Search results for: minimum data set
26263 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria
Authors: O. O. Aiyelokun, O. A. Agbede
Abstract:
Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.Keywords: boundary condition, goodness of fit, groundwater, satellite-based data
Procedia PDF Downloads 12826262 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials
Authors: Mahdi Fakoor, Hannaneh Manafi Farid
Abstract:
In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor
Procedia PDF Downloads 16526261 A Comparative Study on Primary Productivity in Fish Cage Culture Unit and Fish Pond in Relation to Different Level of Water Depth
Authors: Pawan Kumar Sharma, J. Stephan Sampath Kumar, D. Manikandavelu, V. Senthil Kumar
Abstract:
The total amount of productivity in the system is the gross primary productivity. The present study was carried out to understand the relationship between productivity in the cages and water depth. The experiment was conducted in the fish cages installed in the pond at the Directorate of Sustainable Aquaculture, Thanjavur, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Tamil Nadu (10° 47' 13.1964'' N; 79° 8' 16.1700''E). Primary productivity was estimated by light and dark bottle method. The measurement of primary productivity was done at different depths viz., 20 cm, 40 cm, and 60 cm. Six Biological Oxygen Demand bottles of 300 ml capacity were collected and tagged. The productivity was obtained in mg O2/l/hr. The maximum dissolved oxygen level at 20 cm depth was observed 5.62 ± 0.22 mg/l/hr in the light bottle in pond water while the minimum dissolved oxygen level at 20 cm depth in a cage was observed 3.62 ± 0.18 mg/l/hr in dark bottle. In the same way, the maximum and minimum value of dissolved oxygen was observed at 40, and 60 cm depth and results were compared. A slight change in pH was observed in the cage and pond. The maximum gross primary productivity observed was 1.97 mg/l/hr in pond at 20 cm depth while minimum gross primary productivity observed was 0.82±0.16 mg/l/hr in a cage at 60 cm depth. The community respiration was also variable with the depth in both cage and pond. Maximum community respiration was found 1.50±0.19 mg/l/hr in pond at 20 cm depth. A strong positive linear relationship was observed between primary productivity and fish yields in ponds. The pond primary productivity can contribute substantially to the nutrition of farm-raised aquaculture species, including shrimp. The growth of phytoplankton’s is dependent on the sun light, availability of primary nutrients (N, P, and K) in the water body and transparency, so to increase the primary productivity fertilization through organic manure may be done that will clean to the pond environment also.Keywords: cage aquaculture, water depth, net primary productivity, gross primary productivity, community respiration
Procedia PDF Downloads 20326260 Systematic Review and Meta-Analysis of Mid-Term Survival, and Recurrent Mitral Regurgitation for Robotic-Assisted Mitral Valve Repair
Authors: Ramanen Sugunesegran, Michael L. Williams
Abstract:
Over the past two decades surgical approaches for mitral valve (MV) disease have evolved with the advent of minimally invasive techniques. Robotic mitral valve repair (RMVr) safety and efficacy has been well documented, however, mid- to long-term data are limited. The aim of this review was to provide a comprehensive analysis of the available mid- to long-term term data for RMVr. Electronic searches of five databases were performed to identify all relevant studies reporting minimum 5-year data on RMVr. Pre-defined primary outcomes of interest were overall survival, freedom from MV reoperation and freedom from moderate or worse mitral regurgitation (MR) at 5-years or more post-RMVr. A meta-analysis of proportions or means was performed, utilizing a random effects model, to present the data. Kaplan-Meier curves were aggregated using reconstructed individual patient data. Nine studies totaling 3,300 patients undergoing RMVr were identified. Rates of overall survival at 1-, 5- and 10-years were 99.2%, 97.4% and 92.3%, respectively. Freedom from MV reoperation at 8-years post RMVr was 95.0%. Freedom from moderate or worse MR at 7-years was 86.0%. Rates of early post-operative complications were low with only 0.2% all-cause mortality and 1.0% cerebrovascular accident. Reoperation for bleeding was low at 2.2% and successful RMVr was 99.8%. Mean intensive care unit and hospital stay were 22.4 hours and 5.2 days, respectively. RMVr is a safe procedure with low rates of early mortality and other complications. It can be performed with low complication rates in high volume, experienced centers. Evaluation of available mid-term data post-RMVr suggests favorable rates of overall survival, freedom from MV reoperation and freedom from moderate or worse MR recurrence.Keywords: mitral valve disease, mitral valve repair, robotic cardiac surgery, robotic mitral valve repair
