Search results for: wind turbine tower
1349 Prediction of Wind Speed by Artificial Neural Networks for Energy Application
Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui
Abstract:
In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed
Procedia PDF Downloads 6911348 Optimization Techniques of Doubly-Fed Induction Generator Controller Design for Reliability Enhancement of Wind Energy Conversion Systems
Authors: Om Prakash Bharti, Aanchal Verma, R. K. Saket
Abstract:
The Doubly-Fed Induction Generator (DFIG) is suggested for Wind Energy Conversion System (WECS) to extract wind power. DFIG is preferably employed due to its robustness towards variable wind and rotor speed. DFIG has the adaptable property because the system parameters are smoothly dealt with, including real power, reactive power, DC-link voltage, and the transient and dynamic responses, which are needed to analyze constantly. The analysis becomes more prominent during any unusual condition in the electrical power system. Hence, the study and improvement in the system parameters and transient response performance of DFIG are required to be accomplished using some controlling techniques. For fulfilling the task, the present work implements and compares the optimization methods for the design of the DFIG controller for WECS. The bio-inspired optimization techniques are applied to get the optimal controller design parameters for DFIG-based WECS. The optimized DFIG controllers are then used to retrieve the transient response performance of the six-order DFIG model with a step input. The results using MATLAB/Simulink show the betterment of the Firefly algorithm (FFA) over other control techniques when compared with the other controller design methods.Keywords: doubly-fed induction generator, wind turbine, wind energy conversion system, induction generator, transfer function, proportional, integral, derivatives
Procedia PDF Downloads 931347 A Comparative Study between Ionic Wind and Conventional Fan
Abstract:
Ionic wind is developed when high voltage is supplied to an anode and a grounded cathode in a gaseous medium. This paper studies the ionic wind profile with different anode configurations, the relationship between electrode gap against the voltage supplied and finally a comparison of the heat transfer coefficient of ionic wind over a horizontal flat plate against a conventional fan experimentally. It is observed that increase in the distance between electrodes decreases at a rate of 1-e-0.0206x as the voltage supply is increased until a distance of 3.1536cm. It is also observed that the wind speed produced by ionic wind is stronger, 2.7ms-1 at 2W compared to conventional fan, 2.5ms-1 at 2W but the wind produced decays at a fast exponential rate and is more localized as compared to conventional fan wind that decays at a slower exponential rate and is less localized. Next, it is found out that the ionic wind profile is the same regardless of the position of the anode relative to the cathode. Lastly, it is discovered that ionic wind produced a heat transfer coefficient that is almost 1.6 times higher compared to a conventional fan with Nusselt number reaching 164 compared to 102 for conventional fan.Keywords: conventional fan, heat transfer, ionic wind, wind profile
Procedia PDF Downloads 3281346 Wind Power Forecast Error Simulation Model
Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus
Abstract:
One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation
Procedia PDF Downloads 4821345 Power Recovery from Waste Air of Mine Ventilation Fans Using Wind Turbines
Authors: Soumyadip Banerjee, Tanmoy Maity
Abstract:
The recovery of power from waste air generated by mine ventilation fans presents a promising avenue for enhancing energy efficiency in mining operations. This abstract explores the feasibility and benefits of utilizing turbine generators to capture the kinetic energy present in waste air and convert it into electrical power. By integrating turbine generator systems into mine ventilation infrastructures, the potential to harness and utilize the previously untapped energy within the waste air stream is realized. This study examines the principles underlying turbine generator technology and its application within the context of mine ventilation systems. The process involves directing waste air from ventilation fans through specially designed turbines, where the kinetic energy of the moving air is converted into rotational motion. This mechanical energy is then transferred to connected generators, which convert it into electrical power. The recovered electricity can be employed for various on-site applications, including powering mining equipment, lighting, and control systems. The benefits of power