Search results for: computer assisted classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5079

Search results for: computer assisted classification

2409 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks

Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó

Abstract:

One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.

Keywords: citation networks, cross-field normalization, local cluster detection, scientometric indicators

Procedia PDF Downloads 203
2408 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 138
2407 The Coexistence of Dual Form of Malnutrition among Portuguese Institutionalized Elderly People

Authors: C. Caçador, M. J. Reis Lima, J. Oliveira, M. J. Veiga, M. Teixeira Veríssimo, F. Ramos, M. C. Castilho, E. Teixeira-Lemos

Abstract:

In the present study we evaluated the nutritional status of 214 institutionalized elderly residents of both genders, aged 65 years and older of 11 care homes located in the district of Viseu (center of Portugal). The evaluation was based on anthropometric measurements and the Mini Nutritional Assessment (MNA) score. The mean age of the subjects was 82.3 ± 6.1 years-old. Most of the elderly residents were female (72.0%). The majority had 4 years of formal education (51.9%) and was widowed (74.3%) or married (14.0%). Men presented a mean age of 81.2±8.5 years-old, weight 69.3±14.5 kg and BMI 25.33±6.5 kg/m2. In women, the mean age was 84.5±8.2 years-old, weight 61.2±14.7 kg and BMI 27.43±5.6 kg/m2. The evaluation of the nutritional status using the MNA score showed that 24.0% of the residents show a risk of undernutrition and 76.0% of them were well nourished. There was a high prevalence of obese (24.8%) and overweight residents (33.2%) according to the BMI. 7.5% were considered underweight. We also found that according to their waist circumference measurements 88.3% of the residents were at risk for cardiovascular disease (CVD) and 64.0% of them presented very high risk for CVD (WC≥88 cm for women and WC ≥102 cm for men). The present study revealed the coexistence of a dual form of malnutrition (undernourished and overweight) among the institutionalized Portuguese concomitantly with an excess of abdominal adiposity. The high prevalence of residents at high risk for CVD should not be overlooked. Given the vulnerability of the group of institutionalized elderly, our study highlights the importance of the classification of nutritional status based on both instruments: the BMI and the MNA.

Keywords: nutritional satus, MNA, BMI, elderly

Procedia PDF Downloads 324
2406 Low Power CMOS Amplifier Design for Wearable Electrocardiogram Sensor

Authors: Ow Tze Weng, Suhaila Isaak, Yusmeeraz Yusof

Abstract:

The trend of health care screening devices in the world is increasingly towards the favor of portability and wearability, especially in the most common electrocardiogram (ECG) monitoring system. This is because these wearable screening devices are not restricting the patient’s freedom and daily activities. While the demand of low power and low cost biomedical system on chip (SoC) is increasing in exponential way, the front end ECG sensors are still suffering from flicker noise for low frequency cardiac signal acquisition, 50 Hz power line electromagnetic interference, and the large unstable input offsets due to the electrode-skin interface is not attached properly. In this paper, a high performance CMOS amplifier for ECG sensors that suitable for low power wearable cardiac screening is proposed. The amplifier adopts the highly stable folded cascode topology and later being implemented into RC feedback circuit for low frequency DC offset cancellation. By using 0.13 µm CMOS technology from Silterra, the simulation results show that this front end circuit can achieve a very low input referred noise of 1 pV/√Hz and high common mode rejection ratio (CMRR) of 174.05 dB. It also gives voltage gain of 75.45 dB with good power supply rejection ratio (PSSR) of 92.12 dB. The total power consumption is only 3 µW and thus suitable to be implemented with further signal processing and classification back end for low power biomedical SoC.