Procedia PDF Downloads 8226259 Effect of Varietal Feeding on Larval Duration and Cocoon Parameters of Six Strains of Eri Silkworm Samia ricini Donovan in Nagaland, India
Authors: Lakhminandan Kakati, Merenjungla Jamir
Abstract:
Rearing of six strains of Samia ricini (eri silk worm) i.e. Yellow plain (YP), Yellow spotted (YS), Yellow Zebra (YZ), Greenish blue plain (GBP), Greenish blue spotted (GBS) and Greenish blue zebra (GBZ) was conducted on Ricinus communis (Castor), Heteropanax fragrans (Kesseru), Evodia fraxinifolia (Payam) and Manihot utilissima (Tapioca) to evaluate the effect of seasonal pattern on larval duration and cocoon parameters in Nagaland, India. Larval duration during spring season was maximum in all strains in all food plants; however minimum for all strains was recorded during summer season on Castor, Kesseru and Tapioca. Cocoon weight was recorded to be minimum (2.8 ± 2 0.55 gm) in YP on Kesseru and maximum (4.06 ± 0.68 gm) in GBZ on Castor during spring season; shell weight fluctuated between 0.34 ± 0.08 gm during spring in GBS on Kesseru and 0.58 ± 0.09 gm during summer in YZ on Castor and percentage of silk ratio was found to be minimum and maximum in YP on Payam during spring (11.37 ± 1.29) and in GBS on Castor during summer (16.05 ± 1.59) respectively. The variation in larval duration and cocoon parameters reflected variation in nutrient composition of food plants and dynamic environment conditions prevailing in different seasons of the year. Payam and Tapioca plants could be fed either singly or alternately with Castor or Kesseru to attain the commercial advantage to ensure more value added production. While there were differences in the productivity parameters with respect to strains and seasons, the present study shows that all the strains on four host plants expressed adaptability and suitability for commercial rearing under Nagaland climatic condition.Keywords: alternative food plants, Larval and cocoon parameters, Nagaland Inia, six strains of Samia ricini
Procedia PDF Downloads 20826258 Research of Data Cleaning Methods Based on Dependency Rules
Authors: Yang Bao, Shi Wei Deng, WangQun Lin
Abstract:
This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSQL), and gives 6 data cleaning methods based on these algorithms.Keywords: data cleaning, dependency rules, violation data discovery, data repair
Procedia PDF Downloads 56326257 Comparison between Some of Robust Regression Methods with OLS Method with Application
Authors: Sizar Abed Mohammed, Zahraa Ghazi Sadeeq
Abstract:
The use of the classic method, least squares (OLS) to estimate the linear regression parameters, when they are available assumptions, and capabilities that have good characteristics, such as impartiality, minimum variance, consistency, and so on. The development of alternative statistical techniques to estimate the parameters, when the data are contaminated with outliers. These are powerful methods (or resistance). In this paper, three of robust methods are studied, which are: Maximum likelihood type estimate M-estimator, Modified Maximum likelihood type estimate MM-estimator and Least Trimmed Squares LTS-estimator, and their results are compared with OLS method. These methods applied to real data taken from Duhok company for manufacturing furniture, the obtained results compared by using the criteria: Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and Mean Sum of Absolute Error (MSAE). Important conclusions that this study came up with are: a number of typical values detected by using four methods in the furniture line and very close to the data. This refers to the fact that close to the normal distribution of standard errors, but typical values in the doors line data, using OLS less than that detected by the powerful ways. This means that the standard errors of the distribution are far from normal departure. Another important conclusion is that the estimated values of the parameters by using the lifeline is very far from the estimated values using powerful methods for line doors, gave LTS- destined better results using standard MSE, and gave the M- estimator better results using standard MAPE. Moreover, we noticed that using standard MSAE, and MM- estimator is better. The programs S-plus (version 8.0, professional 2007), Minitab (version 13.2) and SPSS (version 17) are used to analyze the data.Keywords: Robest, LTS, M estimate, MSE
