Search results for: nonlinear Schrödinger equation
2879 Axisymmetric Nonlinear Analysis of Point Supported Shallow Spherical Shells
Authors: M. Altekin, R. F. Yükseler
Abstract:
Geometrically nonlinear axisymmetric bending of a shallow spherical shell with a point support at the apex under linearly varying axisymmetric load was investigated numerically. The edge of the shell was assumed to be simply supported or clamped. The solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for two geometrical parameters. The accuracy of the algorithm was checked by comparing the deflection with the solution of point supported circular plates and good agreement was obtained.Keywords: Bending, Nonlinear, Plate, Point support, Shell.
Procedia PDF Downloads 2642878 On CR-Structure and F-Structure Satisfying Polynomial Equation
Authors: Manisha Kankarej
Abstract:
The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.Keywords: CR-submainfolds, CR-structure, integrability condition, Nijenhuis tensor
Procedia PDF Downloads 5262877 Parametric Dependence of the Advection-Diffusion Equation in Two Dimensions
Authors: Matheus Fernando Pereira, Varese Salvador Timoteo
Abstract:
In this work, we have solved the two-dimensional advection-diffusion equation numerically for a spatially dependent solute dispersion along non-uniform flow with a pulse type source in order to make a systematic study on the influence of medium heterogeneity, initial flow velocity, and initial dispersion coefficient parameters on the solutions of the equation. The behavior of the solutions is then investigated as we change the three parameters independently. Our results show that even though the parameters represent different physical features of the system, the effect on their variation is very similar. We also observe that the effects caused by the parameters on the concentration depend on the distance from the source. Finally, our numerical results are in good agreement with the exact solutions for all values of the parameters we used in our analysis.Keywords: advection-diffusion equation, dispersion, numerical methods, pulse-type source
Procedia PDF Downloads 2392876 Soliton Solutions in (3+1)-Dimensions
Authors: Magdy G. Asaad
Abstract:
Solitons are among the most beneficial solutions for science and technology for their applicability in physical applications including plasma, energy transport along protein molecules, wave transport along poly-acetylene molecules, ocean waves, constructing optical communication systems, transmission of information through optical fibers and Josephson junctions. In this talk, we will apply the bilinear technique to generate a class of soliton solutions to the (3+1)-dimensional nonlinear soliton equation of Jimbo-Miwa type. Examples of the resulting soliton solutions are computed and a few solutions are plotted.Keywords: Pfaffian solutions, N-soliton solutions, soliton equations, Jimbo-Miwa
Procedia PDF Downloads 4532875 An Iterative Family for Solution of System of Nonlinear Equations
Authors: Sonia Sonia
Abstract:
This paper presents a family of iterative scheme for solving nonlinear systems of equations which have wide application in sciences and engineering. The proposed iterative family is based upon some parameters which generates many different iterative schemes. This family is completely derivative free and uses first of divided difference operator. Moreover some numerical experiments are performed and compared with existing methods. Analysis of convergence shows that the presented family has fourth-order of convergence. The dynamical behaviour of proposed family and local convergence have also been discussed. The numerical performance and convergence region comparison demonstrates that proposed family is efficient.Keywords: convergence, divided difference operator, nonlinear system, Newton's method
Procedia PDF Downloads 2362874 Equation to an Unknown (1980): Visibility, Community, and Rendering Queer Utopia
Authors: Ted Silva
Abstract:
Dietrich de Velsa's Équation à un inconnu / Equation to an Unknown hybridizes art cinema style with the sexually explicit aesthetics of pornography to envision a uniquely queer world unmoored by heteronormative influence. This stylization evokes the memory of a queer history that once approximated such a prospect. With this historical and political context in mind, this paper utilizes formal analysis to assess how the film frames queer sexual encounters as tender acts of care, sometimes literally mending physical wounds. However, Equation to Unknown also highlights the transience of these sexual exchanges. By emphasizing the homogeneity of the protagonist’s sexual conquests, the film reveals that these practices have a darker meaning when the men reject the individualized connection to pursue purely visceral gratification. Given the lack of diversity or even recognizable identifying factors, the men become more anonymous to each other the more they pair up. Ultimately, Equation to an Unknown both celebrates and problematizes its vision of a queer utopia, highlighting areas in the community wherein intimacy and care flourish and locating those spots in which they are neglected.Keywords: pornography studies, queer cinema, French cinema, history
