Search results for: attendance system
15115 A Survey of Domain Name System Tunneling Attacks: Detection and Prevention
Authors: Lawrence Williams
Abstract:
As the mechanism which converts domains to internet protocol (IP) addresses, Domain Name System (DNS) is an essential part of internet usage. It was not designed securely and can be subject to attacks. DNS attacks have become more frequent and sophisticated and the need for detecting and preventing them becomes more important for the modern network. DNS tunnelling attacks are one type of attack that are primarily used for distributed denial-of-service (DDoS) attacks and data exfiltration. Discussion of different techniques to detect and prevent DNS tunneling attacks is done. The methods, models, experiments, and data for each technique are discussed. A proposal about feasibility is made. Future research on these topics is proposed.Keywords: DNS, tunneling, exfiltration, botnet
Procedia PDF Downloads 8115114 Harmonic Data Preparation for Clustering and Classification
Authors: Ali Asheibi
Abstract:
The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.Keywords: data mining, harmonic data, clustering, classification
Procedia PDF Downloads 25215113 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 16415112 Integrating Reactive Chlorine Species Generation with H2 Evolution in a Multifunctional Photoelectrochemical System for Low Operational Carbon Emissions Saline Sewage Treatment
Authors: Zexiao Zheng, Irene M. C. Lo
Abstract:
Organic pollutants, ammonia, and bacteria are major contaminants in sewage, which may adversely impact ecosystems without proper treatment. Conventional wastewater treatment plants (WWTPs) are operated to remove these contaminants from sewage but suffer from high carbon emissions and are powerless to remove emerging organic pollutants (EOPs). Herein, we have developed a low operational carbon emissions multifunctional photoelectrochemical (PEC) system for saline sewage treatment to simultaneously remove organic compounds, ammonia, and bacteria, coupled with H2 evolution. A reduced BiVO4 (r-BiVO4) with improved PEC properties due to the construction of oxygen vacancies and V4+ species was developed for the multifunctional PEC system. The PEC/r-BiVO4 process could treat saline sewage to meet local WWTPs’ discharge standard in 40 minutes at 2.0 V vs. Ag/AgCl and completely degrade carbamazepine (one of the EOPs), coupled with significant evolution of H2. A remarkable reduction in operational carbon emissions was achieved by the PEC/r-BiVO4 process compared with large-scale WWTPs, attributed to the restrained direct carbon emissions from the generation of greenhouse gases. Mechanistic investigation revealed that the PEC system could activate chloride ions in sewage to generate reactive chlorine species and facilitate •OH production, promoting contaminants removal. The PEC system exhibited operational feasibility at different pH and total suspended solids concentrations and has outstanding reusability and stability, confirming its promising practical potential. The study combined the simultaneous removal of three major contaminants from saline sewage and H2 evolution in a single PEC process, demonstrating a viable approach to supplementing and extending the existing wastewater treatment technologies. The study generated profound insights into the in-situ activation of existing chloride ions in sewage for contaminants removal and offered fundamental theories for applying the PEC system in sewage remediation with low operational carbon emissions. The developed PEC system can fit well with the future needs of wastewater treatment because of the following features: (i) low operational carbon emissions, benefiting the carbon neutrality process; (ii) higher quality of the effluent due to the elimination of EOPs; (iii) chemical-free in the operation of sewage treatment; (iv) easy reuse and recycling without secondary pollution.Keywords: contaminants removal, H2 evolution, multifunctional PEC system, operational carbon emissions, saline sewage treatment, r-BiVO4 photoanodes
Procedia PDF Downloads 16415111 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.Keywords: early warning system, knowledge management, market prediction, topic modeling.