recovery from waste air using turbine generators are manifold. Improved energy efficiency within the mining environment results in reduced dependence on external power sources and associated cost savings. Additionally, this approach contributes to environmental sustainability by utilizing a previously wasted resource for power generation. Resource conservation is further enhanced, aligning with modern principles of sustainable mining practices. However, successful implementation requires careful consideration of factors such as waste air characteristics, turbine design, generator efficiency, and integration into existing mine infrastructure. Maintenance and monitoring protocols are necessary to ensure consistent performance and longevity of the turbine generator systems. While there is an initial investment associated with equipment procurement, installation, and integration, the long-term benefits of reduced energy costs and environmental impact make this approach economically viable. In conclusion, the recovery of power from waste air from mine ventilation fans using turbine generators offers a tangible solution to enhance energy efficiency and sustainability within mining operations. By capturing and converting the kinetic energy of waste air into usable electrical power, mines can optimize resource utilization, reduce operational costs, and contribute to a greener future for the mining industry.Keywords: waste to energy, wind power generation, exhaust air, power recovery
Procedia PDF Downloads 321344 CFD Analysis of a Two-Sided Windcatcher Inlet/Outlet Ducts’ Height in Ventilation Flow through a Three Dimensional Room
Authors: Amirreza Niktash, B. P. Huynh
Abstract:
A windcatcher is a structure fitted on the roof of a building for providing natural ventilation by using wind power; it exhausts the inside stale air to the outside and supplies the outside fresh air into the interior space of the building working by pressure difference between outside and inside of the building and using ventilation principles of passive stacks and wind tower, respectively. In this paper, the effect of different heights of inlet/outlets’ ducts of a two-sided windcatcher on the flow rate, flow velocity and flow pattern through a three-dimensional room fitted with the windcatcher are investigated and analysed by using RANS CFD technique and applying standard K-ε turbulence model via a commercial computational fluid dynamics (CFD) software package. The achieved results show that the inlet/outlet ducts height strongly affects flow rate, flow velocity and flow pattern especially in the living area of the room when the wind velocity is not too low. The results are confirmed by the experimental test for constructed scaled model in the laboratory and it develops the two-sided windcatcher’s performance in ventilation applications.Keywords: CFD, RANS, ventilation, windcatcher
Procedia PDF Downloads 4271343 The Acoustic Performance of Double-skin Wind Energy Facade
Authors: Sara Mota Carmo
Abstract:
Wind energy applied in architecture has been largely abandoned due to the uncomfortable noise it causes. This study aims to investigate the acoustical performance in the urban environment and indoor environment of a double-skin wind energy facade. Measurements for sound transmission were recorded by using a hand-held sound meter device on a reduced-scale prototype of a wind energy façade. The applied wind intensities ranged between 2m/s and 8m/s, and the increase sound produced were proportional to the wind intensity.The study validates the acoustic performance of wind energy façade using a double skin façade system, showing that noise reduction indoor by approximately 30 to 35 dB. However, the results found that above 6m/s win intensity, in urban environment, the wind energy system applied to the façade exceeds the maximum 50dB recommended by world health organization and needs some adjustments.Keywords: double-skin wind energy facade, acoustic energy facade, wind energy in architecture, wind energy prototype
Procedia PDF Downloads 1001342 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades
Authors: Farhana Arzu, Roslan Hashim
Abstract:
Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.Keywords: variable length blade, performance, tidal turbine, power generation
Procedia PDF Downloads 2751341 Static Simulation of Pressure and Velocity Behaviour for NACA 0006 Blade Profile of Well’s Turbine
Authors: Chetan Apurav
Abstract:
In this journal the behavioural analysis of pressure and velocity has been done over the blade profile of Well’s turbine. The blade profile that has been taken into consideration is NACA 0006. The analysis has been done in Ansys Workbench under CFX module. The CAD model of the blade profile with certain dimensions has been made in CREO, and then is imported to Ansys for further analysis. The turbine model has been enclosed under a cylindrical body and has been analysed under a constant velocity of air at 5 m/s and zero relative pressure in static condition of the turbine. Further the results are represented in tabular as well as graphical form. It has been observed that the relative pressure of the blade profile has been stable throughout the radial length and hence will be suitable for practical usage.Keywords: Well's turbine, oscillating water column, ocean engineering, wave energy, NACA 0006
Procedia PDF Downloads 2001340 An Experimental Study of Diffuser-Enhanced Propeller Hydrokinetic Turbines
Authors: Matheus Nunes, Rafael Mendes, Taygoara Felamingo Oliveira, Antonio Brasil Junior
Abstract:
Wind tunnel experiments of horizontal axis propeller hydrokinetic turbines model were carried out, in order to determine the performance behavior for different configurations and operational range. The present experiments introduce the use of two different geometries of rear diffusers to enhance the performance of the free flow machine. The present paper reports an increase of the power coefficient about 50%-80%. It represents an important feature that has to be taken into account in the design of this kind of machine.Keywords: diffuser-enhanced turbines, hydrokinetic turbine, wind tunnel experiments, micro hydro
Procedia PDF Downloads 2771339 Flow Control Optimisation Using Vortex Generators in Turbine Blade
Authors: J. Karthik, G. Vinayagamurthy
Abstract:
Aerodynamic flow control is achieved by interaction of flowing medium with corresponding structure so that its natural flow state is disturbed to delay the transition point. This paper explains the aerodynamic effect and optimized design of Vortex Generators on the turbine blade to achieve maximum flow control. The airfoil is chosen from NREL [National Renewable Energy Laboratory] S-series airfoil as they are characterized with good lift characteristics and lower noise. Vortex generators typically chosen are Ogival, Rectangular, Triangular and Tapered Fin shapes attached near leading edge. Vortex generators are typically distributed from the primary to tip of the blade section. The design wind speed is taken as 6m/s and the computational analysis is executed. The blade surface is simulated using k- ɛ SST model and results are compared with X-FOIL results. The computational results are validated using Wind Tunnel Testing of the blade corresponding to the design speed. The effect of Vortex generators on the flow characteristics is studied from the results of analysis. By comparing the computational and test results of all shapes of Vortex generators; the optimized design is achieved for effective flow control corresponding to the blade.Keywords: flow control, vortex generators, design optimisation, CFD
Procedia PDF Downloads 4061338 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics
Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu
Abstract:
Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades
Procedia PDF Downloads 981337 Optimization of Wind Off-Grid System for Remote Area: Egyptian Application
Authors: Marwa M. Ibrahim
Abstract:
The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) off-grid system supplying a small remote gathering of four families using the HOMER software package. The second objective is to study the effect of wind energy system on the cost of generated electricity considering the cost of reducing CO₂ emissions as external benefit of wind turbines, no pollutant emission through the operational phase. The system consists of a small wind turbine, battery storage, and diesel generator. The electrical energy is to cater to the basic needs for which the daily load pattern is estimated at 8 kW peak. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for the selected site in Egypt. Using HOMER software, the simulation results shows that W/D/B systems are economical for the assumed community site as the price of generated electricity is about 0.285 $/kWh, without taking external benefits into considerations and 0.221 if CO₂ emissions taken into consideration W/D/B systems are more economical than alone diesel system as the COE is 0.432 $/kWh for diesel alone.Keywords: renewable energy, hybrid energy system, on-off grid system, simulation, optimization and environmental impacts
Procedia PDF Downloads 1011336 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System
Authors: Eronini Iheanyi Umez-Eronini
Abstract:
Most studies and existing implementations of compressed air energy storage (CAES) coupled with a wind farm to overcome intermittency and variability of wind power are based on bulk or centralized CAES plants. A dynamic model of a hybrid wind farm with wind turbines and distributed CAES, consisting of air storage tanks and compressor and expander trains at each wind turbine station, is developed and simulated in MATLAB. An ad hoc supervisory controller, in which the wind turbines are simply operated under classical power optimizing region control while scheduling power production by the expanders and air storage by the compressors, including modulation of the compressor power levels within a control range, is used to regulate overall farm power production to track minute-scale (3-minutes sampling period) TSO absolute power reference signal, over an eight-hour period. Simulation results for real wind data input with a simple wake field model applied to a hybrid plant composed of ten 5-MW wind turbines in a row and ten compatibly sized and configured Diabatic CAES stations show the plant controller is able to track the power demand signal within an error band size on the order of the electrical power rating of a single expander. This performance suggests that much improved results should be anticipated when the global D-CAES control is combined with power regulation for the individual wind turbines using available approaches for wind farm active power control. For standalone power plant fuel electrical efficiency estimate of up to 60%, the round trip electrical storage efficiency computed for the distributed CAES wherein heat generated by running compressors is utilized in the preheat stage of running high pressure expanders while fuel is introduced and combusted before the low pressure expanders, was comparable to reported round trip storage electrical efficiencies for bulk Adiabatic CAES.Keywords: hybrid wind farm, distributed CAES, diabatic CAES, active power control, dynamic modeling and simulation
Procedia PDF Downloads 821335 Global Direct Search Optimization of a Tuned Liquid Column Damper Subject to Stochastic Load
Authors: Mansour H. Alkmim, Adriano T. Fabro, Marcus V. G. De Morais
Abstract:
In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of an undamped primary system under white noise excitation. Finally, a numerical example considering a simplified wind turbine model is given to illustrate the efficacy of the TLCD. Results from the random vibration analysis are shown for four types of random excitation wind model where the response PSDs obtained showed good vibration attenuation.Keywords: generalized pattern search, parameter optimization, random vibration analysis, vibration suppression
Procedia PDF Downloads 2741334 Fluid-Structure Interaction Analysis of a Vertical Axis Wind Turbine Blade Made with Natural Fiber Based Composite Material
Authors: Ivan D. Ortega, Juan D. Castro, Alberto Pertuz, Manuel Martinez
Abstract:
One of the problems considered when scientists talk about climate change is the necessity of utilizing renewable sources of energy, on this category there are many approaches to the problem, one of them is wind energy and wind turbines whose designs have frequently changed along many years trying to achieve a better overall performance on different conditions. From that situation, we get the two main types known today: Vertical and Horizontal axis wind turbines, which have acronyms VAWT and HAWT, respectively. This research aims to understand how well suited a composite material, which is still in development, made with natural origin fibers is for its implementation on vertical axis wind turbines blades under certain wind loads. The study consisted on acquiring the mechanical properties of the materials to be used which where bactris guineenis, also known as pama de lata in Colombia, and adhesive that acts as the matrix which had not been previously studied to the point required for this project. Then, a simplified 3D model of the airfoil was developed and tested under some preliminary loads using finite element analysis (FEA), these loads were acquired in the Colombian Chicamocha Canyon. Afterwards, a more realistic pressure profile was obtained using computational fluid dynamics which took into account the 3D shape of the complete blade and its rotation. Finally, the blade model was subjected to the wind loads using what is known as one way fluidstructure interaction (FSI) and its behavior analyzed to draw conclusions. The observed overall results were positive since the material behaved fairly as expected. Data suggests the material would be really useful in this kind of applications in small to medium size turbines if it is given more attention and time to develop.Keywords: CFD, FEA, FSI, natural fiber, VAWT
Procedia PDF Downloads 2231333 A Joint Possibilistic-Probabilistic Tool for Load Flow Uncertainty Assessment-Part II: Case Studies