Keywords: CMOS, ECG, amplifier, low power

Procedia PDF Downloads 248
2405 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 327
2404 Palyno-Morphological Characteristics of Gymnosperm Flora of Pakistan and Its Taxonomic Implications with Light Microscope and Scanning Electron Microscopy Methods

Authors: Raees Khan, Sheikh Z. Ul Abidin, Abdul S. Mumtaz, Jie Liu

Abstract:

The present study is intended to assess gymnosperms pollen flora of Pakistan using Light Microscope (LM) and Scanning Electron Microscopy (SEM) for its taxonomic significance in identification of gymnosperms. Pollens of 35 gymnosperm species (12 genera and five families) were collected from its various distributional sites of gymnosperms in Pakistan. LM and SEM were used to investigate different palyno-morphological characteristics. Five pollen types (i.e., Inaperturate, Monolete, Monoporate, Vesiculate-bisaccate, and Polyplicate) were observed. In equatorial view seven types of pollens were observed, in which ten species were sub-angular, nine species were triangular, six species were perprolate, three species were rhomboidal, three species were semi-angular, two species were rectangular and two species were prolate. While five types of pollen were observed in polar view, in which ten species were spheroidal, nine species were angular, eight were interlobate, six species were circular, and two species were elliptic. Eighteen species have rugulate and 17 species has faveolate ornamentation. Eighteen species have verrucate and 17 have gemmate type sculpturing. The data was analysed through cluster analysis. The study showed that these palyno-morphological features have significance value in classification and identification of gymnosperms. Based on these different palyno-morphological features, a taxonomic key was proposed for the accurate and fast identifications of gymnosperms from Pakistan.

Keywords: gymnosperms, palynology, Pakistan, taxonomy

Procedia PDF Downloads 221
2403 Customer Preference in the Textile Market: Fabric-Based Analysis

Authors: Francisca Margarita Ocran

Abstract:

Underwear, and more particularly bras and panties, are defined as intimate clothing. Strictly speaking, they enhance the place of women in the public or private satchel. Therefore, women's lingerie is a complex garment with a high involvement profile, motivating consumers to buy it not only by its functional utility but also by the multisensory experience it provides them. Customer behavior models are generally based on customer data mining, and each model is designed to answer questions at a specific time. Predicting the customer experience is uncertain and difficult. Thus, knowledge of consumers' tastes in lingerie deserves to be treated as an experiential product, where the dimensions of the experience motivating consumers to buy a lingerie product and to remain faithful to it must be analyzed in detail by the manufacturers and retailers to engage and retain consumers, which is why this research aims to identify the variables that push consumers to choose their lingerie product, based on an in-depth analysis of the types of fabrics used to make lingerie. The data used in this study comes from online purchases. Machine learning approach with the use of Python programming language and Pycaret gives us a precision of 86.34%, 85.98%, and 84.55% for the three algorithms to use concerning the preference of a buyer in front of a range of lingerie. Gradient Boosting, random forest, and K Neighbors were used in this study; they are very promising and rich in the classification of preference in the textile industry.

Keywords: consumer behavior, data mining, lingerie, machine learning, preference

Procedia PDF Downloads 90
2402 Detection and Quantification of Active Pharmaceutical Ingredients as Adulterants in Garcinia cambogia Slimming Preparations Using NIR Spectroscopy Combined with Chemometrics

Authors: Dina Ahmed Selim, Eman Shawky Anwar, Rasha Mohamed Abu El-Khair

Abstract:

A rapid, simple and efficient method with minimal sample treatment was developed for authentication of Garcinia cambogia fruit peel powder, along with determining undeclared active pharmaceutical ingredients (APIs) in its herbal slimming dietary supplements using near infrared spectroscopy combined with chemometrics. Five featured adulterants, including sibutramine, metformin, orlistat, ephedrine, and theophylline are selected as target compounds. The Near infrared spectral data matrix of authentic Garcinia cambogia fruit peel and specimens degraded by intentional contamination with the five selected APIs was subjected to hierarchical clustering analysis to investigate their bundling figure. SIMCA models were established to ensure the genuiness of Garcinia cambogia fruit peel which resulted in perfect classification of all tested specimens. Adulterated samples were utilized for construction of PLSR models based on different APIs contents at minute levels of fraud practices (LOQ < 0.2% w/w).The suggested approach can be applied to enhance and guarantee the safety and quality of Garcinia fruit peel powder as raw material and in dietary supplements.