Procedia PDF Downloads 34315110 Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants
Authors: Mehmet Akif Bütüner, İlhan Koşalay
Abstract:
Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows.Keywords: hydroelectric, governor, anomaly detection, machine learning, regression
Procedia PDF Downloads 10115109 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets
Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi
Abstract:
Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.Keywords: data sets, recommendation system, utility item sets, frequent item sets mining
Procedia PDF Downloads 29715108 Robson System Analysis in Kyiv Perinatal Centre
Authors: Victoria Bila, Iryna Ventskivska, Oleksandra Zahorodnia
Abstract:
The goal of the study: To study the distribution of patients of the Kiyv Perinatal Center according to the Robson system and compare it with world data. Materials and methods: a comparison of the distribution of patients of Kiyv Perinatal center according to the Robson system for 2 periods - the first quarter of 2019 and 2020. For each group, 3 indicators were analyzed - the share of this group in the overall structure of patients of the Perinatal Center for the reporting period, the frequency of abdominal delivery in this group, as well as the contribution of this group to the total number of abdominal delivery. Obtained data were compared with those of the WHO in the guidelines for the implementation of the Robson system in 2017. Results and its discussion: The distribution of patients of the Perinatal Center into groups in the Robson classification is not much different from that recommended by the author. So, among all women, patients of group 1 dominate; this indicator does not change in dynamics. A slight increase in the share of group 2 (6.7% in 2019 and 9.3% - 2020) was due to an increase in the number of labor induction. At the same time, the number of patients of groups 1 and 2 in the Perinatal Center is greater than in the world population, which is determined by the hospitalization of primiparous women with reproductive losses in the past. The Perinatal Center is distinguished from the world population and the proportion of women of group 5 - it was 5.4%, in the world - 7.6%. The frequency of caesarean section in the Perinatal Center is within limits typical for most countries (20.5-20.8%). Moreover, the dominant groups in the structure of caesarean sections are group 5 (21-23.3%) and group 2 (21.9-22.9%), which are the reserve for reducing the number of abdominal delivery. In group 2, certain results have already been achieved in this matter - the frequency of cesarean section in 2019 here amounted to 67.8%, in the first quarter of 2020 - 51.6%. This happened due to a change in the leading method of induction of labor. Thus, the Robson system is a convenient and affordable tool for assessing the structure of caesarean sections. The analysis showed that, in general, the structure of caesarean sections in the Perinatal Center is close to world data, and the identified deviations have explanations related to the specialization of the Center.Keywords: cesarian section, Robson system, Kyiv Perinatal Center, labor induction
Procedia PDF Downloads 14115107 Solution for Thick Plate Resting on Winkler Foundation by Symplectic Geometry Method
Authors: Mei-Jie Xu, Yang Zhong
Abstract:
Based on the symplectic geometry method, the theory of Hamilton system can be applied in the analysis of problem solved using the theory of elasticity and in the solution of elliptic partial differential equations. With this technique, this paper derives the theoretical solution for a thick rectangular plate with four free edges supported on a Winkler foundation by variable separation method. In this method, the governing equation of thick plate was first transformed into state equations in the Hamilton space. The theoretical solution of this problem was next obtained by applying the method of variable separation based on the Hamilton system. Compared with traditional theoretical solutions for rectangular plates, this method has the advantage of not having to assume the form of deflection functions in the solution process. Numerical examples are presented to verify the validity of the proposed solution method.Keywords: symplectic geometry method, Winkler foundation, thick rectangular plate, variable separation method, Hamilton system
Procedia PDF Downloads 31015106 Removal of Heavy Metals from Municipal Wastewater Using Constructed Rhizofiltration System
Authors: Christine A. Odinga, G. Sanjay, M. Mathew, S. Gupta, F. M. Swalaha, F. A. O. Otieno, F. Bux
Abstract:
Wastewater discharged from municipal treatment plants contain an amalgamation of trace metals. The presence of metal pollutants in wastewater poses a huge challenge to the choice and applications of the preferred treatment method. Conventional treatment methods are inefficient in the removal of trace metals due to their design approach. This study evaluated the treatment performance of a constructed rhizofiltration system in the removal of heavy metals from municipal wastewater. The study was conducted at an eThekwni municipal wastewater treatment plant in Kingsburgh - Durban in the province of KwaZulu-Natal. The construction details of the pilot-scale rhizofiltration unit included three different layers of substrate consisting of medium stones, coarse gravel and fine sand. The system had one section planted with Phragmites australis L. and Kyllinga nemoralis L. while the other section was unplanted and acted as the control. Influent, effluent and sediment from the system were sampled and assessed for the presence of and removal of selected trace heavy metals using standard methods. Efficiency of metals removal was established by gauging the transfer of metals into leaves, roots and stem of the plants by calculations based on standard statistical packages. The Langmuir model was used to assess the heavy metal adsorption mechanisms of the plants. Heavy metals were accumulated in the entire rhizofiltration system at varying percentages of 96.69% on planted and 48.98% on control side for cadmium. Chromium was 81% and 24%, Copper was 23.4% and 1.1%, Nickel was 72% and 46.5, Lead was 63% and 31%, while Zinc was 76% and 84% on the on the water and sediment of the planted and control sides of the rhizofilter respectively. The decrease in metal adsorption efficiencies on the planted side followed the pattern of Cd>Cr>Zn>Ni>Pb>Cu and Ni>Cd>Pb>Cr>Cu>Zn on the control side. Confirmatory analysis using Electron Scanning Microscopy revealed that higher amounts of metals was deposited in the root system with values ranging from 0.015mg/kg (Cr), 0.250 (Cu), 0.030 (Pb) for P. australis, and 0.055mg/kg (Cr), 0.470mg/kg (Cu) and 0.210mg/kg,(Pb) for K. nemoralis respectively. The system was found to be efficient in removing and reducing metals from wastewater and further research is necessary to establish the immediate mechanisms that the plants display in order to achieve these reductions.Keywords: wastewater treatment, Phragmites australis L., Kyllinga nemoralis L., heavy metals, pathogens, rhizofiltration
Procedia PDF Downloads 26915105 DQN for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, gazebo, navigation
Procedia PDF Downloads 12015104 Decentralized Data Marketplace Framework Using Blockchain-Based Smart Contract
Authors: Meshari Aljohani, Stephan Olariu, Ravi Mukkamala
Abstract:
Data is essential for enhancing the quality of life. Its value creates chances for users to profit from data sales and purchases. Users in data marketplaces, however, must share and trade data in a secure and trusted environment while maintaining their privacy. The first main contribution of this paper is to identify enabling technologies and challenges facing the development of decentralized data marketplaces. The second main contribution is to propose a decentralized data marketplace framework based on blockchain technology. The proposed framework enables sellers and buyers to transact with more confidence. Using a security deposit, the system implements a unique approach for enforcing honesty in data exchange among anonymous individuals. Before the transaction is considered complete, the system has a time frame. As a result, users can submit disputes to the arbitrators which will review them and respond with their decision. Use cases are presented to demonstrate how these technologies help data marketplaces handle issues and challenges.Keywords: blockchain, data, data marketplace, smart contract, reputation system
Procedia PDF Downloads 16115103 Monitoring the Fiscal Health of Taiwan’s Local Government: Application of the 10-Point Scale of Fiscal Distress
Authors: Yuan-Hong Ho, Chiung-Ju Huang
Abstract:
This article presents a monitoring indicators system that predicts whether a local government in Taiwan is heading for fiscal distress and identifies a suitable fiscal policy that would allow the local government to achieve fiscal balance in the long run. This system is relevant to stockholders’ interest, simple for national audit bodies to use, and provides an early warning of fiscal distress that allows preventative action to be taken.Keywords: fiscal health, fiscal distress, monitoring signals, 10-point scale
Procedia PDF Downloads 46315102 Patients’ Trust in Health Care Systems
Authors: Dilara Usta, Fatos Korkmaz
Abstract:
Background: Individuals who utilise health services maintain relationships with health professionals, insurers and institutions. The nature of these relationships requires service receivers to have trust in the service providers because maintaining health services without reciprocal trust is very difficult. Therefore, individual evaluations of trust within the scope of health services have become increasingly important. Objective: To investigate patients’ trust in the health-care system and their relevant socio-demographical characteristics. Methods: This research was conducted using a descriptive design which included 493 literate patients aged 18-65 years who were hospitalised for a minimum of two days at public university and training&research hospitals in Ankara, Turkey. Patients’ trust in health-care professionals, insurers, and institutions were investigated. Data were collected using a demographic questionnaire and the Multidimensional Trust in Health-Care Systems Scale between September 2015 and April 2016. Results: The participants’ mean age was 47.7±13.1; 70% had a moderate income and 69% had a prior hospitalisation and 63.5% of the patients were satisfied with the health-care services. The mean Multidimensional Trust in Health-Care Systems Scale score for the sample was 61.5±8.3; the provider subscale had a mean of 38.1±5, the insurers subscale had a mean of 12.9±3.7, and institutions subscale had a mean of 10.6±1.9. Conclusion: Patients’ level of trust in the health-care system was above average and the trust level of the patients with higher educational and socio-economic levels was lower compared to the other patients. Health-care professionals should raise awareness about the significance of trust in the health-care system.Keywords: delivery of health care, health care system, nursing, patients, trust
Procedia PDF Downloads 37415101 Filtering and Reconstruction System for Grey-Level Forensic Images
Authors: Ahd Aljarf, Saad Amin
Abstract:
Images are important source of information used as evidence during any investigation process. Their clarity and accuracy is essential and of the utmost importance for any investigation. Images are vulnerable to losing blocks and having noise added to them either after alteration or when the image was taken initially, therefore, having a high performance image processing system and it is implementation is very important in a forensic point of view. This paper focuses on improving the quality of the forensic images. For different reasons packets that store data can be affected, harmed or even lost because of noise. For example, sending the image through a wireless channel can cause loss of bits. These types of errors might give difficulties generally for the visual display quality of the forensic images. Two of the images problems: noise and losing blocks are covered. However, information which gets transmitted through any way of communication may suffer alteration from its original state or even lose important data due to the channel noise. Therefore, a developed system is introduced to improve the quality and clarity of the forensic images.Keywords: image filtering, image reconstruction, image processing, forensic images
Procedia PDF Downloads 36815100 Determination of Neighbor Node in Consideration of the Imaging Range of Cameras in Automatic Human Tracking System
Authors: Kozo Tanigawa, Tappei Yotsumoto, Kenichi Takahashi, Takao Kawamura, Kazunori Sugahara
Abstract:
An automatic human tracking system using mobile agent technology is realized because a mobile agent moves in accordance with a migration of a target person. In this paper, we propose a method for determining the neighbor node in consideration of the imaging range of cameras.Keywords: human tracking, mobile agent, Pan/Tilt/Zoom, neighbor relation
Procedia PDF Downloads 51915099 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering
Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda
Abstract:
The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.Keywords: data-intensive science, image classification, content-based image retrieval, aurora
Procedia PDF Downloads 45215098 In-Silico Investigation of Phytochemicals from Ocimum Sanctum as Plausible Antiviral Agent in COVID-19
Authors: Dileep Kumar, Janhavi Ramchandra Rao Kumar, Rao
Abstract:
COVID-19 has ravaged the globe, and it is spreading its Spectre day by day. In the absence of established drugs, this disease has created havoc. Some of the infected persons are symptomatic or asymptomatic. The respiratory system, cardiac system, digestive system, etc. in human beings are affected by this virus. In our present investigation, we have undertaken a study of the Indian Ayurvedic herb, Ocimum sanctum against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. MM-GBSA based binding free energy calculations also suggest the most favorable binding affinities of carvacrol, β elemene, and β caryophyllene with binding energies of −61.61, 58.23, and −54.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. It rekindles our hope for the design and development of new drug candidates for the treatment of COVID19.Keywords: molecular docking, COVID-19, ocimum sanctum, binding energy
