Search results for: regression equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5079

Search results for: regression equation

4839 Influence of Vacuum Pressure on the Thermal Bonding Energy of Water in Wood

Authors: Aleksandar Dedic, Dusko Salemovic, Milorad Danilovic, Radomir Kuzmanovic

Abstract:

This paper takes into consideration the influence of bonding energy of water on energy demand of vacuum wood drying using the specific method of obtaining sorption isotherms. The experiment was carried out on oak wood at vacuum pressures of: 0.7 bar, 0.5bar and 0.3bar. The experimental work was done to determine a mathematical equation between the moisture content and energy of water-bonding. This equation helps in finding the average amount of energy of water-bonding necessary in calculation of energy consumption by use of the equation of heat balance in real drying chambers. It is concluded that the energy of water-bonding is large enough to be included into consideration. This energy increases at lower values of moisture content, when drying process approaches to the end, and its average values are lower on lower pressure.

Keywords: bonding energy, drying, isosters, oak, vacuum

Procedia PDF Downloads 273
4838 Healthy Lifestyle and Risky Behaviors amongst Students of Physical Education High Schools

Authors: Amin Amani, Masomeh Reihany Shirvan, Mahla Nabizadeh Mashizi, Mohadese Khoshtinat, Mohammad Elyas Ansarinia

Abstract:

The purpose of this study is the relationship between a healthy lifestyle and risky behavior in physical education students of Bojnourd schools. The study sample consisted of teenagers studying in second and third grade of Bojnourd's high schools. According to level sampling, 604 students studying in the second grade, and 600 students studying in third grade were tested from physical education schools in Bojnourd. For sample selection, populations were divided into 4 area including north, East, West and South. Then according to the number of students of each area, sample size of each level was determined. Two questionnaires were used to collect data in this study which were consisted of three parts: The demographic data, Iranian teenagers' risk taking (IARS) and prevention methods with emphasize on the importance of family role were examined. The Central and dispersion indices, such as standard deviation, multiple variance analysis, and multivariate regression analysis were used. Results showed that the observed F is significant (P ≤ 0.01) and 21% of variance related to risky behavior is explained by the lack of awareness. Given the significance of the regression, the coefficients of risky behavior in teenagers in prediction equation showed that each of teenagers' risky behavior can have an impact on healthy lifestyle.

Keywords: healthy lifestyle, high-risk behavior, students, physical education

Procedia PDF Downloads 191
4837 Energetics of Photosynthesis with Respect to the Environment and Recently Reported New Balanced Chemical Equation

Authors: Suprit Pradhan, Sushil Pradhan

Abstract:

Photosynthesis is a physiological process where green plants prepare their food from carbon dioxide from the atmosphere and water being absorbed from the soil in presence of sun light and chlorophyll. From this definition it is clear that four reactants (Carbon Dioxide, Water, Light and Chlorophyll) are essential for the process to proceed and the product is a sugar or carbohydrate ultimately stored as starch. The entire process has “Light Reaction” (Photochemical) and “Dark Reaction” (Biochemical). Biochemical reactions are very much complicated being catalysed by various enzymes and the path of carbon is known as “Calvin Cycle” according to the name of its discover. The overall reaction which is now universally accepted can be explained like this. Six molecules of carbon dioxide react with twelve molecules of water in presence of chlorophyll and sun light to give only one molecule of sugar (Carbohydrate) six molecules of water and six molecules of oxygen is being evolved in gaseous form. This is the accepted equation and also chemically balanced. However while teaching the subject the author came across a new balanced equation from among the students who happened to be the daughter of the author. In the new balanced equation in place of twelve water molecules in the reactant side seven molecules can be expressed and accordingly in place of six molecules of water in the product side only one molecule of water is produced. The energetics of the photosynthesis as related to the environment and the newly reported balanced chemical equation has been discussed in detail in the present research paper presentation in this international conference on energy, environmental and chemical engineering.

