Search results for: monitoring signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4003

Search results for: monitoring signals

3763 Training Isolated Respiration in Rehabilitation

Authors: Marketa Kotova, Jana Kolarova, Ludek Zalud, Petr Dobsak

Abstract:

A game for training of breath (TRABR) for continuous monitoring of pulmonary ventilation during the patients’ therapy focuses especially on monitoring of their ventilation processes. It is necessary to detect, monitor and differentiate abdominal and thoracic breathing during the therapy. It is a fun form of rehabilitation where the patient plays and also practicing isolated breathing. Finally the game to practice breath was designed to evaluate whether the patient uses two types of breathing or not.

Keywords: pulmonary ventilation, thoracic breathing, abdominal breathing, breath monitoring using pressure sensors, game TRABR TRAining of BReath)

Procedia PDF Downloads 491
3762 Identification of EEG Attention Level Using Empirical Mode Decompositions for BCI Applications

Authors: Chia-Ju Peng, Shih-Jui Chen

Abstract:

This paper proposes a method to discriminate electroencephalogram (EEG) signals between different concentration states using empirical mode decomposition (EMD). Brain-computer interface (BCI), also called brain-machine interface, is a direct communication pathway between the brain and an external device without the inherent pathway such as the peripheral nervous system or skeletal muscles. Attention level is a common index as a control signal of BCI systems. The EEG signals acquired from people paying attention or in relaxation, respectively, are decomposed into a set of intrinsic mode functions (IMF) by EMD. Fast Fourier transform (FFT) analysis is then applied to each IMF to obtain the frequency spectrums. By observing power spectrums of IMFs, the proposed method has the better identification of EEG attention level than the original EEG signals between different concentration states. The band power of IMF3 is the most obvious especially in β wave, which corresponds to fully awake and generally alert. The signal processing method and results of this experiment paves a new way for BCI robotic system using the attention-level control strategy. The integrated signal processing method reveals appropriate information for discrimination of the attention and relaxation, contributing to a more enhanced BCI performance.

Keywords: biomedical engineering, brain computer interface, electroencephalography, rehabilitation

Procedia PDF Downloads 391
3761 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles

Authors: Gopi Kandaswamy, P. Balamuralidhar

Abstract:

Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.

Keywords: fault detection, health monitoring, unmanned aerial vehicles, vibration analysis

Procedia PDF Downloads 263
3760 Condition Monitoring of Railway Earthworks using Distributed Rayleigh Sensing

Authors: Andrew Hall, Paul Clarkson

Abstract:

Climate change is predicted to increase the number of extreme weather events intensifying the strain on Railway Earthworks. This paper describes the use of Distributed Rayleigh Sensing to monitor low frequency activity on a vulnerable earthworks sectionprone to landslides alongside a railway line in Northern Spain. The vulnerable slope is instrumented with conventional slope stability sensors allowing an assessment to be conducted of the application of Distributed Rayleigh Sensing as an earthwork condition monitoring tool to enhance the resilience of railway networks.

Keywords: condition monitoring, railway earthworks, distributed rayleigh sensing, climate change

Procedia PDF Downloads 208
3759 Surveillance of Super-Extended Objects: Bimodal Approach

Authors: Andrey V. Timofeev, Dmitry Egorov

Abstract:

This paper describes an effective solution to the task of a remote monitoring of super-extended objects (oil and gas pipeline, railways, national frontier). The suggested solution is based on the principle of simultaneously monitoring of seismoacoustic and optical/infrared physical fields. The principle of simultaneous monitoring of those fields is not new but in contrast to the known solutions the suggested approach allows to control super-extended objects with very limited operational costs. So-called C-OTDR (Coherent Optical Time Domain Reflectometer) systems are used to monitor the seismoacoustic field. Far-CCTV systems are used to monitor the optical/infrared field. A simultaneous data processing provided by both systems allows effectively detecting and classifying target activities, which appear in the monitored objects vicinity. The results of practical usage had shown high effectiveness of the suggested approach.

Keywords: C-OTDR monitoring system, bimodal processing, LPboost, SVM

Procedia PDF Downloads 471
3758 Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface

Authors: Ping Tan, Xiaomeng Su, Yi Shen

Abstract:

The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods.