Keywords: Garcinia cambogia, Quality control, NIR spectroscopy, Chemometrics

Procedia PDF Downloads 77
2401 The Fracture Resistance of Zirconia Based Dental Crowns from Cyclic Loading: A Function of Relative Wear Depth

Authors: T. Qasim, B. El Masoud, D. Ailabouni

Abstract:

This in vitro study focused on investigating the fatigue resistance of veneered zirconia molar crowns with different veneering ceramic thicknesses, simulating the relative wear depths under simulated cyclic loading. A mandibular first molar was prepared and then scanned using computer-aided design/computer-aided manufacturing (CAD/CAM) technology to fabricate 32 zirconia copings of uniform 0.5 mm thickness. The manufactured copings then veneered with 1.5 mm, 1.0 mm, 0.5 mm, and 0.0 mm representing 0%, 33%, 66%, and 100% relative wear of a normal ceramic thickness of 1.5 mm. All samples were thermally aged to 6000 thermo-cycles for 2 minutes with distilled water between 5 ˚C and 55 ˚C. The samples subjected to cyclic fatigue and fracture testing using SD Mechatronik chewing simulator. These samples are loaded up to 1.25x10⁶ cycles or until they fail. During fatigue, testing, extensive cracks were observed in samples with 0.5 mm veneering layer thickness. Veneering layer thickness 1.5-mm group and 1.0-mm group were not different in terms of resisting loads necessary to cause an initial crack or final failure. All ceramic zirconia-based crown restorations with varying occlusal veneering layer thicknesses appeared to be fatigue resistant. Fracture load measurement for all tested groups before and after fatigue loading exceeded the clinical chewing forces in the posterior region. In general, the fracture loads increased after fatigue loading and with the increase in the thickness of the occlusal layering ceramic.

Keywords: all ceramic, cyclic loading, chewing simulator, dental crowns, relative wear, thermally ageing

Procedia PDF Downloads 142
2400 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data

Authors: S. Jurado, E. Pazmino

Abstract:

Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.

Keywords: medial axis, pore-throat distribution, porosity, porous media

Procedia PDF Downloads 115
2399 A Graph Library Development Based on the Service-‎Oriented Architecture: Used for Representation of the ‎Biological ‎Systems in the Computer Algorithms

Authors: Mehrshad Khosraviani, Sepehr Najjarpour

Abstract:

Considering the usage of graph-based approaches in systems and synthetic biology, and the various types of ‎the graphs employed by them, a comprehensive graph library based ‎on the three-tier architecture (3TA) was previously introduced for full representation of the biological systems. Although proposing a 3TA-based graph library, three following reasons motivated us to redesign the graph ‎library based on the service-oriented architecture (SOA): (1) Maintaining the accuracy of the data related to an input graph (including its edges, its ‎vertices, its topology, etc.) without involving the end user:‎ Since, in the case of using 3TA, the library files are available to the end users, they may ‎be utilized incorrectly, and consequently, the invalid graph data will be provided to the ‎computer algorithms. However, considering the usage of the SOA, the operation of the ‎graph registration is specified as a service by encapsulation of the library files. In other words, overall control operations needed for registration of the valid data will be the ‎responsibility of the services. (2) Partitioning of the library product into some different parts: Considering 3TA, a whole library product was provided in general. While here, the product ‎can be divided into smaller ones, such as an AND/OR graph drawing service, and each ‎one can be provided individually. As a result, the end user will be able to select any ‎parts of the library product, instead of all features, to add it to a project. (3) Reduction of the complexities: While using 3TA, several other libraries must be needed to add for connecting to the ‎database, responsibility of the provision of the needed library resources in the SOA-‎based graph library is entrusted with the services by themselves. Therefore, the end user ‎who wants to use the graph library is not involved with its complexity. In the end, in order to ‎make ‎the library easier to control in the system, and to restrict the end user from accessing the files, ‎it was preferred to use the service-oriented ‎architecture ‎‎(SOA) over the three-tier architecture (3TA) and to redevelop the previously proposed graph library based on it‎.