Keywords: biochemistry, enzyme , isotope, photosynthesis

Procedia PDF Downloads 511
4836 Outcome of Using Penpat Pinyowattanasilp Equation for Prediction of 24-Hour Uptake, First and Second Therapeutic Doses Calculation in Graves’ Disease Patient

Authors: Piyarat Parklug, Busaba Supawattanaobodee, Penpat Pinyowattanasilp

Abstract:

The radioactive iodine thyroid uptake (RAIU) has been widely used to differentiate the cause of thyrotoxicosis and treatment. Twenty-four hours RAIU is routinely used to calculate the dose of radioactive iodine (RAI) therapy; however, 2 days protocol is required. This study aims to evaluate the modification of Penpat Pinyowattanasilp equation application by the exclusion of outlier data, 3 hours RAIU less than 20% and more than 80%, to improve prediction of 24-hour uptake. The equation is predicted 24 hours RAIU (P24RAIU) = 32.5+0.702 (3 hours RAIU). Then calculating separation first and second therapeutic doses in Graves’ disease patients. Methods; This study was a retrospective study at Faculty of Medicine Vajira Hospital in Bangkok, Thailand. Inclusion were Graves’ disease patients who visited RAI clinic between January 2014-March 2019. We divided subjects into 2 groups according to first and second therapeutic doses. Results; Our study had a total of 151 patients. The study was done in 115 patients with first RAI dose and 36 patients with second RAI dose. The P24RAIU are highly correlated with actual 24-hour RAIU in first and second therapeutic doses (r = 0.913, 95% CI = 0.876 to 0.939 and r = 0.806, 95% CI = 0.649 to 0.897). Bland-Altman plot shows that mean differences between predictive and actual 24 hours RAI in the first dose and second dose were 2.14% (95%CI 0.83-3.46) and 1.37% (95%CI -1.41-4.14). The mean first actual and predictive therapeutic doses are 8.33 ± 4.93 and 7.38 ± 3.43 milliCuries (mCi) respectively. The mean second actual and predictive therapeutic doses are 6.51 ± 3.96 and 6.01 ± 3.11 mCi respectively. The predictive therapeutic doses are highly correlated with the actual dose in first and second therapeutic doses (r = 0.907, 95% CI = 0.868 to 0.935 and r = 0.953, 95% CI = 0.909 to 0.976). Bland-Altman plot shows that mean difference between predictive and actual P24RAIU in the first dose and second dose were less than 1 mCi (-0.94 and -0.5 mCi). This modification equation application is simply used in clinical practice especially patient with 3 hours RAIU in range of 20-80% in a Thai population. Before use, this equation for other population should be tested for the correlation.

Keywords: equation, Graves’disease, prediction, 24-hour uptake

Procedia PDF Downloads 139
4835 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation

Authors: Samuel Ahamefula Mba

Abstract:

Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.

Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation

Procedia PDF Downloads 94
4834 Analysis of School Burnout and Academic Motivation through Structural Equation Modeling

Authors: Ismail Seçer

Abstract:

The purpose of this study is to analyze the relationship between school burnout and academic motivation in high school students. The working group of the study consists of 455 students from the high schools in Erzurum city center, selected with appropriate sampling method. School Burnout Scale and Academic Motivation Scale were used in the study to collect data. Correlation analysis and structural equation modeling were used in the analysis of the data collected through the study. As a result of the study, it was determined that there are significant and negative relations between school burnout and academic motivation, and the school burnout has direct and indirect significant effects on the getting over himself, using knowledge and exploration dimension through the latent variable of academic motivation. Lastly, it was determined that school burnout is a significant predictor of academic motivation.

Keywords: school burnout, motivation, structural equation modeling, university

Procedia PDF Downloads 327
4833 Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles

Authors: Merouane Salhi, Toufik Zebbiche, Omar Abada

Abstract:

When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.

Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure

Procedia PDF Downloads 526
4832 Numerical Solution Speedup of the Laplace Equation Using FPGA Hardware

Authors: Abbas Ebrahimi, Mohammad Zandsalimy

Abstract:

The main purpose of this study is to investigate the feasibility of using FPGA (Field Programmable Gate Arrays) chips as alternatives for the conventional CPUs to accelerate the numerical solution of the Laplace equation. FPGA is an integrated circuit that contains an array of logic blocks, and its architecture can be reprogrammed and reconfigured after manufacturing. Complex circuits for various applications can be designed and implemented using FPGA hardware. The reconfigurable hardware used in this paper is an SoC (System on a Chip) FPGA type that integrates both microprocessor and FPGA architectures into a single device. In the present study the Laplace equation is implemented and solved numerically on both reconfigurable hardware and CPU. The precision of results and speedups of the calculations are compared together. The computational process on FPGA, is up to 20 times faster than a conventional CPU, with the same data precision. An analytical solution is used to validate the results.

