to have a small independent satellite at GEO orbit focused only on forest fire initiation. Thus, with one small satellite, focused only on forest fire initiation, we hope to greatly decrease the impact to persons, property and the environment.Keywords: space detection, wildfire early warning, demonstration wildfire detection and action from space, space detection to first responders
Procedia PDF Downloads 692284 The Effectiveness of a Courseware in 7th Grade Chemistry Lesson
Authors: Oguz Ak
Abstract:
In this study a courseware for the learning unit of `Properties of matters` in chemistry course is developed. The courseware is applied to 15 7th grade (about age 14) students in real settings. As a result of the study it is found that the students` grade in the learning unit significantly increased when they study the courseware themselves. In addition, the score improvements of the students who found the courseware is usable is not significantly higher than the score improvements of the students who did not found it usable.Keywords: computer based instruction, effect of courseware and usability of courseware, 7th grade
Procedia PDF Downloads 4592283 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 1322282 Resilience of Infrastructure Networks: Maintenance of Bridges in Mountainous Environments
Authors: Lorenza Abbracciavento, Valerio De Biagi
Abstract:
Infrastructures are key elements to ensure the operational functionality of the transport system. The collapse of a single bridge or, equivalently, a tunnel can leads an entire motorway to be considered completely inaccessible. As a consequence, the paralysis of the communications network determines several important drawbacks for the community. Recent chronicle events have demonstrated that ensuring the functional continuity of the strategic infrastructures during and after a catastrophic event makes a significant difference in terms of life and economical losses. Moreover, it has been observed that RC structures located in mountain environments show a worst state of conservation compared to the same typology and aging structures located in temperate climates. Because of its morphology, in fact, the mountain environment is particularly exposed to severe collapse and deterioration phenomena, generally: natural hazards, e.g. rock falls, and meteorological hazards, e.g. freeze-thaw cycles or heavy snows. For these reasons, deep investigation on the characteristics of these processes becomes of fundamental importance to provide smart and sustainable solutions and make the infrastructure system more resilient. In this paper, the design of a monitoring system in mountainous environments is presented and analyzed in its parts. The method not only takes into account the peculiar climatic conditions, but it is integrated and interacts with the environment surrounding.Keywords: structural health monitoring, resilience of bridges, mountain infrastructures, infrastructural network, maintenance
Procedia PDF Downloads 762281 Study of Mixing Conditions for Different Endothelial Dysfunction in Arteriosclerosis
Authors: Sara Segura, Diego Nuñez, Miryam Villamil
Abstract:
In this work, we studied the microscale interaction of foreign substances with blood inside an artificial transparent artery system that represents medium and small muscular arteries. This artery system had channels ranging from 75 μm to 930 μm and was fabricated using glass and transparent polymer blends like Phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide, Poly(ethylene glycol) and PDMS in order to be monitored in real time. The setup was performed using a computer controlled precision micropump and a high resolution optical microscope capable of tracking fluids at fast capture. Observation and analysis were performed using a real time software that reconstructs the fluid dynamics determining the flux velocity, injection dependency, turbulence and rheology. All experiments were carried out with fully computer controlled equipment. Interactions between substances like water, serum (0.9% sodium chloride and electrolyte with a ratio of 4 ppm) and blood cells were studied at microscale as high as 400nm of resolution and the analysis was performed using a frame-by-frame observation and HD-video capture. These observations lead us to understand the fluid and mixing behavior of the interest substance in the blood stream and to shed a light on the use of implantable devices for drug delivery at arteries with different Endothelial dysfunction. Several substances were tested using the artificial artery system. Initially, Milli-Q water was used as a control substance for the study of the basic fluid dynamics of the artificial artery system. However, serum and other low viscous substances were pumped into the system with the presence of other liquids to study the mixing profiles and behaviors. Finally, mammal blood was used for the final test while serum was injected. Different flow conditions, pumping rates, and time rates were evaluated for the determination of the optimal mixing conditions. Our results suggested the use of a very fine controlled microinjection for better mixing profiles with and approximately rate of 135.000 μm3/s for the administration of drugs inside arteries.Keywords: artificial artery, drug delivery, microfluidics dynamics, arteriosclerosis
Procedia PDF Downloads 2942280 Elaboration and Physico-Chemical Characterization of Edible Films Made from Chitosan and Spray Dried Ethanolic Extracts of Propolis
Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez
Abstract:
It was necessary to establish which formulation is suitable for the preservation of aquaculture products, that why edible films were made. These were to a characterization in order to meet their morphology physicochemical and mechanical properties, optical. Six Formulations of chitosan and propolis ethanolic extract encapsulated were developed because of their activity against pathogens and due to their properties, which allows the creation waterproof polymer networks against gasses, vapor, and physical damage. In the six Formulations, the concentration of comparison material (1% w/v, 2% pv) and the bioactive concentrations (0.5% w/v, 1% w/v, 1.5% pv) were changed and the results obtained were compared with statistical and multivariate analysis methods. It was observed that the matrices showed a mayor impermeability and thickness control samples and the samples reported in the literature. Also, these films showed a notorious uniformity of the films and a bigger resistance to the physical damage compared with other edible films made of other biopolymers. However the action of some compounds had a negative effect on the mechanical properties and changed drastically the optical properties, the bioactive has an effect on Polymer Matrix and it was determined that the films with 2% w / v of chitosan and 1.5% w/v encapsulated, exhibited the best properties and suffered to a lesser extent the negative impact of immiscible substances.Keywords: chitosan, edible films, ethanolic extract of propolis, mechanical properties, optical properties, physical characterization, scanning electron microscopy (SEM)
Procedia PDF Downloads 4462279 A Multi Cordic Architecture on FPGA Platform
Authors: Ahmed Madian, Muaz Aljarhi
Abstract:
Coordinate Rotation Digital Computer (CORDIC) is a unique digital computing unit intended for the computation of mathematical operations and functions. This paper presents a multi-CORDIC processor that integrates different CORDIC architectures on a single FPGA chip and allows the user to select the CORDIC architecture to proceed with based on what he wants to calculate and his/her needs. Synthesis show that radix 2 CORDIC has the lowest clock delay, radix 8 CORDIC has the highest LUT usage and lowest register usage while Hybrid Radix 4 CORDIC had the highest clock delay.Keywords: multi, CORDIC, FPGA, processor
Procedia PDF Downloads 4682278 A Development of Personalized Edutainment Contents through Storytelling
Authors: Min Kyeong Cha, Ju Yeon Mun, Seong Baeg Kim
Abstract:
Recently, ‘play of learning’ became important and is emphasized as a useful learning tool. Therefore, interest in edutainment contents is growing. Storytelling is considered first as a method that improves the transmission of information and learner's interest when planning edutainment contents. In this study, we designed edutainment contents in the form of an adventure game that applies the storytelling method. This content provides questions and items constituted dynamically and reorganized learning contents through analysis of test results. It allows learners to solve various questions through effective iterative learning. As a result, the learners can reach mastery learning.Keywords: storytelling, edutainment, mastery learning, computer operating principle
Procedia PDF Downloads 3152277 An Efficient Subcarrier Scheduling Algorithm for Downlink OFDMA-Based Wireless Broadband Networks
Authors: Hassen Hamouda, Mohamed Ouwais Kabaou, Med Salim Bouhlel
Abstract:
The growth of wireless technology made opportunistic scheduling a widespread theme in recent research. Providing high system throughput without reducing fairness allocation is becoming a very challenging task. A suitable policy for resource allocation among users is of crucial importance. This study focuses on scheduling multiple streaming flows on the downlink of a WiMAX system based on orthogonal frequency division multiple access (OFDMA). In this paper, we take the first step in formulating and analyzing this problem scrupulously. As a result, we proposed a new scheduling scheme based on Round Robin (RR) Algorithm. Because of its non-opportunistic process, RR does not take in account radio conditions and consequently it affect both system throughput and multi-users diversity. Our contribution called MORRA (Modified Round Robin Opportunistic Algorithm) consists to propose a solution to this issue. MORRA not only exploits the concept of opportunistic scheduler but also takes into account other parameters in the allocation process. The first parameter is called courtesy coefficient (CC) and the second is called Buffer Occupancy (BO). Performance evaluation shows that this well-balanced scheme outperforms both RR and MaxSNR schedulers and demonstrate that choosing between system throughput and fairness is not required.Keywords: OFDMA, opportunistic scheduling, fairness hierarchy, courtesy coefficient, buffer occupancy
Procedia PDF Downloads 2992276 A Non-Destructive Estimation Method for Internal Time in Perilla Leaf Using Hyperspectral Data
Authors: Shogo Nagano, Yusuke Tanigaki, Hirokazu Fukuda
Abstract:
Vegetables harvested early in the morning or late in the afternoon are valued in plant production, and so the time of harvest is important. The biological functions known as circadian clocks have a significant effect on this harvest timing. The purpose of this study was to non-destructively estimate the circadian clock and so construct a method for determining a suitable harvest time. We took eight samples of green busil (Perilla frutescens var. crispa) every 4 hours, six times for 1 day and analyzed all samples at the same time. A hyperspectral camera was used to collect spectrum intensities at 141 different wavelengths (350–1050 nm). Calculation of correlations between spectrum intensity of each wavelength and harvest time suggested the suitability of the hyperspectral camera for non-destructive estimation. However, even the highest correlated wavelength had a weak correlation, so we used machine learning to raise the accuracy of estimation and constructed a machine learning model to estimate the internal time of the circadian clock. Artificial neural networks (ANN) were used for machine learning because this is an effective analysis method for large amounts of data. Using the estimation model resulted in an error between estimated and real times of 3 min. The estimations were made in less than 2 hours. Thus, we successfully demonstrated this method of non-destructively estimating internal time.Keywords: artificial neural network (ANN), circadian clock, green busil, hyperspectral camera, non-destructive evaluation
Procedia PDF Downloads 2972275 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER
Procedia PDF Downloads 122274 Factors Influencing the Usage of ERP in Enterprise Systems
Authors: Mohammad Reza Babaei, Sanaz Kamrani
Abstract:
The main problems That arise In adopting most Enterprise resources planning (ERP) strategies come from organizational, complex information systems like the ERP integrate the data of all business areas within the organization. The implementation of ERP is a difficult process as it involves different types of end users. Based on literature, we proposed a conceptual framework and examined it to find the effect of some of the individual, organizational, and technological factors on the usage of ERP and its impact on the end user. The results of the analysis suggest that computer self-efficacy, organizational support, training, and compatibility have a positive influence on ERP usage which in turn has significant influence on panoptic empowerment and individual performance.Keywords: factor, influencing, enterprise, system
Procedia PDF Downloads 3662273 Localization of Buried People Using Received Signal Strength Indication Measurement of Wireless Sensor
Authors: Feng Tao, Han Ye, Shaoyi Liao
Abstract:
City constructions collapse after earthquake and people will be buried under ruins. Search and rescue should be conducted as soon as possible to save them. Therefore, according to the complicated environment, irregular aftershocks and rescue allow of no delay, a kind of target localization method based on RSSI (Received Signal Strength Indication) is proposed in this article. The target localization technology based on RSSI with the features of low cost and low complexity has been widely applied to nodes localization in WSN (Wireless Sensor Networks). Based on the theory of RSSI transmission and the environment impact to RSSI, this article conducts the experiments in five scenes, and multiple filtering algorithms are applied to original RSSI value in order to establish the signal propagation model with minimum test error respectively. Target location can be calculated from the distance, which can be estimated from signal propagation model, through improved centroid algorithm. Result shows that the localization technology based on RSSI is suitable for large-scale nodes localization. Among filtering algorithms, mixed filtering algorithm (average of average, median and Gaussian filtering) performs better than any other single filtering algorithm, and by using the signal propagation model, the minimum error of distance between known nodes and target node in the five scene is about 3.06m.Keywords: signal propagation model, centroid algorithm, localization, mixed filtering, RSSI
Procedia PDF Downloads 2992272 Species Distribution Modelling for Assessing the Effect of Land Use Changes on the Habitat of Endangered Proboscis Monkey (Nasalis larvatus) in Kalimantan, Indonesia
Authors: Wardatutthoyyibah, Satyawan Pudyatmoko, Sena Adi Subrata, Muhammad Ali Imron
Abstract:
The proboscis monkey is an endemic species to the island of Borneo with conservation status IUCN (The International Union for Conservation of Nature) of endangered. The population of the monkey has a specific habitat and sensitive to habitat disturbances. As a consequence of increasing rates of land-use change in the last four decades, its population was reported significantly decreased. We quantified the effect of land use change on the proboscis monkey’s habitat through the species distribution modeling (SDM) approach with Maxent Software. We collected presence data and environmental variables, i.e., land cover, topography, bioclimate, distance to the river, distance to the road, and distance to the anthropogenic disturbance to generate predictive distribution maps of the monkeys. We compared two prediction maps for 2000 and 2015 data to represent the current habitat of the monkey. We overlaid the monkey’s predictive distribution map with the existing protected areas to investigate whether the habitat of the monkey is protected under the protected areas networks. The results showed that almost 50% of the monkey’s habitat reduced as the effect of land use change. And only 9% of the current proboscis monkey’s habitat within protected areas. These results are important for the master plan of conservation of the endangered proboscis monkey and provide scientific guidance for the future development incorporating biodiversity issue.Keywords: endemic species, land use change, maximum entropy, spatial distribution