Keywords: Bio-Design Automation, Biological System, Graph Library, Service-Oriented Architecture, Systems and Synthetic Biology

Procedia PDF Downloads 311
2398 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed; and, the scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.

Keywords: computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity

Procedia PDF Downloads 161
2397 Evaluating Models Through Feature Selection Methods Using Data Driven Approach

Authors: Shital Patil, Surendra Bhosale

Abstract:

Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.

Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE

Procedia PDF Downloads 118
2396 Polarization of Lithuanian Society on Issues Related to Language Politics

Authors: Eglė Žurauskaitė, Eglė Gudavičienė

Abstract:

The goal of this paper is to reveal how polarization is constructed through the use of impoliteness strategies. In general, media helps to spread various ideas very fast, and it means that processes of polarization are best revealed in computer-mediated communication (CMC) contexts. For this reason, data for the research was collected from online texts about a current, very diverse topic in Lithuania - Lithuanian language policy and regulations, because this topic is causing a lot of tension in Lithuanian society. Computer-mediated communication allows users to edit their message before they send it. It means that addressees carefully select verbal expressions to convey their message. In other words, each impoliteness strategy and its verbal expression were created intentionally. Impoliteness strategies in this research are understood as various ways to reach a communicative goal: belittle the other. To reach the goal, the public opinions of various Lithuanian public figures (e. g., cultural people, politicians, officials) were collected from new portals in 2019–2023 and analyzed using both quantitative and qualitative approaches. First, problematic aspects of the language policy, for which public figures complain, were identified. Then instances when public figures take a defensive position were analyzed: how they express this position and what it reveals about Lithuanian culture. Findings of this research demonstrate how concepts of impoliteness theory can be applied in analyzing the process of polarization in Lithuanian society on issues related to the State language policy. Also, to reveal how polarization is constructed, these tasks were set: a) determine which impoliteness strategies are used throughout the process of creating polarization, b) analyze how they were expressed verbally (e. g., as an advice, offer, etc.).

Keywords: impoliteness, Lithuanian language policy, polarization, impoliteness strategies

Procedia PDF Downloads 57
2395 An Examination of Changes on Natural Vegetation due to Charcoal Production Using Multi Temporal Land SAT Data

Authors: T. Garba, Y. Y. Babanyara, M. Isah, A. K. Muktari, R. Y. Abdullahi

Abstract:

The increased in demand of fuel wood for heating, cooking and sometimes bakery has continued to exert appreciable impact on natural vegetation. This study focus on the use of multi-temporal data from land sat TM of 1986, land sat EMT of 1999 and lands sat ETM of 2006 to investigate the changes of Natural Vegetation resulting from charcoal production activities. The three images were classified based on bare soil, built up areas, cultivated land, and natural vegetation, Rock out crop and water bodies. From the classified images Land sat TM of 1986 it shows natural vegetation of the study area to be 308,941.48 hectares equivalent to 50% of the area it then reduces to 278,061.21 which is 42.92% in 1999 it again depreciated to 199,647.81 in 2006 equivalent to 30.83% of the area. Consequently cultivated continue increasing from 259,346.80 hectares (42%) in 1986 to 312,966.27 hectares (48.3%) in 1999 and then to 341.719.92 hectares (52.78%). These show that within the span of 20 years (1986 to 2006) the natural vegetation is depreciated by 119,293.81 hectares. This implies that if the menace is not control the natural might likely be lost in another twenty years. This is because forest cleared for charcoal production is normally converted to farmland. The study therefore concluded that there is the need for alternatives source of domestic energy such as the use of biomass which can easily be accessible and affordable to people. In addition, the study recommended that there should be strong policies enforcement for the protection forest reserved.