Keywords: non-uniform filter banks, motor imagery, brain-computer interface, minimum distance to Riemannian mean

Procedia PDF Downloads 126
3757 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 76
3756 Classification Method for Turnover While Sleeping Using Multi-Point Unconstrained Sensing Devices

Authors: K. Shiba, T. Kobayashi, T. Kaburagi, Y. Kurihara

Abstract:

Elderly population in the world is increasing, and consequently, their nursing burden is also increasing. In such situations, monitoring and evaluating their daily action facilitates efficient nursing care. Especially, we focus on an unconscious activity during sleep, i.e. turnover. Monitoring turnover during sleep is essential to evaluate various conditions related to sleep. Bedsores are considered as one of the monitoring conditions. Changing patient’s posture every two hours is required for caregivers to prevent bedsore. Herein, we attempt to develop an unconstrained nocturnal monitoring system using a sensing device based on piezoelectric ceramics that can detect the vibrations owing to human body movement on the bed. In the proposed method, in order to construct a multi-points sensing, we placed two sensing devices under the right and left legs at the head-side of an ordinary bed. Using this equipment, when a subject lies on the bed, feature is calculated from the output voltages of the sensing devices. In order to evaluate our proposed method, we conducted an experiment with six healthy male subjects. Consequently, the period during which turnover occurs can be correctly classified as the turnover period with 100% accuracy.

Keywords: turnover, piezoelectric ceramics, multi-points sensing, unconstrained monitoring system

Procedia PDF Downloads 196
3755 Tardiness and Self-Regulation: Degree and Reason for Tardiness in Undergraduate Students in Japan

Authors: Keiko Sakai

Abstract:

In Japan, all stages of public education aim to foster a zest for life. ‘Zest’ implies solving problems by oneself, using acquired knowledge and skills. It is related to the self-regulation of metacognition. To enhance this, establishing good learning habits is important. Tardiness in undergraduate students should be examined based on self-regulation. Accordingly, we focussed on self-monitoring and self-planning strategies among self-regulated learning factors to examine the causes of tardiness. This study examines the impact of self-monitoring and self-planning learning skills on the degree and reason for tardiness in undergraduate students. A questionnaire survey was conducted, targeted to undergraduate students in University X in the autumn semester of 2018. Participants were 247 (average age 19.7, SD 1.9; 144 males, 101 females, 2 no answers). The survey contained the following items and measures: school year, the number of classes in the semester, degree of tardiness in the semester (subjective degree and objective times), active participation in and action toward schoolwork, self-planning and self-monitoring learning skills, and reason for tardiness (open-ended question). First, the relation between strategies and tardiness was examined by multiple regressions. A statistically significant relationship between a self-monitoring learning strategy and the degree of subjective and objective tardiness was revealed, after statistically controlling the school year and the number of classes. There was no significant relationship between a self-planning learning strategy and the degree of tardiness. These results suggest that self-monitoring skills reduce tardiness. Secondly, the relation between a self-monitoring learning strategy and the reason of tardiness was analysed, after classifying the reason for tardiness into one of seven categories: ‘overslept’, ‘illness’, ‘poor time management’, ‘traffic delays’, ‘carelessness’, ‘low motivation’, and ‘stuff to do’. Chi-square tests and Fisher’s exact tests showed a statistically significant relationship between a self-monitoring learning strategy and the frequency of ‘traffic delays’. This result implies that self-monitoring skills prevent tardiness because of traffic delays. Furthermore, there was a weak relationship between a self-monitoring learning strategy score and the reason-for-tardiness categories. When self-monitoring skill is higher, a decrease in ‘overslept’ and ‘illness’, and an increase in ‘poor time management’, ‘carelessness’, and ‘low motivation’ are indicated. It is suggested that a self-monitoring learning strategy is related to an internal causal attribution of failure and self-management for how to prevent tardiness. From these findings, the effectiveness of a self-monitoring learning skill strategy for reducing tardiness in undergraduate students is indicated.

Keywords: higher-education, self-monitoring, self-regulation, tardiness

Procedia PDF Downloads 136
3754 Analysis of Epileptic Electroencephalogram Using Detrended Fluctuation and Recurrence Plots

Authors: Mrinalini Ranjan, Sudheesh Chethil

Abstract:

Epilepsy is a common neurological disorder characterised by the recurrence of seizures. Electroencephalogram (EEG) signals are complex biomedical signals which exhibit nonlinear and nonstationary behavior. We use two methods 1) Detrended Fluctuation Analysis (DFA) and 2) Recurrence Plots (RP) to capture this complex behavior of EEG signals. DFA considers fluctuation from local linear trends. Scale invariance of these signals is well captured in the multifractal characterisation using detrended fluctuation analysis (DFA). Analysis of long-range correlations is vital for understanding the dynamics of EEG signals. Correlation properties in the EEG signal are quantified by the calculation of a scaling exponent. We report the existence of two scaling behaviours in the epileptic EEG signals which quantify short and long-range correlations. To illustrate this, we perform DFA on extant ictal (seizure) and interictal (seizure free) datasets of different patients in different channels. We compute the short term and long scaling exponents and report a decrease in short range scaling exponent during seizure as compared to pre-seizure and a subsequent increase during post-seizure period, while the long-term scaling exponent shows an increase during seizure activity. Our calculation of long-term scaling exponent yields a value between 0.5 and 1, thus pointing to power law behaviour of long-range temporal correlations (LRTC). We perform this analysis for multiple channels and report similar behaviour. We find an increase in the long-term scaling exponent during seizure in all channels, which we attribute to an increase in persistent LRTC during seizure. The magnitude of the scaling exponent and its distribution in different channels can help in better identification of areas in brain most affected during seizure activity. The nature of epileptic seizures varies from patient-to-patient. To illustrate this, we report an increase in long-term scaling exponent for some patients which is also complemented by the recurrence plots (RP). RP is a graph that shows the time index of recurrence of a dynamical state. We perform Recurrence Quantitative analysis (RQA) and calculate RQA parameters like diagonal length, entropy, recurrence, determinism, etc. for ictal and interictal datasets. We find that the RQA parameters increase during seizure activity, indicating a transition. We observe that RQA parameters are higher during seizure period as compared to post seizure values, whereas for some patients post seizure values exceeded those during seizure. We attribute this to varying nature of seizure in different patients indicating a different route or mechanism during the transition. Our results can help in better understanding of the characterisation of epileptic EEG signals from a nonlinear analysis.

Keywords: detrended fluctuation, epilepsy, long range correlations, recurrence plots

Procedia PDF Downloads 178
3753 Noninvasive Continuous Glucose Monitoring Device Using a Photon-Assisted Tunneling Photodetector Based on a Quantum Metal-Oxide-Semiconductor

Authors: Wannakorn Sangthongngam, Melissa Huerta, Jaewoo Kim, Doyeon Kim

Abstract:

Continuous glucose monitoring systems are essential for diabetics to avoid health complications but come at a costly price, especially when insurance does not fully cover the diabetic testing kits needed. This paper proposes a noninvasive continuous glucose monitoring system to provide an accessible, low-cost, and painless alternative method of accurate glucose measurements to help improve quality of life. Using a light source with a wavelength of 850nm illuminates the fingertip for the photodetector to detect the transmitted light. Utilizing SeeDevice’s photon-assisted tunneling photodetector (PAT-PD)-based QMOS™ sensor, fluctuations of voltage based on photon absorption in blood cells are comparable to traditional glucose measurements. The performance of the proposed method was validated using 4 test participants’ transmitted voltage readings compared with measurements obtained from the Accu-Chek glucometer. The proposed method was able to successfully measure concentrations from linear regression calculations.

Keywords: continuous glucose monitoring, non-invasive continuous glucose monitoring, NIR, photon-assisted tunneling photodetector, QMOS™, wearable device

Procedia PDF Downloads 99
3752 Robot Navigation and Localization Based on the Rat’s Brain Signals

Authors: Endri Rama, Genci Capi, Shigenori Kawahara

Abstract:

The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.

Keywords: brain-machine interface, decision-making, mobile robot, neural network

Procedia PDF Downloads 298
3751 Assessing Flexural Damage Mechanisms Induced by Mesoscopic Buckle Defects in Textile-Reinforced Polymer Matrix Composites Using Acoustic Emission Analysis

Authors: Christopher Okechukwu Ndukwe

Abstract:

This paper investigates and categorizes the flexural damage mechanisms in composite materials caused by mesoscopic out-of-plane buckle defects that occur during the initial stage of the resin transfer molding (RTM) process. The findings of this study have significant practical implications for the manufacturing and use of composite materials, as they provide a deeper understanding of these damage mechanisms and their analysis. During the initial stage of shaping a preform, alterations, and distortions in the reinforcement sample can significantly lead to defects, such as buckling, especially when forming double-curvature geometries. These recurring mesoscopic defects have been investigated using a specialized laboratory bench designed to reproduce buckle defects like those found in complex geometric shapes, such as tetrahedrons. The study examined two sample configurations with buckle defects in the longitudinal and transverse directions alongside a reference sample for comparison. An acoustic emission (AE) system, a well-regarded non-contact method for monitoring structural health, was used to analyze the mechanical behavior of material samples in detail. An unsupervised K-means algorithm was employed to classify the damage mechanisms—such as matrix cracking, interface damage, and fiber breakage linked to the samples' failure. A standard was established based on three AE parameters: absolute energy, amplitude, and the number of AE events. This standard helped identify the origin and sequence of damage propagation. Initially, the results of the AE parameters were superimposed with the flexural loading curves to pinpoint the loading phases during which damage began and the specific points at which the samples ultimately failed. The normalized density of AE events related to different damage mechanisms was evaluated by analyzing the number of AE events within the amplitude domain of the AE signals. The ranges of the identified damage mechanisms in the amplitude plane illustrate the progression and order of load transfer among the elements of the composite material. In the reference sample, the AE event signals corresponding to the three classes of damage mechanisms partially overlap with adjacent signals. In contrast, the two defective sample configurations showed that the overlapping AE event signals for the respective damage mechanisms converged within the intermediate damage mode area at specific points, depending on the sample configuration. The convergence points in the samples with transverse defects were identified relatively earlier than in the other samples. Low and high amplitude ranges characterize the matrix cracking and fiber breakage damage mechanisms. The low amplitude damage occurred over a more extended length, while the high amplitude damage began much earlier. This results in the signals from both damage mechanisms converging at the center of the interface damage zone. This convergence suggests that all individual composite components fail concurrently at specific points in the defective samples, resulting in rapid fragmentation and ultimately contributing to failure. Overall, the results show that mesoscopic out-of-plane buckling in all directions affects the composite's flexural response, with more severe effects observed when the load is applied transversely.

Keywords: acoustic emission, composite reinforcement, damage mechanisms, mesoscopic buckle defects

Procedia PDF Downloads 11
3750 Medical Surveillance Management

Authors: Jina K., Kittinan C. Athitaya J., Weerapat B., Amornrat T., Waraphan N.

Abstract:

Working in the exploration and production of petroleum exposed workers to various health risks, including but not limited to physical and chemical risks. Although lots of barriers have been put in place, e.g., hazard monitoring in the workplace, appropriate training on health hazards, proper personal protective equipment (PPE), the health hazard may harm the workers if the barriers are not effectively implemented. To prove the effectiveness of these barriers, it is necessary to monitor exposure by putting in place the medical surveillance program via biological monitoring of chemical hazards and physical check-ups for physical hazards. Medical surveillance management is the systematic assessment and monitoring of employees exposed or potentially exposed to occupational hazards with the goal of reducing and ultimately preventing occupational illness and injury. The paper aims to demonstrate the effectiveness of medical surveillance management in mitigating health risks associated with physical and chemical hazards in the petroleum industry by focusing on implementing programs for biological monitoring and physical examinations, including defining procedures for biological monitoring, urine sample collection, physical examinations, and result management on offshore petroleum platforms. The implementation of medical surveillance management has proven effective in monitoring worker exposure to physical and chemical hazards, leading to reduced medical expenses and the risk associated with work-related diseases significantly.

Keywords: medical surveillance, petroleum industry, occupational hazards, medical surveillance process

Procedia PDF Downloads 19
3749 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles

Authors: Yihua Wang, Yunru Lai

Abstract:

Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.

Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring

Procedia PDF Downloads 460
3748 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan

Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed

Abstract:

Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.

Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot

Procedia PDF Downloads 49
3747 A Research Using Remote Monitoring Technology for Pump Output Monitoring in Distributed Fuel Stations in Nigeria

Authors: Ofoegbu Ositadinma Edward

Abstract:

This research paper discusses a web based monitoring system that enables effective monitoring of fuel pump output and sales volume from distributed fuel stations under the domain of a single company/organization. The traditional method of operation by these organizations in Nigeria is non-automated and accounting for dispensed product is usually approximated and manual as there is little or no technology implemented to presently provide information relating to the state of affairs in the station both to on-ground staff and to supervisory staff that are not physically present in the station. This results in unaccountable losses in product and revenue as well as slow decision making. Remote monitoring technology as a vast research field with numerous application areas incorporating various data collation techniques and sensor networks can be applied to provide information relating to fuel pump status in distributed fuel stations reliably. Thus, the proposed system relies upon a microcontroller, keypad and pump to demonstrate the traditional fuel dispenser. A web-enabled PC with an accompanying graphic user interface (GUI) was designed using virtual basic which is connected to the microcontroller via the serial port which is to provide the web implementation.