Procedia PDF Downloads 19015097 The Developing of Knowledge-Based System for the Medical Treatment with Herbs
Authors: Rujijan Vichivanives
Abstract:
This research aims to create a knowledge-based system as a database for self-healthcare analysis, diagnosis of simple illnesses, and the use of Thai herbs instead of modern medicine by using principles of Thai traditional medication theory. These were disseminated by website network programs within Suan Sunandha Rajabhat University. The population used in this study was divided into two groups: the first group consisted of four experts of Thai traditional medication and the second group was 300 website users. The methods used for collecting data were paper questionnaires and poll questionnaires on the website. The statistics used for analyzing data was at an average level. The results were divided into three parts: the first part was the development of a knowledge-based system and the second part was applied programs on website. Both parts could be fulfilled and achieved according to the set goal. The third part was the evaluation of the study: The evaluation of the viewpoints of the experts towards website designs were evaluated at a good level of 4.20. The satisfaction evaluation of the users was found at a good level of average satisfactory level at 4.24. It was found that the young population of those under the age of 16 had less cares about their health than the population of other teenagers, working age adults and those of older age. The research findings should be extended in order to encourage the lifestyle modifications to people of all ages by using the self-healthcare principles.Keywords: developing, herbs, knowledge-based system, medical treatment
Procedia PDF Downloads 33715096 Ontology based Fault Detection and Diagnosis system Querying and Reasoning examples
Authors: Marko Batic, Nikola Tomasevic, Sanja Vranes
Abstract:
One of the strongholds in the ubiquitous efforts related to the energy conservation and energy efficiency improvement is represented by the retrofit of high energy consumers in buildings. In general, HVAC systems represent the highest energy consumers in buildings. However they usually suffer from mal-operation and/or malfunction, causing even higher energy consumption than necessary. Various Fault Detection and Diagnosis (FDD) systems can be successfully employed for this purpose, especially when it comes to the application at a single device/unit level. In the case of more complex systems, where multiple devices are operating in the context of the same building, significant energy efficiency improvements can only be achieved through application of comprehensive FDD systems relying on additional higher level knowledge, such as their geographical location, served area, their intra- and inter- system dependencies etc. This paper presents a comprehensive FDD system that relies on the utilization of common knowledge repository that stores all critical information. The discussed system is deployed as a test-bed platform at the two at Fiumicino and Malpensa airports in Italy. This paper aims at presenting advantages of implementation of the knowledge base through the utilization of ontology and offers improved functionalities of such system through examples of typical queries and reasoning that enable derivation of high level energy conservation measures (ECM). Therefore, key SPARQL queries and SWRL rules, based on the two instantiated airport ontologies, are elaborated. The detection of high level irregularities in the operation of airport heating/cooling plants is discussed and estimation of energy savings is reported.Keywords: airport ontology, knowledge management, ontology modeling, reasoning
Procedia PDF Downloads 54515095 Comparative Analysis of Canal Centering Ratio, Apical Transportation, and Remaining Dentin Thickness between Single File System Using Cone Beam Computed Tomography: An in vitro Study
Authors: Aditi Jain
Abstract:
Aim: To compare the canal transportation, centering ability and remaining dentin thickness of OneShape and WaveOne system using CBCT. Objective: To identify rotary system which respects original canal anatomy. Materials and Methods: Forty extracted human single-rooted premolars were used in the present study. Pre-instrumentation scans of all teeth were taken, canal curvatures were calculated, and the samples were randomly divided into two groups with twenty samples in each group, where Group 1 included WaveOne system and Group 2 Protaper rotary system. Post-instrumentation scans were performed, and the two scans were compared to determine canal transportation, centering ability and remaining dentin thickness at 1, 3, and 5 mm from the root apex. Results: Using Student’s unpaired t test results were as follows; for canal transportation Group 