Keywords: charcoal, classification, data, images, land use, natural vegetation

Procedia PDF Downloads 365
2394 Implementation of a Baseline RISC for the Realization of a Dynamically Reconfigurable Processor

Authors: Hajer Najjar, Riad Bourguiba, Jaouhar Mouine

Abstract:

Reduced instruction set computer (RISC) processors are widely used because of their multiple advantages. In fact, they are based on a simple instruction set so that they increase the speed of the processor and reduce its energy consumption. In this paper, we will present a basic RISC architecture processor that will be developed later to converge to a new architecture with runtime reconfiguration.

Keywords: processor, RISC, DLX, pipeline, runtime reconfiguration

Procedia PDF Downloads 405
2393 Introducing Standardized Nursing Language in Reporting Nursing Care in Resource-Limited Care Environments: An Exploratory Study

Authors: Naomi Mutea, Jossete Jones

Abstract:

The project aimed at exploring the views and perceptions of nurse leaders and educators regarding use of International Classification for Nursing Practice (ICNP) in an informal approach which involved face to face discussions, after which a decision would be made on whether to proceed and propose introduction of ICNP project in Kenya as a pilot project which would mean all nurses would use a standard approach to reporting and documenting nursing care. In addition the project was to determine the best approaches/methods that can be used to introduce ICNP in the Kenyan nursing education and practice environment using the findings of the pilot project. Further four cardex reports were reviewed to establish if nurses on the bedside used a standardized language in documenting and reporting care processes. The cardex reports showed that nurses do not use ICNP or any other standardized language. The results of the discussions revealed that this would be a challenge due to several challenges experienced in conducting nursing research in resource-limited environments. The following questions were asked during the informal discussions with the educators/leaders: •What is currently being taught in terms of standardized nursing language? •Are you familiar with ICNP? •Do you view it advantageous to have a standardized language? •What is the greatest need at the moment in terms of curriculum development for BSN regarding use of standardized nursing language? •If you had a wish to change something in your curriculum, what would that be?

Keywords: nursing, standardized language, ICNP, resource-limited care environments

Procedia PDF Downloads 417
2392 Analysis of the 2023 Karnataka State Elections Using Online Sentiment

Authors: Pranav Gunhal

Abstract:

This paper presents an analysis of sentiment on Twitter towards the Karnataka elections held in 2023, utilizing transformer-based models specifically designed for sentiment analysis in Indic languages. Through an innovative data collection approach involving a combination of novel methods of data augmentation, online data preceding the election was analyzed. The study focuses on sentiment classification, effectively distinguishing between positive, negative, and neutral posts while specifically targeting the sentiment regarding the loss of the Bharatiya Janata Party (BJP) or the win of the Indian National Congress (INC). Leveraging high-performing transformer architectures, specifically IndicBERT, coupled with specifically fine-tuned hyperparameters, the AI models employed in this study achieved remarkable accuracy in predicting the INC’s victory in the election. The findings shed new light on the potential of cutting-edge transformer-based models in capturing and analyzing sentiment dynamics within the Indian political landscape. The implications of this research are far-reaching, providing invaluable insights to political parties for informed decision-making and strategic planning in preparation for the forthcoming 2024 Lok Sabha elections in the nation.

Keywords: sentiment analysis, twitter, Karnataka elections, congress, BJP, transformers, Indic languages, AI, novel architectures, IndicBERT, lok sabha elections

Procedia PDF Downloads 85
2391 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network

Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon

Abstract:

In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the Spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are Class balancing, Data shuffling, and Standardization were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the Sequential model and Relu activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.