Authors: Morteza Aien, Masoud Rashidinejad, Mahmud Fotuhi-Firuzabad
Abstract:
Power systems are innately uncertain systems. To face with such uncertain systems, robust uncertainty assessment tools are appealed. This paper inspects the uncertainty assessment formulation of the load flow (LF) problem considering different kinds of uncertainties, developed in its companion paper through some case studies. The proposed methodology is based on the evidence theory and joint propagation of possibilistic and probabilistic uncertainties. The load and wind power generation are considered as probabilistic uncertain variables and the electric vehicles (EVs) and gas turbine distributed generation (DG) units are considered as possibilistic uncertain variables. The cumulative distribution function (CDF) of the system output parameters obtained by the pure probabilistic method lies within the belief and plausibility functions obtained by the joint propagation approach. Furthermore, the imprecision in the DG parameters is explicitly reflected by the gap between the belief and plausibility functions. This gap, due to the epistemic uncertainty on the DG resources parameters grows as the penetration level increases.Keywords: electric vehicles, joint possibilistic- probabilistic uncertainty modeling, uncertain load flow, wind turbine generator
Procedia PDF Downloads 4311332 Atmospheric Circulation Drivers Of Nationally-Aggregated Wind Energy Production Over Greece
Authors: Kostas Philippopoulos, Chris G. Tzanis, Despina Deligiorgi
Abstract:
Climate change adaptation requires the exploitation of renewable energy sources such as wind. However, climate variability can affect the regional wind energy potential and consequently the available wind power production. The goal of the research project is to examine the impact of atmospheric circulation on wind energy production over Greece. In the context of synoptic climatology, the proposed novel methodology employs Self-Organizing Maps for grouping and classifying the atmospheric circulation and nationally-aggregated capacity factor time series for a 30-year period. The results indicate the critical effect of atmospheric circulation on the national aggregated wind energy production values and therefore address the issue of optimum distribution of wind farms for a specific region.Keywords: wind energy, atmospheric circulation, capacity factor, self-organizing maps
Procedia PDF Downloads 1611331 Assessment of Power Formation in Gas Turbine Power Plants Using Different Inlet Air Cooling Systems
Authors: Nikhil V. Nayak
Abstract:
In this paper, the influence of air cooling intake on the gas turbine performance is presented. A comparison among different cooling systems, i.e., evaporative and cooling coil, is performed. A computer simulation model for the employed systems is developed in order to evaluate the performance of the studied gas turbine unit, at Marka Power Station, Amman, Bangalore. The performance characteristics are examined for a set of actual operational parameters including ambient temperature, relative humidity, turbine inlet temperature, pressure ratio, etc. The obtained results showed that the evaporative cooling system is capable of boosting the power and enhancing the efficiency of the studied gas turbine unit in a way much cheaper than cooling coil system due to its high power consumption required to run the vapor-compression refrigeration unit. Nevertheless, it provides full control on the temperature inlet conditions regardless of the relative humidity ratio.Keywords: power augmentation, temperature control, evaporative cooling, cooling coil, gas turbine
Procedia PDF Downloads 3841330 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 4881329 Establishing the Optimum Location of a Single Tower Crane Using a Smart Mathematical Model
Authors: Yasser Abo El-Magd, Wael Fawzy Mohamed
Abstract:
Due to the great development in construction and building field, there are many projects and huge works appeared which consume many construction materials. Accordingly, that causes difficulty in handling traditional transportation means (ordinary cranes) due to their limited capacity; there is an urgent need to use high capacity cranes such as tower cranes. However, with regard to their high expense, we have to take into consideration selecting what type of cranes to be utilized which has been discussed by many researchers. In this research, a proposed technique was created to select the suitable type of crane and the best place for crane erection, in addition to minimum radius for requested crane in order to minimize cost. To fulfill that target, a computer program is designed to numerate these problems, demonstrating an example explaining how to apply program and the result donated the best place.Keywords: tower crane, jib length, operating time, location, feasible area
