Search results for: vector information
11471 Solving Linear Systems Involved in Convex Programming Problems
Authors: Yixun Shi
Abstract:
Many interior point methods for convex programming solve an (n+m)x(n+m)linear system in each iteration. Many implementations solve this system in each iteration by considering an equivalent mXm system (4) as listed in the paper, and thus the job is reduced into solving the system (4). However, the system(4) has to be solved exactly since otherwise the error would be entirely passed onto the last m equations of the original system. Often the Cholesky factorization is computed to obtain the exact solution of (4). One Cholesky factorization is to be done in every iteration, resulting in higher computational costs. In this paper, two iterative methods for solving linear systems using vector division are combined together and embedded into interior point methods. Instead of computing one Cholesky factorization in each iteration, it requires only one Cholesky factorization in the entire procedure, thus significantly reduces the amount of computation needed for solving the problem. Based on that, a hybrid algorithm for solving convex programming problems is proposed.Keywords: convex programming, interior point method, linear systems, vector division
Procedia PDF Downloads 40211470 Revolving Ferrofluid Flow in Porous Medium with Rotating Disk
Authors: Paras Ram, Vikas Kumar
Abstract:
The transmission of Malaria with seasonal were studied through the use of mathematical models. The data from the annual number of Malaria cases reported to the Division of Epidemiology, Ministry of Public Health, Thailand during the period 1997-2011 were analyzed. The transmission of Malaria with seasonal was studied by formulating a mathematical model which had been modified to describe different situations encountered in the transmission of Malaria. In our model, the population was separated into two groups: the human and vector groups, and then constructed a system of nonlinear differential equations. Each human group was divided into susceptible, infectious in hot season, infectious in rainy season, infectious in cool season and recovered classes. The vector population was separated into two classes only: susceptible and infectious vectors. The analysis of the models was given by the standard dynamical modeling.Keywords: ferrofluid, magnetic field, porous medium, rotating disk, Neuringer-Rosensweig Model
Procedia PDF Downloads 42211469 Management Information System to Help Managers for Providing Decision Making in an Organization
Authors: Ajayi Oluwasola Felix
Abstract:
Management information system (MIS) provides information for the managerial activities in an organization. The main purpose of this research is, MIS provides accurate and timely information necessary to facilitate the decision-making process and enable the organizations planning control and operational functions to be carried out effectively. Management information system (MIS) is basically concerned with processing data into information and is then communicated to the various departments in an organization for appropriate decision-making. MIS is a subset of the overall planning and control activities covering the application of humans technologies, and procedures of the organization. The information system is the mechanism to ensure that information is available to the managers in the form they want it and when they need it.Keywords: Management Information Systems (MIS), information technology, decision-making, MIS in Organizations
Procedia PDF Downloads 55711468 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter
Authors: Vahid Anari, Leila Shahmohammadi
Abstract:
Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction
Procedia PDF Downloads 6711467 Detecting Paraphrases in Arabic Text
Authors: Amal Alshahrani, Allan Ramsay
Abstract:
Paraphrasing is one of the important tasks in natural language processing; i.e. alternative ways to express the same concept by using different words or phrases. Paraphrases can be used in many natural language applications, such as Information Retrieval, Machine Translation, Question Answering, Text Summarization, or Information Extraction. To obtain pairs of sentences that are paraphrases we create a system that automatically extracts paraphrases from a corpus, which is built from different sources of news article since these are likely to contain paraphrases when they report the same event on the same day. There are existing simple standard approaches (e.g. TF-IDF vector space, cosine similarity) and alignment technique (e.g. Dynamic Time Warping (DTW)) for extracting paraphrase which have been applied to the English. However, the performance of these approaches could be affected when they are applied to another language, for instance Arabic language, due to the presence of phenomena which are not present in English, such as Free Word Order, Zero copula, and Pro-dropping. These phenomena will affect the performance of these algorithms. Thus, if we can analysis how the existing algorithms for English fail for Arabic then we can find a solution for Arabic. The results are promising.Keywords: natural language processing, TF-IDF, cosine similarity, dynamic time warping (DTW)
Procedia PDF Downloads 38811466 A Comparative Study of Dengue Fever in Taiwan and Singapore Based on Open Data
Authors: Wei Wen Yang, Emily Chia Yu Su
Abstract:
Dengue fever is a mosquito-borne tropical infectious disease caused by the dengue virus. After infection, symptoms usually start from three to fourteen days. Dengue virus may cause a high fever and at least two of the following symptoms, severe headache, severe eye pain, joint pains, muscle or bone pain, vomiting, feature skin rash, and mild bleeding manifestation. In addition, recovery will take at least two to seven days. Dengue fever has rapidly spread in tropical and subtropical areas in recent years. Several phenomena around the world such as global warming, urbanization, and international travel are the main reasons in boosting the spread of dengue. In Taiwan, epidemics occur annually, especially during summer and fall seasons. On the other side, Singapore government also has announced the amounts number of dengue cases spreading in Singapore. As the serious epidemic of dengue fever outbreaks in Taiwan and Singapore, countries around the Asia-Pacific region are becoming high risks of susceptible to the outbreaks and local hub of spreading the virus. To improve public safety and public health issues, firstly, we are going to use Microsoft Excel and SAS EG to do data preprocessing. Secondly, using support vector machines and decision trees builds predict model, and analyzes the infectious cases between Taiwan and Singapore. By comparing different factors causing vector mosquito from model classification and regression, we can find similar spreading patterns where the disease occurred most frequently. The result can provide sufficient information to predict the future dengue infection outbreaks and control the diffusion of dengue fever among countries.Keywords: dengue fever, Taiwan, Singapore, Aedes aegypti
Procedia PDF Downloads 23511465 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 49111464 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V.K.Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Masses and microcalcifications, architectural distortions are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support Vector Machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and accuracy of 96% for the detection of abnormalities with mammogram images collected from Digital Database for Screening Mammography (DDSM) database.Keywords: architecture distortion, mammograms, GLCM texture features, GLRLM texture features, support vector machine classifier
Procedia PDF Downloads 49111463 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 16111462 On One New Solving Approach of the Plane Mixed Problem for an Elastic Semistrip
Authors: Natalia D. Vaysfel’d, Zinaida Y. Zhuravlova
Abstract:
The loaded plane elastic semistrip, the lateral boundaries of which are fixed, is considered. The integral transformations are applied directly to Lame’s equations. It leads to one dimensional boundary value problem in the transformations’ domain which is formulated as a vector one. With the help of the matrix differential calculation’s apparatus and apparatus of Green matrix function the exact solution of a vector problem is constructed. After the satisfying the boundary condition at the semi strip’s edge the problem is reduced to the solving of the integral singular equation with regard of the unknown stress at the semis trip’s edge. The equation is solved with the orthogonal polynomials method that takes into consideration the real singularities of the solution at the ends of integration interval. The normal stress at the edge of the semis trip were calculated and analyzed.Keywords: semi strip, Green's Matrix, fourier transformation, orthogonal polynomials method
Procedia PDF Downloads 43211461 Modeling and Power Control of DFIG Used in Wind Energy System
Authors: Nadia Ben Si Ali, Nadia Benalia, Nora Zerzouri
Abstract:
Wind energy generation has attracted great interests in recent years. Doubly Fed Induction Generator (DFIG) for wind turbines are largely deployed because variable-speed wind turbines have many advantages over fixed-speed generation such as increased energy capture, operation at maximum power point, improved efficiency, and power quality. This paper presents the operation and vector control of a Doubly-fed Induction Generator (DFIG) system where the stator is connected directly to a stiff grid and the rotor is connected to the grid through bidirectional back-to-back AC-DC-AC converter. The basic operational characteristics, mathematical model of the aerodynamic system and vector control technique which is used to obtain decoupled control of powers are investigated using the software Mathlab/Simulink.Keywords: wind turbine, Doubly Fed Induction Generator, wind speed controller, power system stability
Procedia PDF Downloads 37911460 Near Optimal Closed-Loop Guidance Gains Determination for Vector Guidance Law, from Impact Angle Errors and Miss Distance Considerations
Authors: Karthikeyan Kalirajan, Ashok Joshi
Abstract:
An optimization problem is to setup to maximize the terminal kinetic energy of a maneuverable reentry vehicle (MaRV). The target location, the impact angle is given as constraints. The MaRV uses an explicit guidance law called Vector guidance. This law has two gains which are taken as decision variables. The problem is to find the optimal value of these gains which will result in minimum miss distance and impact angle error. Using a simple 3DOF non-rotating flat earth model and Lockheed martin HP-MARV as the reentry vehicle, the nature of solutions of the optimization problem is studied. This is achieved by carrying out a parametric study for a range of closed loop gain values and the corresponding impact angle error and the miss distance values are generated. The results show that there are well defined lower and upper bounds on the gains that result in near optimal terminal guidance solution. It is found from this study, that there exist common permissible regions (values of gains) where all constraints are met. Moreover, the permissible region lies between flat regions and hence the optimization algorithm has to be chosen carefully. It is also found that, only one of the gain values is independent and that the other dependent gain value is related through a simple straight-line expression. Moreover, to reduce the computational burden of finding the optimal value of two gains, a guidance law called Diveline guidance is discussed, which uses single gain. The derivation of the Diveline guidance law from Vector guidance law is discussed in this paper.Keywords: Marv guidance, reentry trajectory, trajectory optimization, guidance gain selection