Keywords: fuel pump, microcontroller, GUI, web

Procedia PDF Downloads 435
3746 Cement-Based Composites with Carbon Nanofillers for Smart Structural Health Monitoring Sensors

Authors: Antonella D'Alessandro, Filippo Ubertini, Annibale Luigi Materazzi

Abstract:

The progress of nanotechnology resulted in the development of new instruments in the field of civil engineering. In particular, the introduction of carbon nanofillers into construction materials can enhance their mechanical and electrical properties. In construction, concrete is among the most used materials. Due to the characteristics of its components and its structure, concrete is suitable for modification, at the nanometer level too. Moreover, to guarantee structural safety, it is desirable to achieve a widespread monitoring of structures. The ideal thing would be to realize structures able to identify their behavior modifications, states of incipient damage or conditions of possible risk for people. This paper presents a research work about novel cementitious composites with conductive carbon nanoinclusions able of monitoring their state of deformation, with particular attention to concrete. The self-sensing ability is achieved through the correlation between the variation of stress or strain and that of electrical resistance. Carbon nanofillers appear particularly suitable for such applications. Nanomodified concretes with different carbon nanofillers has been tested. The samples have been subjected to cyclic and dynamic loads. The experimental campaign shows the potentialities of this new type of sensors made of nanomodified concrete for diffuse Structural Health Monitoring.

Keywords: carbon nanofillers, cementitious nanocomposites, smart sensors, structural health monitoring.

Procedia PDF Downloads 336
3745 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 456
3744 Entropy Risk Factor Model of Exchange Rate Prediction

Authors: Darrol Stanley, Levan Efremidze, Jannie Rossouw

Abstract:

We investigate the predictability of the USD/ZAR (South African Rand) exchange rate with sample entropy analytics for the period of 2004-2015. We calculate sample entropy based on the daily data of the exchange rate and conduct empirical implementation of several market timing rules based on these entropy signals. The dynamic investment portfolio based on entropy signals produces better risk adjusted performance than a buy and hold strategy. The returns are estimated on the portfolio values in U.S. dollars. These results are preliminary and do not yet account for reasonable transactions costs, although these are very small in currency markets.

Keywords: currency trading, entropy, market timing, risk factor model

Procedia PDF Downloads 271
3743 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction

Authors: Priyadarsini Samal, Rajesh Singla

Abstract:

Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.

Keywords: brain computer interface, electroencephalogram, regression model, stress, word search

Procedia PDF Downloads 188
3742 A Portable Cognitive Tool for Engagement Level and Activity Identification

Authors: Terry Teo, Sun Woh Lye, Yufei Li, Zainuddin Zakaria

Abstract:

Wearable devices such as Electroencephalography (EEG) hold immense potential in the monitoring and assessment of a person’s task engagement. This is especially so in remote or online sites. Research into its use in measuring an individual's cognitive state while performing task activities is therefore expected to increase. Despite the growing number of EEG research into brain functioning activities of a person, key challenges remain in adopting EEG for real-time operations. These include limited portability, long preparation time, high number of channel dimensionality, intrusiveness, as well as level of accuracy in acquiring neurological data. This paper proposes an approach using a 4-6 EEG channels to determine the cognitive states of a subject when undertaking a set of passive and active monitoring tasks of a subject. Air traffic controller (ATC) dynamic-tasks are used as a proxy. The work found that when using the channel reduction and identifier algorithm, good trend adherence of 89.1% can be obtained between a commercially available BCI 14 channel Emotiv EPOC+ EEG headset and that of a carefully selected set of reduced 4-6 channels. The approach can also identify different levels of engagement activities ranging from general monitoring ad hoc and repeated active monitoring activities involving information search, extraction, and memory activities.

Keywords: assessment, neurophysiology, monitoring, EEG

Procedia PDF Downloads 76
3741 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 145
3740 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization

Procedia PDF Downloads 145
3739 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb

Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan

Abstract:

This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.

Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee

Procedia PDF Downloads 391
3738 Design and Development of an Autonomous Underwater Vehicle for Irrigation Canal Monitoring

Authors: Mamoon Masud, Suleman Mazhar

Abstract:

Indus river basin’s irrigation system in Pakistan is extremely complex, spanning over 50,000 km. Maintenance and monitoring of this demands enormous resources. This paper describes the development of a streamlined and low-cost autonomous underwater vehicle (AUV) for the monitoring of irrigation canals including water quality monitoring and water theft detection. The vehicle is a hovering-type AUV, designed mainly for monitoring irrigation canals, with fully documented design and open source code. It has a length of 17 inches, and a radius of 3.5 inches with a depth rating of 5m. Multiple sensors are present onboard the AUV for monitoring water quality parameters including pH, turbidity, total dissolved solids (TDS) and dissolved oxygen. A 9-DOF Inertial Measurement Unit (IMU), GY-85, is used, which incorporates an Accelerometer (ADXL345), a Gyroscope (ITG-3200) and a Magnetometer (HMC5883L). The readings from these sensors are fused together using directional cosine matrix (DCM) algorithm, providing the AUV with the heading angle, while a pressure sensor gives the depth of the AUV. 2 sonar-based range sensors are used for obstacle detection, enabling the vehicle to align itself with the irrigation canals edges. 4 thrusters control the vehicle’s surge, heading and heave, providing 3 DOF. The thrusters are controlled using a proportional-integral-derivative (PID) feedback control system, with heading angle and depth being the controller’s input and the thruster motor speed as the output. A flow sensor has been incorporated to monitor canal water level to detect water-theft event in the irrigation system. In addition to water theft detection, the vehicle also provides information on water quality, providing us with the ability to identify the source(s) of water contamination. Detection of such events can provide useful policy inputs for improving irrigation efficiency and reducing water contamination. The AUV being low cost, small sized and suitable for autonomous maneuvering, water level and quality monitoring in the irrigation canals, can be used for irrigation network monitoring at a large scale.

Keywords: the autonomous underwater vehicle, irrigation canal monitoring, water quality monitoring, underwater line tracking

Procedia PDF Downloads 148
3737 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods

Authors: Mohammad Arabi

Abstract:

The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.

Keywords: electric motor, fault detection, frequency features, temporal features

Procedia PDF Downloads 52
3736 The Review of Permanent Downhole Monitoring System

Authors: Jing Hu, Dong Yang

Abstract:

With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.

Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield

Procedia PDF Downloads 79
3735 Self-Carried Theranostic Nanoparticles for in vitro and in vivo Cancer Therapy with Real-Time Monitoring of Drug Release

Authors: Jinfeng Zhang, Chun-Sing Lee

Abstract:

The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed for improving their drug loading capacities (typically less than 10%) and reducing their potential systemic toxicity. So development of alternative self-carried nanodrug delivery strategies without using any inert carriers is highly desirable. In this study, we developed a self-carried theranostic curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environment, with drug loading capacity higher than 78 wt.%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescent “OFF-ON” activation and real-time monitoring of Cur molecule release, showing its potential for cancer diagnosis. In vitro and in vivo experiments clearly show that therapeutic efficacy of the PEGylated Cur NPs is much better than that of free Cur. This self-carried theranostic strategy with real-time monitoring of drug release may open a new way for simultaneous cancer therapy and diagnosis.

Keywords: drug delivery, in vitro and in vivo cancer therapy, real-time monitoring, self-carried

Procedia PDF Downloads 399
3734 The Use of Network Tool for Brain Signal Data Analysis: A Case Study with Blind and Sighted Individuals

Authors: Cleiton Pons Ferreira, Diana Francisca Adamatti

Abstract:

Advancements in computers technology have allowed to obtain information for research in biology and neuroscience. In order to transform the data from these surveys, networks have long been used to represent important biological processes, changing the use of this tools from purely illustrative and didactic to more analytic, even including interaction analysis and hypothesis formulation. Many studies have involved this application, but not directly for interpretation of data obtained from brain functions, asking for new perspectives of development in neuroinformatics using existent models of tools already disseminated by the bioinformatics. This study includes an analysis of neurological data through electroencephalogram (EEG) signals, using the Cytoscape, an open source software tool for visualizing complex networks in biological databases. The data were obtained from a comparative case study developed in a research from the University of Rio Grande (FURG), using the EEG signals from a Brain Computer Interface (BCI) with 32 eletrodes prepared in the brain of a blind and a sighted individuals during the execution of an activity that stimulated the spatial ability. This study intends to present results that lead to better ways for use and adapt techniques that support the data treatment of brain signals for elevate the understanding and learning in neuroscience.

Keywords: neuroinformatics, bioinformatics, network tools, brain mapping

Procedia PDF Downloads 183