Procedia PDF Downloads 2221328 Fuzzy and Fuzzy-PI Controller for Rotor Speed of Gas Turbine
Authors: Mandar Ghodekar, Sharad Jadhav, Sangram Jadhav
Abstract:
Speed control of rotor during startup and under varying load conditions is one of the most difficult tasks of gas turbine operation. In this paper, power plant gas turbine (GE9001E) is considered for this purpose and fuzzy and fuzzy-PI rotor speed controllers are designed. The goal of the presented controllers is to keep the turbine rotor speed within predefined limits during startup condition as well as during operating condition. The fuzzy controller and fuzzy-PI controller are designed using Takagi-Sugeno method and Mamdani method, respectively. In applying the fuzzy-PI control to a gas-turbine plant, the tuning parameters (Kp and Ki) are modified online by fuzzy logic approach. Error and rate of change of error are inputs and change in fuel flow is output for both the controllers. Hence, rotor speed of gas turbine is controlled by modifying the fuel flow. The identified linear ARX model of gas turbine is considered while designing the controllers. For simulations, demand power is taken as disturbance input. It is assumed that inlet guide vane (IGV) position is fixed. In addition, the constraint on the fuel flow is taken into account. The performance of the presented controllers is compared with each other as well as with H∞ robust and MPC controllers for the same operating conditions in simulations.Keywords: gas turbine, fuzzy controller, fuzzy PI controller, power plant
Procedia PDF Downloads 3331327 The Effect of Velocity Increment by Blockage Factor on Savonius Hydrokinetic Turbine Performance
Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao
Abstract:
Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional computational fluid dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.Keywords: savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient
Procedia PDF Downloads 1301326 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator
Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi
Abstract:
With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.Keywords: offshore wind generator, PMSM, PSO optimization, design optimization
Procedia PDF Downloads 1531325 Unsteady Numerical Analysis of Sediment Erosion Affected High Head Francis Turbine
Authors: Saroj Gautam, Ram Lama, Hari Prasad Neopane, Sailesh Chitrakar, Biraj Singh Thapa, Baoshan Zhu
Abstract:
Sediment flowing along with the water in rivers flowing in South Asia erodes the turbine components. The erosion of turbine components is influenced by the nature of fluid flow along with components of typical turbine types. This paper examines two cases of high head Francis turbines with the same speed number numerically. The numerical investigation involves both steady-state and transient analysis of the numerical model developed for both cases. Furthermore, the influence of leakage flow from the clearance gap of guide vanes is also examined and compared with no leakage flow. It presents the added pressure pulsation to rotor-stator-interaction in the turbine runner for both cases due to leakage flow. It was also found that leakage flow was a major contributor to the sediment erosion in those turbines.Keywords: sediment erosion, Francis turbine, leakage flow, rotor stator interaction
Procedia PDF Downloads 1841324 Thermodynamic Analysis of Wet Compression Integrated with Air-Film Blade Cooling in Gas Turbine Power Plants
Authors: Hassan Athari, Alireza Ruhi Sales, Amin Pourafshar, Seyyed Mehdi Pestei, Marc. A. Rosen
Abstract:
In order to achieve high efficiency and high specific work with lower emissions, the use of advanced gas turbine cycles for power generation is useful and advantageous. Here, evaporative inlet air cooling is analyzed thermodynamically in the form of air film blade cooling of gas turbines. As the ambient temperature increases during summer months, the performance of gas turbines particularly the output power and energy efficiency are significantly decreased. The utilization of evaporative inlet cooling in gas turbine cycles increases gas turbine performance, which can assist to solve the problem in meeting the increasing demands for electrical power and offsetting shortages during peak load times. In the present research, because of the importance of turbine blade cooling, the turbine is investigated with cold compressed air used for cooling the turbine blades. The investigation of the basic and modified cycles shows that, by adding an evaporative cooler to a simple gas turbine cycle, for a turbine inlet temperature of 1400 °C, an ambient temperature of 45 °C and a relative humidity of 15%, the specific work can reach 331 (kJ/kg air), while the maximum specific work of a simple cycle for the same conditions is 273.7 (kJ/kg air). The exergy results reveal that the highest exergy destruction occurs in the combustion chamber, where the large temperature differences and highly exothermic chemical reactions are the main sources of the irreversibility.Keywords: energy, exergy, wet compression, air-film cooling blade, gas turbine