Procedia PDF Downloads 1392873 Numerical Wave Solutions for Nonlinear Coupled Equations Using Sinc-Collocation Method
Authors: Kamel Al-Khaled
Abstract:
In this paper, numerical solutions for the nonlinear coupled Korteweg-de Vries, (abbreviated as KdV) equations are calculated by Sinc-collocation method. This approach is based on a global collocation method using Sinc basis functions. First, discretizing time derivative of the KdV equations by a classic finite difference formula, while the space derivatives are approximated by a $\theta-$weighted scheme. Sinc functions are used to solve these two equations. Soliton solutions are constructed to show the nature of the solution. The numerical results are shown to demonstrate the efficiency of the newly proposed method.Keywords: Nonlinear coupled KdV equations, Soliton solutions, Sinc-collocation method, Sinc functions
Procedia PDF Downloads 5252872 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer
Authors: R. Loukil, M. Chtourou, T. Damak
Abstract:
In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability
Procedia PDF Downloads 3742871 Design of Reinforced Concrete (RC) Walls Considering Shear Amplification by Nonlinear Dynamic Behavior
Authors: Sunghyun Kim, Hong-Gun Park
Abstract:
In the performance-based design (PBD), by using the nonlinear dynamic analysis (NDA), the actual performance of the structure is evaluated. Unlike frame structures, in the wall structures, base shear force which is resulted from the NDA, is greatly amplified than that from the elastic analysis. This shear amplifying effect causes repeated designs which make designer difficult to apply the PBD. Therefore, in this paper, factors which affect shear amplification were studied. For the 20-story wall model, the NDA was performed. From the analysis results, the base shear amplification factor was proposed.Keywords: performance based design, shear amplification factor, nonlinear dynamic analysis, RC shear wall
Procedia PDF Downloads 3792870 Nonlinear Analysis of Reinforced Concrete Arched Structures Considering Soil-Structure Interaction
Authors: Mohamed M. El Gendy, Ibrahim A. El Arabi, Rafeek W. Abdel-Missih, Omar A. Kandil
Abstract:
Nonlinear analysis is one of the most important design and safety tools in structural engineering. Based on the finite-element method, a geometrical and material nonlinear analysis of large span reinforced concrete arches is carried out considering soil-structure interaction. The concrete section details and reinforcement distribution are taken into account. The behavior of soil is considered via Winkler's and continuum models. A computer program (NARC II) is specially developed in order to follow the structural behavior of large span reinforced concrete arches up to failure. The results obtained by the proposed model are compared with available literature for verification. This work confirmed that the geometrical and material nonlinearities, as well as soil structure interaction, have considerable influence on the structural response of reinforced concrete arches.Keywords: nonlinear analysis, reinforced concrete arched structure, soil-structure interaction, geotechnical engineering
Procedia PDF Downloads 4392869 Two-Dimensional Transition Metal Dichalcogenides for Photodetection and Biosensing
Authors: Mariam Badmus, Bothina Manasreh
Abstract:
Transition metal dichalcogenides (TMDs) have gained significant attention as two-dimensional (2D) materials due to their intrinsic band gaps and unique properties, which make them ideal candidates for electronic and photonic applications. Unlike graphene, which lacks a band gap, TMDs (MX₂, where M is a transition metal and X is a chalcogen such as sulfur, selenium, or tellurium) exhibit semiconductor behavior and can be exfoliated into monolayers, enhancing their properties. The properties of these materials are investigated using density functional theory, a quantum mechanical computational method to solve Schrodinger equation for many body problems to calculate electron density of the atoms involved on which the energy and properties of a system depend. They show promise for use in photodetectors, biosensors, memory devices, and other technologies in communications, health, and energy sectors. In particular, metallic TMDs, which lack an intrinsic band gap, benefit from doping with transition metals, this improves their electronic and optical properties. Doping monolayer TMDs yields more significant improvements than doping bulk materials. Notably, doping with metals such as vanadium enhances the magnetization of TMDs, expanding their potential applications in spintronics. This work highlights the effects of doping on TMDs and explores strategies for optimizing their performance for advanced technological applications.Keywords: concentration, doping, magnetization, monolayer