Keywords: neural network, pineapple, soluble solid content, spectroscopy

Procedia PDF Downloads 75
2390 Creation of an Integrated Development Environment to Assist and Optimize the Learning the Languages C and C++

Authors: Francimar Alves, Marcos Castro, Marllus Lustosa

Abstract:

In the context of the teaching of computer programming, the choice of tool to use is very important in the initiation and continuity of learning a programming language. The literature tools do not always provide usability and pedagogical dynamism clearly and accurately for effective learning. This hypothesis implies fall in productivity and difficulty of learning a particular programming language by students. The integrated development environments (IDEs) Dev-C ++ and Code :: Blocks are widely used in introductory courses for undergraduate courses in Computer Science for learning C and C ++ languages. However, after several years of discontinuity maintaining the source code of Dev-C ++ tool, the continued use of the same in the teaching and learning process of the students of these institutions has led to difficulties, mainly due to the lack of update by the official developers, which resulted in a sequence of problems in using it on educational settings. Much of the users, dissatisfied with the IDE Dev-C ++, migrated to Code :: Blocks platform targeting the more dynamic range in the learning process of the C and C ++ languages. Nevertheless, there is still the need to create a tool that can provide the resources of most IDE's software development literature, however, more interactive, simple, accurate and efficient. This motivation led to the creation of Falcon C ++ tool, IDE that brings with features that turn it into an educational platform, which focuses primarily on increasing student learning index in the early disciplines of programming and algorithms that use the languages ​​C and C ++ . As a working methodology, a field research to prove the truth of the proposed tool was used. The test results and interviews with entry-level students and intermediate in a postsecondary institution gave basis for the composition of this work, demonstrating a positive impact on the use of the tool in teaching programming, showing that the use of Falcon C ++ software is beneficial in the teaching process of the C and C ++ programming languages.

Keywords: ide, education, learning, development, language

Procedia PDF Downloads 443
2389 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images

Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi

Abstract:

Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.

Keywords: biometric measurements, fetal head malformations, machine learning methods, US images

Procedia PDF Downloads 288
2388 Thermomechanical Effects and Nanoscale Ripples in Graphene

Authors: Roderick Melnik, Sanjay Prabhakar

Abstract:

The relaxed state of graphene nanostructures due to externally applied tensile stress along both the armchair and zigzag directions are analyzed in detail. The results, obtained with the Finite Element Method (FEM), demonstrate that the amplitude of ripple waves in such nanostructures increases with temperature. Details of the multi-scale multi-physics computational procedure developed for this analysis are also provided.

Keywords: nanostructures, modeling, coupled processes, computer-aided design, nanotechnological applications

Procedia PDF Downloads 315
2387 Temperature Dependence of Photoluminescence Intensity of Europium Dinuclear Complex

Authors: Kwedi L. M. Nsah, Hisao Uchiki

Abstract:

Quantum computation is a new and exciting field making use of quantum mechanical phenomena. In classical computers, information is represented as bits, with values either 0 or 1, but a quantum computer uses quantum bits in an arbitrary superposition of 0 and 1, enabling it to reach beyond the limits predicted by classical information theory. lanthanide ion quantum computer is an organic crystal, having a lanthanide ion. Europium is a favored lanthanide, since it exhibits nuclear spin coherence times, and Eu(III) is photo-stable and has two stable isotopes. In a europium organic crystal, the key factor is the mutual dipole-dipole interaction between two europium atoms. Crystals of the complex were formed by making a 2 :1 reaction of Eu(fod)3 and bpm. The transparent white crystals formed showed brilliant red luminescence with a 405 nm laser. The photoluminescence spectroscopy was observed both at room and cryogenic temperatures (300-14 K). The luminescence spectrum of [Eu(fod)3(μ-bpm) Eu(fod)3] showed characteristic of Eu(III) emission transitions in the range 570–630 nm, due to the deactivation of 5D0 emissive state to 7Fj. For the application of dinuclear Eu3+ complex to q-bit device, attention was focused on 5D0 -7F0 transition, around 580 nm. The presence of 5D0 -7F0 transition at room temperature revealed that at least one europium symmetry had no inversion center. Since the line was unsplit by the crystal field effect, any multiplicity observed was due to a multiplicity of Eu3+ sites. For q-bit element, more narrow line width of 5D0 → 7F0 PL band in Eu3+ ion was preferable. Cryogenic temperatures (300 K – 14 K) was applicable to reduce inhomogeneous broadening and distinguish between ions. A CCD image sensor was used for low temperature Photoluminescence measurement, and a far better resolved luminescent spectrum was gotten by cooling the complex at 14 K. A red shift by 15 cm-1 in the 5D0 - 7F0 peak position was observed upon cooling, the line shifted towards lower wavenumber. An emission spectrum at the 5D0 - 7F0 transition region was obtained to verify the line width. At this temperature, a peak with magnitude three times that at room temperature was observed. The temperature change of the 5D0 state of Eu(fod)3(μ-bpm)Eu(fod)3 showed a strong dependence in the vicinity of 60 K to 100 K. Thermal quenching was observed at higher temperatures than 100 K, at which point it began to decrease slowly with increasing temperature. The temperature quenching effect of Eu3+ with increase temperature was caused by energy migration. 100 K was the appropriate temperature for the observation of the 5D0 - 7F0 emission peak. Europium dinuclear complex bridged by bpm was successfully prepared and monitored at cryogenic temperatures. At 100 K the Eu3+-dope complex has a good thermal stability and this temperature is appropriate for the observation of the 5D0 - 7F0 emission peak. Sintering the sample above 600o C could also be a method to consider but the Eu3+ ion can be reduced to Eu2+, reasons why cryogenic temperature measurement is preferably over other methods.