Keywords: accelerating numerical solutions, CFD, FPGA, hardware definition language, numerical solutions, reconfigurable hardware

Procedia PDF Downloads 384
4831 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 466
4830 Analytical Solution of Blassius Equation Using the Kourosh Method

Authors: Mohammad Reza Shahnazari, Reza Kazemi, Ali Saberi

Abstract:

Most of the engineering problems are in nonlinear forms. Nonlinear boundary layer problems defined in infinite intervals contain specific complexities, especially in boundary layer condition conformance. As an example of these nonlinear complex problems, the well-known Blasius equation can be mentioned, which itself is one of the classic boundary layer problems. No analytical solution has been proposed yet for the Blasius equation due to its complexity. In this paper, an analytical method, namely the Kourosh method, based on the singularity perturbation method and the Liao homotopy analysis is utilized to solve the Blasius problem. In this method, an inner solution is developed in the [0,1] interval to expedite the solution convergence. The magnitude of the f ˝(0), as an essential quantity for determining the physical parameters, is directly calculated from the solution of the boundary condition problem. The advantages of this solution are that it does not need any numerical solution, it has a closed form and that its validation is shown in the entire [0,∞] interval. Furthermore, all of the desirable parameters could be extracted through a series of simple analytical operations from the final solution. This solution also satisfies the continuity conditions, which is one of the main contributions of this paper in comparison with most of the other proposed analytical solutions available in the literature. Comparison with numerical solutions reveals that the proposed method is highly accurate and convenient for application.

Keywords: Blasius equation, boundary layer, Kourosh method, analytical solution

Procedia PDF Downloads 394
4829 Economic Analysis of Cowpea (Unguiculata spp) Production in Northern Nigeria: A Case Study of Kano Katsina and Jigawa States

Authors: Yakubu Suleiman, S. A. Musa

Abstract:

Nigeria is the largest cowpea producer in the world, accounting for about 45%, followed by Brazil with about 17%. Cowpea is grown in Kano, Bauchi, Katsina, Borno in the north, Oyo in the west, and to the lesser extent in Enugu in the east. This study was conducted to determine the input–output relationship of Cowpea production in Kano, Katsina, and Jigawa states of Nigeria. The data were collected with the aid of 1000 structured questionnaires that were randomly distributed to Cowpea farmers in the three states mentioned above of the study area. The data collected were analyzed using regression analysis (Cobb–Douglass production function model). The result of the regression analysis revealed the coefficient of multiple determinations, R2, to be 72.5% and the F ration to be 106.20 and was found to be significant (P < 0.01). The regression coefficient of constant is 0.5382 and is significant (P < 0.01). The regression coefficient with respect to labor and seeds were 0.65554 and 0.4336, respectively, and they are highly significant (P < 0.01). The regression coefficient with respect to fertilizer is 0.26341 which is significant (P < 0.05). This implies that a unit increase of any one of the variable inputs used while holding all other variables inputs constants, will significantly increase the total Cowpea output by their corresponding coefficient. This indicated that farmers in the study area are operating in stage II of the production function. The result revealed that Cowpea farmer in Kano, Jigawa and Katsina States realized a profit of N15,997, N34,016 and N19,788 per hectare respectively. It is hereby recommended that more attention should be given to Cowpea production by government and research institutions.

Keywords: coefficient, constant, inputs, regression

Procedia PDF Downloads 410
4828 Ketones Emission during Pad Printing Process

Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Oros B. Ivana, Kecić S. Vesna, Djogo Z. Maja

Abstract:

The paper investigates the effect of light intensity on the formation of two ketones, acetone and methyl ethyl ketone, in working premises of five pad printing departments in Novi Sad, Serbia. Multiple linear regression analysis examined the form of interdependency concentrations of methyl ethyl ketone, acetone and light intensity in five printing presses at seven sampling points, using Statistica software package version 10th. The results show an average stacking variation investigated variable and can be presented by the general regression model: y = b0 + b1xi1 + b2xi2.