Procedia PDF Downloads 122868 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method
Authors: Felix Jr. Garde, Eric Augustus Tingatinga
Abstract:
Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method
Procedia PDF Downloads 3242867 Timing Equation for Capturing Satellite Thermal Images
Authors: Toufic Abd El-Latif Sadek
Abstract:
The Asphalt object represents the asphalted areas, like roads. The best original data of thermal images occurred at a specific time during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects, using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found in this study a general timing equation for capturing satellite thermal images at different locations, depends on a fixed time the sunrise and sunset; Capture Time= Tcap =(TM*TSR) ±TS.Keywords: asphalt, satellite, thermal images, timing equation
Procedia PDF Downloads 3502866 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories
Authors: Ranajay Bhowmick
Abstract:
Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.Keywords: cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion
Procedia PDF Downloads 1372865 Control Law Design of a Wheeled Robot Mobile
Authors: Ghania Zidani, Said Drid, Larbi Chrifi-Alaoui, Abdeslam Benmakhlouf, Souad Chaouch
Abstract:
In this paper, we focus on the study for path tracking control of unicycle-type Wheeled Mobile Robots (WMR), by applying the Backstepping technic. The latter is a relatively new technic for nonlinear systems. To solve the problem of constraints nonholonomics met in the path tracking of such robots, an adaptive Backstepping based nonlinear controller is developed. The stability of the controller is guaranteed, using the Lyapunov theory. Simulation results show that the proposed controller achieves the objective and ensures good path tracking.Keywords: Backstepping control, kinematic and dynamic controllers, Lyapunov methods, nonlinear control systems, Wheeled Mobile Robot (WMR).
Procedia PDF Downloads 4392864 Complex Fuzzy Evolution Equation with Nonlocal Conditions
Authors: Abdelati El Allaoui, Said Melliani, Lalla Saadia Chadli
Abstract:
The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation.Keywords: Complex fuzzy evolution equations, nonlocal conditions, mild solution, complex fuzzy semigroups
Procedia PDF Downloads 2822863 Semilocal Convergence of a Three Step Fifth Order Iterative Method under Hölder Continuity Condition in Banach Spaces
Authors: Ramandeep Behl, Prashanth Maroju, S. S. Motsa
Abstract:
In this paper, we study the semilocal convergence of a fifth order iterative method using recurrence relation under the assumption that first order Fréchet derivative satisfies the Hölder condition. Also, we calculate the R-order of convergence and provide some a priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear Hammerstein integral equation of the second kind.Keywords: Holder continuity condition, Frechet derivative, fifth order convergence, recurrence relations
Procedia PDF Downloads 6122862 Cubic Trigonometric B-Spline Approach to Numerical Solution of Wave Equation
Authors: Shazalina Mat Zin, Ahmad Abd. Majid, Ahmad Izani Md. Ismail, Muhammad Abbas
Abstract:
The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.Keywords: collocation method, cubic trigonometric B-spline, finite difference, wave equation
Procedia PDF Downloads 5422861 Differential Transform Method: Some Important Examples
Authors: M. Jamil Amir, Rabia Iqbal, M. Yaseen
Abstract:
In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions.Keywords: differential transform method, laplace equation, Dirichlet boundary conditions, Neumann boundary conditions
Procedia PDF Downloads 5382860 Derivatives Balance Method for Linear and Nonlinear Control Systems
Authors: Musaab Mohammed Ahmed Ali, Vladimir Vodichev
Abstract:
work deals with an universal control technique or single controller for linear and nonlinear stabilization and tracing control systems. These systems may be structured as SISO and MIMO. Parameters of controlled plants can vary over a wide range. Introduced a novel control systems design method, construction of stable platform orbits using derivative balance, solved transfer function stability preservation problem of linear system under partial substitution of a rational function. Universal controller is proposed as a polar system with the multiple orbits to simplify design procedure, where each orbit represent single order of controller transfer function. Designed controller consist of proportional, integral, derivative terms and multiple feedback and feedforward loops. The controller parameters synthesis method is presented. In generally, controller parameters depend on new polynomial equation where all parameters have a relationship with each other and have fixed values without requirements of retuning. The simulation results show that the proposed universal controller can stabilize infinity number of linear and nonlinear plants and shaping desired previously ordered performance. It has been proven that sensor errors and poor performance will be completely compensated and cannot affect system performance. Disturbances and noises effect on the controller loop will be fully rejected. Technical and economic effect of using proposed controller has been investigated and compared to adaptive, predictive, and robust controllers. The economic analysis shows the advantage of single controller with fixed parameters to drive infinity numbers of plants compared to above mentioned control techniques.Keywords: derivative balance, fixed parameters, stable platform, universal control
Procedia PDF Downloads 1362859 Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems
Authors: Nadaniela Egidi, Pierluigi Maponi
Abstract:
The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.Keywords: Fredholm integral equation, iterative method, preconditioning, scattering problem
Procedia PDF Downloads 1052858 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach
Authors: M. Zamurad Shah, M. Kemal Ozgoren, Raza Samar
Abstract:
This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances.Keywords: unmanned aerial vehicles, sliding mode control, 3D guidance, nonlinear sliding manifolds
Procedia PDF Downloads 4512857 A Fundamental Functional Equation for Lie Algebras
Authors: Ih-Ching Hsu
Abstract:
Inspired by the so called Jacobi Identity (x y) z + (y z) x + (z x) y = 0, the following class of functional equations EQ I: F [F (x, y), z] + F [F (y, z), x] + F [F (z, x), y] = 0 is proposed, researched and generalized. Research methodologies begin with classical methods for functional equations, then evolve into discovering of any implicit algebraic structures. One of this paper’s major findings is that EQ I, under two additional conditions F (x, x) = 0 and F (x, y) + F (y, x) = 0, proves to be a fundamental functional equation for Lie Algebras. Existence of non-trivial solutions for EQ I can be proven by defining F (p, q) = [p q] = pq –qp, where p and q are quaternions, and pq is the quaternion product of p and q. EQ I can be generalized to the following class of functional equations EQ II: F [G (x, y), z] + F [G (y, z), x] + F [G (z, x), y] = 0. Concluding Statement: With a major finding proven, and non-trivial solutions derived, this research paper illustrates and provides a new functional equation scheme for studies in two major areas: (1) What underlying algebraic structures can be defined and/or derived from EQ I or EQ II? (2) What conditions can be imposed so that conditional general solutions to EQ I and EQ II can be found, investigated and applied?Keywords: fundamental functional equation, generalized functional equations, Lie algebras, quaternions
Procedia PDF Downloads 2242856 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller
Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou
Abstract:
This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.Keywords: wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller
Procedia PDF Downloads 4162855 Solar Wind Turbulence and the Role of Circularly Polarized Dispersive Alfvén Wave
Authors: Swati Sharma, R. P. Sharma
Abstract:
We intend to study the nonlinear evolution of the parallel propagating finite frequency Alfvén wave (also called Dispersive Alfvén wave/Hall MHD wave) propagating in the solar wind regime of the solar region when a perpendicularly propagating magnetosonic wave is present in the background. The finite frequency Alfvén wave behaves differently from the usual non-dispersive behavior of the Alfvén wave. To study the nonlinear processes (such as filamentation) taking place in the solar regions such as solar wind, the dynamical equation of both the waves are derived. Numerical simulation involving finite difference method for the time domain and pseudo spectral method for the spatial domain is then performed to analyze the transient evolution of these waves. The power spectra of the Dispersive Alfvén wave is also investigated. The power spectra shows the distribution of the magnetic field intensity of the Dispersive Alfvén wave over different wave numbers. For DAW the spectra shows a steepening for scales larger than the proton inertial length. This means that the wave energy gets transferred to the solar wind particles as the wave reaches higher wave numbers. This steepening of the power spectra can be explained on account of the finite frequency of the Alfvén wave. The obtained results are consistent with the observations made by CLUSTER spacecraft.Keywords: solar wind, turbulence, dispersive alfven wave
Procedia PDF Downloads 6012854 Modeling Thermionic Emission from Carbon Nanotubes with Modified Richardson-Dushman Equation
Authors: Olukunle C. Olawole, Dilip Kumar De
Abstract:
We have modified Richardson-Dushman equation considering thermal expansion of lattice and change of chemical potential with temperature in material. The corresponding modified Richardson-Dushman (MRDE) equation fits quite well the experimental data of thermoelectronic current density (J) vs T from carbon nanotubes. It provides a unique technique for accurate determination of W0 Fermi energy, EF0 at 0 K and linear thermal expansion coefficient of carbon nano-tube in good agreement with experiment. From the value of EF0 we obtain the charge carrier density in excellent agreement with experiment. We describe application of the equations for the evaluation of performance of concentrated solar thermionic energy converter (STEC) with emitter made of carbon nanotube for future applications.Keywords: carbon nanotube, modified Richardson-Dushman equation, fermi energy at 0 K, charge carrier density
Procedia PDF Downloads 3782853 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen
Abstract:
In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence
Procedia PDF Downloads 6562852 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 2022851 Molecular Modeling a Tool for Postulating the Mechanism of Drug Interaction: Glimepiride Alters the Pharmacokinetics of Sildenafil Citrate in Diabetic Nephropathy Animals
Authors: Alok Shiomurti Tripathi, Ajay Kumar Timiri, Papiya Mitra Mazumder, Anil Chandewar
Abstract:
The present study evaluates the possible drug interaction between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ) induced in diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction by molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg/kg, ip) and confirms it by assessing the blood and urine biochemical parameters on 28th day of its induction. Selected DN animals were used for the drug interaction between GLIM (0.5mg/kg, p.o.) and SIL (2.5 mg/kg, p.o.) after 29th and 70th day of protocol. Drug interaction were assessed by evaluating the plasma drug concentration using HPLC-UV and also determine the change in the biochemical parameter in blood and urine. Mechanism of the interaction was postulated by molecular modeling study using Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in the blood and urine biochemical parameter in STZ treated groups. The concentration of SIL increased significantly (p<0.001) in rat plasma when co administered with GLIM after 70th day of protocol. Molecular modelling study revealed few important interactions with rat serum albumin and CYP2C9.GLIM has strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL. Whereas, for CYP2C9, GLIM has strong hydrogen bond with polar contacts and hydrophobic interactions than SIL. Present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals and mechanism has been supported by molecular modeling studies.Keywords: diabetic nephropathy, glimepiride, sildenafil citrate, pharmacokinetics, homology modeling, schrodinger
Procedia PDF Downloads 3782850 Prediction of Thermodynamic Properties of N-Heptane in the Critical Region
Authors: Sabrina Ladjama, Aicha Rizi, Azzedine Abbaci
Abstract:
In this work, we use the crossover model to formulate a comprehensive fundamental equation of state for the thermodynamic properties for several n-alkanes in the critical region that extends to the classical region. This equation of state is constructed on the basis of comparison of selected measurements of pressure-density-temperature data, isochoric and isobaric heat capacity. The model can be applied in a wide range of temperatures and densities around the critical point for n-heptane. It is found that the developed model represents most of the reliable experimental data accurately.Keywords: crossover model, critical region, fundamental equation, n-heptane
Procedia PDF Downloads 475