Keywords: Eu(fod)₃, europium dinuclear complex, europium ion, quantum bit, quantum computer, 2, 2-bipyrimidine

Procedia PDF Downloads 180
2386 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 170
2385 Trace Analysis of Genotoxic Impurity Pyridine in Sitagliptin Drug Material Using UHPLC-MS

Authors: Bashar Al-Sabti, Jehad Harbali

Abstract:

Background: Pyridine is a reactive base that might be used in preparing sitagliptin. International Agency for Research on Cancer classifies pyridine in group 2B; this classification means that pyridine is possibly carcinogenic to humans. Therefore, pyridine should be monitored at the allowed limit in sitagliptin pharmaceutical ingredients. Objective: The aim of this study was to develop a novel ultra high performance liquid chromatography mass spectrometry (UHPLC-MS) method to estimate the quantity of pyridine impurity in sitagliptin pharmaceutical ingredients. Methods: The separation was performed on C8 shim-pack (150 mm X 4.6 mm, 5 µm) in reversed phase mode using a mobile phase of water-methanol-acetonitrile containing 4 mM ammonium acetate in gradient mode. Pyridine was detected by mass spectrometer using selected ionization monitoring mode at m/z = 80. The flow rate of the method was 0.75 mL/min. Results: The method showed excellent sensitivity with a quantitation limit of 1.5 ppm of pyridine relative to sitagliptin. The linearity of the method was excellent at the range of 1.5-22.5 ppm with a correlation coefficient of 0.9996. Recoveries values were between 93.59-103.55%. Conclusions: The results showed good linearity, precision, accuracy, sensitivity, selectivity, and robustness. The studied method was applied to test three batches of sitagliptin raw materials. Highlights: This method is useful for monitoring pyridine in sitagliptin during its synthesis and testing sitagliptin raw materials before using them in the production of pharmaceutical products.

Keywords: genotoxic impurity, pyridine, sitagliptin, UHPLC -MS

Procedia PDF Downloads 95
2384 Stereo Motion Tracking

Authors: Yudhajit Datta, Hamsi Iyer, Jonathan Bandi, Ankit Sethia

Abstract:

Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.

Keywords: kalman filter, stereo vision, motion tracking, matlab, object tracking, camera calibration, computer vision system toolbox

Procedia PDF Downloads 327
2383 Short Answer Grading Using Multi-Context Features

Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan

Abstract:

Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.