Keywords: acetone, methyl ethyl ketone, multiple linear regression analysis, pad printing

Procedia PDF Downloads 421
4827 Automatic API Regression Analyzer and Executor

Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty

Abstract:

As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.

Keywords: automation impact regression, java doc, executor, analyzer, layers

Procedia PDF Downloads 488
4826 Dam Break Model Using Navier-Stokes Equation

Authors: Alireza Lohrasbi, Alireza Lavaei, Mohammadali M. Shahlaei

Abstract:

The liquid flow and the free surface shape during the initial stage of dam breaking are investigated. A numerical scheme is developed to predict the wave of an unsteady, incompressible viscous flow with free surface. The method involves a two dimensional finite element (2D), in a vertical plan. The Naiver-Stokes equations for conservation of momentum and mass for Newtonian fluids, continuity equation, and full nonlinear kinematic free-surface equation were used as the governing equations. The mapping developed to solve highly deformed free surface problems common in waves formed during wave propagation, transforms the run up model from the physical domain to a computational domain with Arbitrary Lagrangian Eulerian (ALE) finite element modeling technique.

Keywords: dam break, Naiver-Stokes equations, free-surface flows, Arbitrary Lagrangian-Eulerian

Procedia PDF Downloads 340
4825 Factor Affecting Decision Making for Tourism in Thailand by ASEAN Tourists

Authors: Sakul Jariyachansit

Abstract:

The purposes of this research were to investigate and to compare the factors affecting the decision for Tourism in Thailand by ASEAN Tourists and among ASEAN community tourists. Samples in this research were 400 ASEAN Community Tourists who travel in Thailand at Suvarnabhumi Airport during November 2016 - February 2016. The researchers determined the sample size by using the formula Taro Yamane at 95% confidence level tolerances 0.05. The English questionnaire, research instrument, was distributed by convenience sampling, for gathering data. Descriptive statistics was applied to analyze percentages, mean and standard deviation and used for hypothesis testing. The statistical analysis by multiple regression analysis (Multiple Regression) was employed to prove the relationship hypotheses at the significant level of 0.01. The results showed that majority of the respondents indicated the factors affecting the decision for Tourism in Thailand by ASEAN Tourists, in general there were a moderate effects and the mean of each side is moderate. Transportation was the most influential factor for tourism in Thailand. Therefore, the mode of transport, information, infrastructure and personnel are very important to factor affecting decision making for tourism in Thailand by ASEAN tourists. From the hypothesis testing, it can be predicted that the decision for choosing Tourism in Thailand is at R2 = 0.449. The predictive equation is decision for choosing Tourism in Thailand = 1.195 (constant value) + 0.425 (tourist attraction) +0.217 (information received) and transportation factors, tourist attraction, information, human resource and infrastructure at the significant level of 0.01.

Keywords: factor, decision making, ASEAN tourists, tourism in Thailand

Procedia PDF Downloads 206
4824 Infinite Impulse Response Digital Filters Design

Authors: Phuoc Si Nguyen

Abstract:

Infinite impulse response (IIR) filters can be designed from an analogue low pass prototype by using frequency transformation in the s-domain and bilinear z-transformation with pre-warping frequency; this method is known as frequency transformation from the s-domain to the z-domain. This paper will introduce a new method to transform an IIR digital filter to another type of IIR digital filter (low pass, high pass, band pass, band stop or narrow band) using a technique based on inverse bilinear z-transformation and inverse matrices. First, a matrix equation is derived from inverse bilinear z-transformation and Pascal’s triangle. This Low Pass Digital to Digital Filter Pascal Matrix Equation is used to transform a low pass digital filter to other digital filter types. From this equation and the inverse matrix, a Digital to Digital Filter Pascal Matrix Equation can be derived that is able to transform any IIR digital filter. This paper will also introduce some specific matrices to replace the inverse matrix, which is difficult to determine due to the larger size of the matrix in the current method. This will make computing and hand calculation easier when transforming from one IIR digital filter to another in the digital domain.