Procedia PDF Downloads 1532271 Cosmetic Surgery on the Rise: The Impact of Remote Communication
Authors: Bruno Di Pace, Roxanne H. Padley
Abstract:
Aims: The recent increase in remote video interaction has increased the number of requests for teleconsultations with plastic surgeons in private practice (70% in the UK and 64% in the USA). This study investigated the motivations for such an increase and the underlying psychological impact on patients. Method: An anonymous web-based poll of 8 questions was designed and distributed to patients seeking cosmetic surgery through social networks in both Italy and the UK. The questions gathered responses regarding 1. Reasons for pursuing cosmetic surgery; 2. The effects of delays caused by the SARS-COV-2 pandemic; 3. The effects on mood; 4. The influence of video conferencing on body-image perception. Results: 85 respondents completed the online poll. Overall, 68% of respondents stated that seeing themselves more frequently online had influenced their decision to seek cosmetic surgery. The types of surgeries indicated were predominantly to the upper body and face (82%). Delays and access to surgeons during the pandemic were perceived as negatively impacting patients' moods (95%). Body-image perception and self-esteem were lower than in the pre-pandemic, particularly during lockdown (72%). Patients were more inclined to undergo cosmetic surgery during the pandemic, both due to the wish to improve their “lockdown face” for video conferencing (77%) and also due to the benefits of home recovery while in smart working (58%). Conclusions: Overall, findings suggest that video conferencing has led to a significant increase in requests for cosmetic surgery and the so-called “Zoom Boom” effect.Keywords: cosmetic surgery, remote communication, telehealth, zoom boom
Procedia PDF Downloads 1792270 A Bi-Objective Model to Optimize the Total Time and Idle Probability for Facility Location Problem Behaving as M/M/1/K Queues
Authors: Amirhossein Chambari
Abstract:
This article proposes a bi-objective model for the facility location problem subject to congestion (overcrowding). Motivated by implementations to locate servers in internet mirror sites, communication networks, one-server-systems, so on. This model consider for situations in which immobile (or fixed) service facilities are congested (or queued) by stochastic demand to behave as M/M/1/K queues. We consider for this problem two simultaneous perspectives; (1) Customers (desire to limit times of accessing and waiting for service) and (2) Service provider (desire to limit average facility idle-time). A bi-objective model is setup for facility location problem with two objective functions; (1) Minimizing sum of expected total traveling and waiting time (customers) and (2) Minimizing the average facility idle-time percentage (service provider). The proposed model belongs to the class of mixed-integer nonlinear programming models and the class of NP-hard problems. In addition, to solve the model, controlled elitist non-dominated sorting genetic algorithms (Controlled NSGA-II) and controlled elitist non-dominated ranking genetic algorithms (NRGA-I) are proposed. Furthermore, the two proposed metaheuristics algorithms are evaluated by establishing standard multiobjective metrics. Finally, the results are analyzed and some conclusions are given.Keywords: bi-objective, facility location, queueing, controlled NSGA-II, NRGA-I
Procedia PDF Downloads 5832269 Redefining Identity of People with Disabilities Based on Content Analysis of Instagram Accounts
Authors: Grzegorz Kubinski
Abstract:
The proposed paper is focused on forms of identity expression in people with disabilities (PWD) in the social networks like Instagram. Theoretical analysis widely proposes using the new media as an assistive tool for improving wellbeing and labour activities of PWD. This kind of use is definitely important and plays a key role in all social inclusion processes. However, Instagram is not a place where PWD only express their own problems, but in the opposite, allows them to construct a new definition of disability. In the paper, the problem how this different than a classical approach to disability is created by PWD will be discussed. This issue will be scrutinized mainly in two points. Firstly, the question of how disability is changed by other everyday activities, like fashion or sport, will be described. Secondly, and this could be seen as more important, the point how PWD redefining their bodies creating a different form of aesthetic will be presented. The paper is based on content analysis of Instagram accounts. About 20 accounts created by PWD were analyzed for 6 month period, taking into account elements like photos, comments and discussions. All those information were studied in relation to 'everyday life' category and 'aesthetic' category. Works by T. Siebers, L. J. Davis or R. McRuer were used as theoretical background. Conclusions and interpretations presented in the proposed paper show that the Internet can be used by PWD not only as prosthetic and assistive tools. PWD willingly use them as modes of expression their independence, agency and identity. The paper proposes that in further research this way of using the Internet communication by PWD should be taken into account as an important part of the understanding of disability.Keywords: body, disability, identity, new media
Procedia PDF Downloads 1372268 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 188