1 showed statistical significant difference at 3mm, 6mm and non-significant difference was obtained at 9mm but for Group 2 non-statistical significant difference was obtained at 3mm, 6mm, and 9mm. For centering ability and remaining dentin thickness Group 1 showed non-statistical significant difference at 3mm and 9mm, while statistical significant difference at 6mm was obtained. When comparison of remaining dentin thickness was done at three levels using two groups WaveOne and ProTaper. There was non-statistical significant difference between two groups. Conclusion: WaveOne single reciprocation file respects original canal anatomy better than ProTaper. WaveOne depicted the best centering ability.Keywords: ShapeOne, WaveOne, transportation, centering ability, dentin thickness, CBCT (Cone Beam Computed Tomography)
Procedia PDF Downloads 21015094 Assessing Effectiveness of Outrigger and Belt Truss System for Tall Buildings under Wind Loadings
Authors: Nirand Anunthanakul
Abstract:
This paper is to investigate a 54-story reinforced concrete residential tall building structures—238.8 meters high. Shear walls, core walls, and columns are the primary vertical components. Other special lateral components—core-outrigger and belt trusses—are studied and combined with the structural system in order to increase the structural stability during severe lateral load events, particularly, wind loads. The wind tunnel tests are conducted using the force balance technique. The overall wind loads and dynamics response of the building are also measured for 360 degrees of azimuth—basis for 10-degree intervals. The results from numerical analysis indicate that an outrigger and belt truss system clearly engages perimeter columns to efficiently reduce acceleration index and lateral deformations at the top level so that the building structures achieve lateral stability, and meet standard provision values.Keywords: outrigger, belt truss, tall buildings, wind loadings
Procedia PDF Downloads 57315093 Blockchain in Saudi E-Government: A Systematic Literature Review
Authors: Haitham Assiri, Priyadarsi Nanda
Abstract:
The world is gradually entering the fourth industrial revolution. E-Government services are scaling government operations across the globe. However, as promising as an e-Government system would be, it is also susceptible to malicious attacks if not properly secured. This study found out that, in Saudi Arabia, the e-Government website, Yesser is vulnerable to external attacks. Obviously, this can lead to a breach of data integrity and privacy. In this paper, a Systematic Literature Review was conducted to explore possible ways the Kingdom of Saudi Arabia can take necessary measures to strengthen its e-Government system using Blockchain. Blockchain is one of the emerging technologies shaping the world through its applications in finance, elections, healthcare, etc. It secures systems and brings more transparency. A total of 28 papers were selected for this SLR, and 19 of the papers significantly showed that blockchain could enhance the security and privacy of Saudi’s e-government system. Other papers also concluded that blockchain is effective, albeit with the integration of other technologies like IoT, AI and big data. These papers have been analysed to sieve out the findings and set the stage for future research into the subject.Keywords: blockchain, data integrity, e-government, security threats
Procedia PDF Downloads 25315092 Reduction of Chlordecone Rates in Bioelectrochemicals Systems from Water and Sediment Swamp Mangrove in Absence of a Redox Mediator
Authors: Malory Beaujolais
Abstract:
Chlordecone is an organochlorine pesticide with a bishomocubane structure which led to high stability in organic matter. Microbial fuel cell is a type of electrochemical system that can convert organic matters into electricity thanks to electroactive bacteria. This technique has been used with mangrove swamp from Martinique to try to reduce chlordecone rates. Those experiments led to characterize the behavior of the electroactive biofilm formed at the cathode, without added redox mediator. The designed bioelectrochemical system seems to provide the necessary conditions for chlordecone degradation.Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp
Procedia PDF Downloads 4615091 Formation Control for Linear Multi-Robot System with Switched Directed Topology and Time-Varying Delays
Authors: Yaxiao Zhang, Yangzhou Chen
Abstract:
This study investigate the formation problem for high-order continuous-time multi-robot with bounded symmetric time-varying delay protocol under switched directed communication topology. By using a linear transformation, the formation problem is transformed to stability analysis of a switched delay system. Under the assumption that each communication topology has a directed spanning tree, sufficient conditions are presented in terms of linear matrix inequalities (LMIs) that the multi-robot system can achieve a desired formation by the trade-off among the pre-exist topologies with the help of the scheme of average dwell time. A numeral example is presented to illustrate the effectiveness of the obtained results.Keywords: multi-robot systems, formation, switched directed topology, symmetric time-varying delay, average dwell time, linear matrix inequalities (lmis)
Procedia PDF Downloads 53915090 Comparison of the Logistic and the Gompertz Growth Functions Considering a Periodic Perturbation in the Model Parameters
Authors: Avan Al-Saffar, Eun-Jin Kim
Abstract:
Both the logistic growth model and the gompertz growth model are used to describe growth processes. Both models driven by perturbations in different cases are investigated using information theory as a useful measure of sustainability and the variability. Specifically, we study the effect of different oscillatory modulations in the system's parameters on the evolution of the system and Probability Density Function (PDF). We show the maintenance of the initial conditions for a long time. We offer Fisher information analysis in positive and/or negative feedback and explain its implications for the sustainability of population dynamics. We also display a finite amplitude solution due to the purely fluctuating growth rate whereas the periodic fluctuations in negative feedback can lead to break down the system's self-regulation with an exponentially growing solution. In the cases tested, the gompertz and logistic systems show similar behaviour in terms of information and sustainability although they develop differently in time.Keywords: dynamical systems, fisher information, probability density function (pdf), sustainability
Procedia PDF Downloads 43415089 Steady-State Behavior of a Multi-Phase M/M/1 Queue in Random Evolution Subject to Catastrophe Failure
Authors: Reni M. Sagayaraj, Anand Gnana S. Selvam, Reynald R. Susainathan
Abstract:
In this paper, we consider stochastic queueing models for Steady-state behavior of a multi-phase M/M/1 queue in random evolution subject to catastrophe failure. The arrival flow of customers is described by a marked Markovian arrival process. The service times of different type customers have a phase-type distribution with different parameters. To facilitate the investigation of the system we use a generalized phase-type service time distribution. This model contains a repair state, when a catastrophe occurs the system is transferred to the failure state. The paper focuses on the steady-state equation, and observes that, the steady-state behavior of the underlying queueing model along with the average queue size is analyzed.Keywords: M/G/1 queuing system, multi-phase, random evolution, steady-state equation, catastrophe failure
Procedia PDF Downloads 33215088 Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior
Authors: Seyed Abolhasan Naeini, Ali Namaei
Abstract:
This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness.Keywords: vertical drain, prefabricated, consolidation, embankment
Procedia PDF Downloads 15415087 The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings
Authors: M. Jalali Azizpour
Abstract:
In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.Keywords: HVOF, temperature thickness, velocity, WC-12Co
Procedia PDF Downloads 24415086 Development of Application Architecture for RFID Based Indoor Tracking Using Passive RFID Tag
Authors: Sumaya Ismail, Aijaz Ahmad Rehi
Abstract:
Abstract The location tracking and positioning systems have technologically grown exponentially in recent decade. In particular, Global Position system (GPS) has become a universal norm to be a part of almost every software application directly or indirectly for the location based modules. However major drawback of GPS based system is their inability of working in indoor environments. Researchers are thus focused on the alternative technologies which can be used in indoor environments for a vast range of application domains which require indoor location tracking. One of the most popular technology used for indoor tracking is radio frequency identification (RFID). Due to its numerous advantages, including its cost effectiveness, it is considered as a technology of choice in indoor location tracking systems. To contribute to the emerging trend of the research, this paper proposes an application architecture of passive RFID tag based indoor location tracking system. For the proof of concept, a test bed will be developed to in this study. In addition, various indoor location tracking algorithms will be used to assess their appropriateness in the proposed application architecture.Keywords: RFID, GPS, indoor location tracking, application architecture, passive RFID tag
Procedia PDF Downloads 121