Procedia PDF Downloads 42911459 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation
Procedia PDF Downloads 34911458 Diversity Indices as a Tool for Evaluating Quality of Water Ways
Authors: Khadra Ahmed, Khaled Kheireldin
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: planktons, diversity indices, water quality index, water ways
Procedia PDF Downloads 51911457 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario
Authors: Sarita Agarwal, Deepika Delsa Dean
Abstract:
Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation
Procedia PDF Downloads 13111456 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine
Procedia PDF Downloads 29411455 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting
Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam
Abstract:
Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.Keywords: ANFIS, fuzzy time series, stock forecasting, SVR
Procedia PDF Downloads 24911454 Iris Recognition Based on the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric
Procedia PDF Downloads 33611453 The Link between Money Market and Economic Growth in Nigeria: Vector Error Correction Model Approach
Authors: Uyi Kizito Ehigiamusoe
Abstract:
The paper examines the impact of money market on economic growth in Nigeria using data for the period 1980-2012. Econometrics techniques such as Ordinary Least Squares Method, Johanson’s Co-integration Test and Vector Error Correction Model were used to examine both the long-run and short-run relationship. Evidence from the study suggest that though a long-run relationship exists between money market and economic growth, but the present state of the Nigerian money market is significantly and negatively related to economic growth. The link between the money market and the real sector of the economy remains very weak. This implies that the market is not yet developed enough to produce the needed growth that will propel the Nigerian economy because of several challenges. It was therefore recommended that government should create the appropriate macroeconomic policies, legal framework and sustain the present reforms with a view to developing the market so as to promote productive activities, investments, and ultimately economic growth.Keywords: economic growth, investments, money market, money market challenges, money market instruments
Procedia PDF Downloads 34611452 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains
Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda
Abstract:
In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).Keywords: features extraction, handwritten numeric chains, image processing, neural networks
Procedia PDF Downloads 26711451 The Ever-Changing Connection Among Banks and Insurers: An Examination of the Financial Standing of the Financial System
Authors: Iqra Ali
Abstract:
This study uses panel Vector Auto Regression (VAR) to analyses the dynamic link between banking and insurance activities based on the asset size of the insurance industry for 73 countries between 1980 and 2014. Assets in the insurance industry and banking activities usually have a Granger causal link, according to panel Granger-causality tests. Impulse response analyses for the entire sample show that the size of insurance assets responds favorably to a shock to the liquid liabilities and deposits of the financial system but negatively to a shock to deposit money bank assets and private credit offered by commercial banks, other financial institutions, and deposit banks. While the findings for middle- and low-income nations varied significantly, the observations for high-income countries are essentially the same. Furthermore, we find that there is a substantial interplay between banking and insurance activity in civil law nations as opposed to common law ones.Keywords: vector autoregression, banking, insurance, Granger-causality
Procedia PDF Downloads 1211450 Malaria Vector Situation in Tanjung Subdistrict, West Lombok Regency, West Nusa Tenggara Province, Indonesia
Authors: Subagyo Yotopranoto, Sri Wijayanti Sulistyawati, Sukmawati Basuki, Budi Armika, Yoes Prijatna Dachlan
Abstract:
Malaria is a parasitic infectious disease that still remains a health problem in the world, including Indonesia. There is an outbreak happen at West Nusa Tenggara in 2007. A tourist spot in West Nusa Tenggara called West Lombok is mesoendemic area for malaria. Tanjung is the highest malaria morbidity subdistrict in West Lombok. Thus, the research conducted for the presence of a new species of malaria vectors, that are suspected of one factors which caused high morbidity of malaria in this region. The study was conducted in coastal and highland areas. We collected and identified Anopheles larvae from their breeding places. We also collected and identified Anopheles adult mosquitoes with outdoor cow net, indoor and outdoor human bait. In coastal area (Tembobor village), we found Anopheles vagus larvae from rivers as its breeding places. In highland area (Dasan Tengah village), we found An. subpictus from pool, lagoon, and river as its breeding places. In coastal area, with outdoor human bait, we collected An. vagus and An. subpictus adult mosquitoes. With indoor human bait, we collected An. subpictus adult mosquitoes. Whereas with outdoor cow net, we collected An. subpictus and An. maculatus, the first was more dominant. Furthermore, An subpictus strong suspected as malaria vector in coastal area. Anopheles subpictus was an anthropozoophylic mosquitoes, because it was found at indoor and outdoor places.Keywords: malaria, vector, Tanjung, West Nusa Tenggara
Procedia PDF Downloads 36611449 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia
Authors: The Danh Phan
Abstract:
House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise
Procedia PDF Downloads 23211448 Building Knowledge Society: The Imperative Role of Library and Information Centres (LICs) in Developing Countries
Authors: Desmond Chinedu Oparaku, Oyemike Victor Benson, Ifeyinwa A. Ariole
Abstract:
A critical examination of the emerging knowledge society reveals that library and information centres have a significant role to play in the building of knowledge society. The major highlights of this paper include: the conceptual analysis of knowledge society, overview of library and information centres in developing countries, role of libraries and information centre in building up of knowledge society, library and information professionals as factor in building knowledge, challenges faced by Library and Information Centres (LICs) in building knowledge society, strategies for building knowledge society. The position of this paper is that in spite of the influx of varied information and communication technologies in the information industry which is the driving force of knowledge society, there is a dire need for Libraries and Information Centres (LIC) to contribute positively to the migration and transition processes from the information society to knowledge-based society.Keywords: information and communication technology (ICT), information centres, information industry, information society
Procedia PDF Downloads 38211447 Alternator Fault Detection Using Wigner-Ville Distribution
Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi
Abstract:
This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution
Procedia PDF Downloads 37411446 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security
Authors: D. Pugazhenthi, B. Sree Vidya
Abstract:
Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification
Procedia PDF Downloads 26011445 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors
Authors: V. Rashtchi, H. Bizhani, F. R. Tatari
Abstract:
This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization
Procedia PDF Downloads 63411444 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 51511443 A Forward-Looking View of the Intellectual Capital Accounting Information System
Authors: Rbiha Salsabil Ketitni
Abstract:
The entire company is a series of information among themselves so that each information serves several events and activities, and the latter is nothing but a large set of data or huge data. The enormity of information leads to the possibility of losing it sometimes, and this possibility must be avoided in the institution, especially the information that has a significant impact on it. In most cases, to avoid the loss of this information and to be relatively correct, information systems are used. At present, it is impossible to have a company that does not have information systems, as the latter works to organize the information as well as to preserve it and even saves time for its owner and this is the result of the speed of its mission. This study aims to provide an idea of an accounting information system that opens a forward-looking study for its manufacture and development by researchers, scientists, and professionals. This is the result of most individuals seeing a great contradiction between the work of an information system for moral capital and does not provide real values when measured, and its disclosure in financial reports is not distinguished by transparency.Keywords: accounting, intellectual capital, intellectual capital accounting, information system
Procedia PDF Downloads 8611442 Malaria Outbreak Facilitated by Appearance of Vector-Breeding Sites after Heavy Rainfall and Inadequate Preventive Measures: Nwoya District, Uganda, March–May 2018
Authors: Godfrey Nsereko, Daniel Kadobera, Denis Okethwangu, Joyce Nguna, Alex Riolexus Ario
Abstract:
Background: Malaria is a leading cause of morbidity and mortality in Uganda. In April 2018, malaria cases surged in Nwoya District, northern Uganda, exceeding the action thresholds. We investigated to assess the outbreak’s magnitude, identify transmission risk factors, and recommend evidence-based control measures. Methods: We defined a malaria case as onset of fever in a resident of Nwoya District with a positive Rapid Diagnostic Test or microscopy for malaria P. falciparum from 1 February to 22 May 2018. We reviewed medical records in all health facilities of affected sub-counties to find cases. In a case-control study, we compared exposure risk factors between 107 case-persons and 107 asymptomatic controls matched by age and village. We conducted entomological assessment on vector-density and behavior. Results: We identified 3,879 case-persons (attack rate [AR]=6.5%) and 2 deaths (case-fatality rate=5.2/10,000). Females (AR=8.1%) were more affected than males (AR=4.7%). Of all age groups, the 5-18 year age group (AR=8.4%) was most affected. Heavy rain started on 4 March; a propagated outbreak began during the week of 2 April. In the case-control study, 55% (59/107) of case-patients and 18% (19/107) of controls had stagnant water around households for several days following rainfall (ORM-H=5.6, 95%CI=3.0-11); 25% (27/107) of case-patients and 51% (55/107) of controls wore long-sleeve cloths during evening hours (ORM-H=0.30, 95%CI=0.20-0.60); 29% (31/107) of case-patients and 15% (16/107) of controls did not sleep under a long-lasting insecticide-treated net (LLIN) (ORM-H=2.3, 95%CI=1.1-4.9); 37% (40/107) of case-patients and 52% (56/107) of controls had ≥1 LLIN per 2 household members (ORM-H=0.54, 95%CI=0.30-0.97). Entomological assessment indicated active breeding sites; Anopheles gambiae sensu lato species were the predominant vector. Conclusion: Increased vector breeding sites after heavy rainfall, together with inadequate malaria preventive measures caused this outbreak. We recommended increasing coverage for LLINs and larviciding breeding sites.Keywords: malaria outbreak, Plasmodium falciparum, global health security, Uganda
Procedia PDF Downloads 226