Keywords: bilinear z-transformation, frequency transformation, inverse bilinear z-transformation, IIR digital filters

Procedia PDF Downloads 425
4823 Determinants of Economic Growth in Pakistan: A Structural Vector Auto Regression Approach

Authors: Muhammad Ajmair

Abstract:

This empirical study followed structural vector auto regression (SVAR) approach proposed by the so-called AB-model of Amisano and Giannini (1997) to check the impact of relevant macroeconomic determinants on economic growth in Pakistan. Before that auto regressive distributive lag (ARDL) bound testing technique and time varying parametric approach along with general to specific approach was employed to find out relevant significant determinants of economic growth. To our best knowledge, no author made such a study that employed auto regressive distributive lag (ARDL) bound testing and time varying parametric approach with general to specific approach in empirical literature, but current study will bridge this gap. Annual data was taken from World Development Indicators (2014) during period 1976-2014. The widely-used Schwarz information criterion and Akaike information criterion were considered for the lag length in each estimated equation. Main findings of the study are that remittances received, gross national expenditures and inflation are found to be the best relevant positive and significant determinants of economic growth. Based on these empirical findings, we conclude that government should focus on overall economic growth augmenting factors while formulating any policy relevant to the concerned sector.

Keywords: economic growth, gross national expenditures, inflation, remittances

Procedia PDF Downloads 200
4822 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method

Authors: J. Satya Eswari, Ch. Venkateswarlu

Abstract:

The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.

Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization

Procedia PDF Downloads 409
4821 Vibration Analysis of Functionally Graded Engesser-Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: functionally graded beam, free vibration, elastic foundation, Engesser-Timoshenko beam theory

Procedia PDF Downloads 422
4820 A Note on the Fractal Dimension of Mandelbrot Set and Julia Sets in Misiurewicz Points

Authors: O. Boussoufi, K. Lamrini Uahabi, M. Atounti

Abstract:

The main purpose of this paper is to calculate the fractal dimension of some Julia Sets and Mandelbrot Set in the Misiurewicz Points. Using Matlab to generate the Julia Sets images that match the Misiurewicz points and using a Fractal software, we were able to find different measures that characterize those fractals in textures and other features. We are actually focusing on fractal dimension and the error calculated by the software. When executing the given equation of regression or the log-log slope of image a Box Counting method is applied to the entire image, and chosen settings are available in a FracLAc Program. Finally, a comparison is done for each image corresponding to the area (boundary) where Misiurewicz Point is located.

Keywords: box counting, FracLac, fractal dimension, Julia Sets, Mandelbrot Set, Misiurewicz Points

Procedia PDF Downloads 216
4819 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets.

Keywords: mass transfer, multiple plunging jets, multi-linear regression, earth sciences

Procedia PDF Downloads 464
4818 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management

Authors: Chokri Slim

Abstract:

The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.

Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines

Procedia PDF Downloads 152
4817 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects

Authors: Sami Mestiri, Abdeljelil Farhat

Abstract:

The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.

Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC

Procedia PDF Downloads 542
4816 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study

Authors: Priya Kedia, Kiranmoy Das

Abstract:

There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.

Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution

Procedia PDF Downloads 156
4815 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 129
4814 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

Authors: Joonas Pääkkönen

Abstract:

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling

Procedia PDF Downloads 125
4813 The Predictors of Student Engagement: Instructional Support vs Emotional Support

Authors: Tahani Salman Alangari

Abstract:

Student success can be impacted by internal factors such as their emotional well-being and external factors such as organizational support and instructional support in the classroom. This study is to identify at least one factor that forecasts student engagement. It is a cross-sectional, conducted on 6206 teachers and encompassed three years of data collection and observations of math instruction in approximately 50 schools and 300 classrooms. A multiple linear regression revealed that a model predicting student engagement from emotional support, classroom organization, and instructional support was significant. Four linear regression models were tested using hierarchical regression to examine the effects of independent variables: emotional support was the highest predictor of student engagement while instructional support was the lowest.

Keywords: student engagement, emotional support, organizational support, instructional support, well-being

Procedia PDF Downloads 81
4812 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model

Authors: Seydou Sinde

Abstract:

The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.

Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression

Procedia PDF Downloads 84
4811 Factors Affecting Expectations and Intentions of University Students’ Mobile Phone Use in Educational Contexts

Authors: Davut Disci

Abstract:

Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance- Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling(SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.

Keywords: education, mobile behavior, mobile learning, technology, Turkey

Procedia PDF Downloads 421
4810 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis

Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu

Abstract:

In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.

Keywords: supervised, functional principal component analysis, functional response, functional linear regression

Procedia PDF Downloads 77