Procedia PDF Downloads 1511323 A Study on the Wind Energy Produced in the Building Skin Using Piezoelectricity
Authors: Sara Mota Carmo
Abstract:
Nowadays, there is an increasing demand for buildings to be energetically autonomous through energy generation systems from renewable sources, according to the concept of a net zero energy building (NZEB). In this sense, the present study aims to study the integration of wind energy through piezoelectricity applied to the building skin. As a methodology, a reduced-scale prototype of a building was developed and tested in a wind tunnel, with the four façades monitored by recording the energy produced by each. The applied wind intensities varied between 2m/s and 8m/s and the four façades were compared with each other regarding the energy produced according to the intensity of wind and position in the wind. The results obtained concluded that it was not a sufficient system to generate sources to cover family residential buildings' energy needs. However, piezoelectricity is expanding and can be a promising path for a wind energy system in architecture as a complement to other renewable energy sources.Keywords: adaptative building skin, kinetic façade, wind energy in architecture, NZEB
Procedia PDF Downloads 751322 Experimental Investigation of Cup Anemometer under Static and Dynamic Wind Direction Changes: Evaluation of Directional Sensitivity
Authors: Vaibhav Rana, Nicholas Balaresque
Abstract:
The 3-cup anemometer is the most commonly used instrument for wind speed measurement and, consequently, for the wind resource assessment. Though the cup anemometer shows accurate measurement under quasi-static conditions, there is uncertainty in the measurement when subjected to field measurement. Sensitivity to the angle of attacks with respect to horizontal plane, dynamic response, and non-linear behavior in calibration due to friction. The presented work aimed to identify the sensitivity of anemometer to non-horizontal flow. The cup anemometer was investigated under low wind speed wind tunnel, first under the static flow direction changes and second under the dynamic direction changes, at a different angle of attacks, under the similar conditions of reference wind tunnel speeds. The cup anemometer response under both conditions was evaluated and compared. The results showed the anemometer under dynamic wind direction changes is highly sensitive compared to static conditions.Keywords: wind energy, cup anemometer, directional sensitivity, dynamic behavior, wind tunnel
Procedia PDF Downloads 1461321 Towards a Quantification of the Wind Erosion of the Gharb Shoreline Soils in Morocco by the Application of a Mathematical Model
Authors: Mohammed Kachtali, Imad Fenjiro, Jamal Alkarkouri
Abstract:
Wind erosion is a serious environmental problem in arid and semi-arid regions. Indeed, wind erosion easily removes the finest particles of the soil surface, which also contribute to losing soil fertility. The siltation of infrastructures and cultivated areas and the negative impact on health are additional consequences of wind erosion. In Morocco, wind erosion constitutes the main factor of silting up in coast and Sahara. The aim of our study is to use an equation of wind erosion in order to estimate the soil loses by wind erosion in the coast of Gharb (North of Morocco). The used equation in our model includes the geographic data, climatic data of 30 years and edaphic data collected from area study which contained 11 crossing of 4 stations. Our results have shown that the values of wind erosion are higher and very different between some crossings (p < 0.001). This difference is explained by topography, soil texture, and climate. In conclusion, wind erosion is higher in Gharb coast and varies from station to another; this problem required several methods of control and mitigation.Keywords: Gharb coast, modeling, silting, wind erosion
Procedia PDF Downloads 1361320 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant
Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi
Abstract:
A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.Keywords: energy saving, methanol, gas turbine, power generation
Procedia PDF Downloads 468