Keywords: artificial intelligence, intelligent systems, natural language processing, text mining

Procedia PDF Downloads 133
2382 Capitalizing 'Ba' in a Knowledge Creation among Medical Researchers in Malaysian Higher Education Institution

Authors: Connie Edang, Siti Arpah Noordin, Shamila Mohamed Shuhidan

Abstract:

For the past few decades, there are growing numbers of knowledge based industries in Malaysia. As competitive edge has become so important nowadays, the consideration of research and development (R&D) should be put at the highest priority. Alike other industries, HEIs are also contributors to the nation’s development and wealth. Hence, to become a hub for creating a knowledge-based society, HEIs not only responsible for producing skillful human capital, but also to get involved in R&D. With the importance of R&D in today’s modern economy and the rise of Science and Technology, it gives opportunities for researchers to explore this sector as to place Malaysia as a provider in some key strategic industries, including medical and health sciences field. Academic researchers/medical researchers possess unique tacit and skills based in accordance with their experience and professional expert areas. In completing a collaborative research work, there must be platforms to enable the conversion of their knowledge hence beneficial towards creation of new knowledge. The objectives of this study are to: i) explore the knowledge creation activities of medical researchers in the Malaysian Higher Education Institution (HEI); ii) explore the driving forces for knowledge creation activities among the researchers; and iii) explore the interpretation of medical researchers on the establishment of ‘ba’ in the creation of knowledge. Based on the SECI model was introduced by Nonaka and Takeuchi and the Japanese concept of ‘ba’, a qualitative study whereby semi structured interview was used as to gather the informants’ viewpoints and insights based on their experience capitalizing ‘ba’ to support their knowledge creation activities. A single the study was conducted at one of the HEIs located in Sabah. From this study, both face to face and the ICT-assisted tools are found to be significant to support interaction of their knowledge. ICT seems to ease their interaction with other research collaborator. However, this study revealed that interaction conducted in physical settings is still be best preferred by the medical researchers especially situations of whereby their knowledge is hard to be externalized. Moreover, it revealed that motivational factors play important roles as for driving forces affecting their knowledge creation activities. Other than that, the medical researchers addressed that the mix interaction bring forth value in terms of facilitating knowledge creation. Therefore this study would benefit the institution to highly optimize the utilization of good platform so that knowledge can be transferred and be made used by others in appropriate ways.

Keywords: ‘ba’, knowledge creation dynamics, Malaysia, higher education institution, medical researchers

Procedia PDF Downloads 215
2381 Natural User Interface Adapter: Enabling Natural User Interface for Non-Natural User Interface Applications

Authors: Vijay Kumar Kolagani, Yingcai Xiao

Abstract:

Adaptation of Natural User Interface (NUI) has been slow and limited. NUI devices like Microsoft’s Kinect and Ultraleap’s Leap Motion can only interact with a handful applications that were specifically designed and implemented for them. A NUI device just can’t be used to directly control millions of applications that are not designed to take NUI input. This is in the similar situation like the adaptation of color TVs. At the early days of color TV, the broadcasting format was in RGB, which was not viewable by blackand-white TVs. TV broadcasters were reluctant to produce color programs due to limited viewership. TV viewers were reluctant to buy color TVs because there were limited programs to watch. Color TV’s breakthrough moment came after the adaptation of NTSC standard which allowed color broadcasts to be compatible with the millions of existing black-and-white TVs. This research presents a framework to use NUI devices to control existing non-NUI applications without reprogramming them. The methodology is to create an adapter to convert input from NUI devices into input compatible with that generated by CLI (Command Line Input) and GUI (Graphical User Interface) devices. The CLI/GUI compatible input is then sent to the active application through the operating system just like any input from a CLI/GUI device to control the non-NUI program that the user is controlling. A sample adapter has been created to convert input from Kinect to keyboard strokes, so one can use the input from Kinect to control any applications that take keyboard input, such as Microsoft’s PowerPoint. When the users use the adapter to control their PowerPoint presentations, they can free themselves from standing behind a computer to use its keyboard and can roam around in front of the audience to use hand gestures to control the PowerPoint. It is hopeful such adapters can accelerate the adaptation of NUI devices.

Keywords: command line input, graphical user interface, human computer interaction, natural user interface, NUI adapter

Procedia PDF Downloads 14
2380 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality

Procedia PDF Downloads 193