Procedia PDF Downloads 23226256 Antimicrobial Activity of Nauclea lotifolia (African Peach) Crude Extracts against Some Pathogenic Microorganism
Authors: Muhammad Isah Legbo
Abstract:
The phytochemical screening and antimicrobial activity of Nauclea lotifolia fruit, leaf and stem-bark extracts at various concentration of (20.0,10.0, 5.0, and 2.5 mg/ml) were evaluated against some pathogenic microorganisms such as Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Staphylococcus aureus, Aspergillus niger and Candida albicans. The antimicrobial activity was assayed using agar well diffusion method. The result obtained show appreciable inhibitory effort of acetone, aqueous and methanolic extracts of Nauclea lotifolia. However, result obtained was less active compared to that of the control antibiotic (Ciprofloxacillin). The minimum inhibitory concentration (MIC) was determined using serial doubling dilution method and ranged from 5.0-10.0mg/ml, while the minimum bactericidal concentration (MBC) was determined by plating various dilution of extracts without turbidity and the result ranged from 5.0-7.5mg/ml. The phytochemical screening revealed the presence of alkaloid, anthraquinones, flavonoids, resin, steroid and saponin. The activities of the plant extract therefore justify their utilization in the treatment of various ailments associated with the test organism.Keywords: Nauclea, lotifolia, antimicrobial, pathogens, saponin, extract
Procedia PDF Downloads 41426255 Detectability of Malfunction in Turboprop Engine
Authors: Tomas Vampola, Michael Valášek
Abstract:
On the basis of simulation-generated failure states of structural elements of a turboprop engine suitable for the busy-jet class of aircraft, an algorithm for early prediction of damage or reduction in functionality of structural elements of the engine is designed and verified with real data obtained at dynamometric testing facilities of aircraft engines. Based on an expanding database of experimentally determined data from temperature and pressure sensors during the operation of turboprop engines, this strategy is constantly modified with the aim of using the minimum number of sensors to detect an inadmissible or deteriorated operating mode of specific structural elements of an aircraft engine. The assembled algorithm for the early prediction of reduced functionality of the aircraft engine significantly contributes to the safety of air traffic and to a large extent, contributes to the economy of operation with positive effects on the reduction of the energy demand of operation and the elimination of adverse effects on the environment.Keywords: detectability of malfunction, dynamometric testing, prediction of damage, turboprop engine
Procedia PDF Downloads 9426254 Dosimetric Comparison of Conventional Optimization Methods with Inverse Planning Simulated Annealing Technique
Authors: Shraddha Srivastava, N. K. Painuly, S. P. Mishra, Navin Singh, Muhsin Punchankandy, Kirti Srivastava, M. L. B. Bhatt
Abstract:
Various optimization methods used in interstitial brachytherapy are based on dwell positions and dwell weights alteration to produce dose distribution based on the implant geometry. Since these optimization schemes are not anatomy based, they could lead to deviations from the desired plan. This study was henceforth carried out to compare anatomy-based Inverse Planning Simulated Annealing (IPSA) optimization technique with graphical and geometrical optimization methods in interstitial high dose rate brachytherapy planning of cervical carcinoma. Six patients with 12 CT data sets of MUPIT implants in HDR brachytherapy of cervical cancer were prospectively studied. HR-CTV and organs at risk (OARs) were contoured in Oncentra treatment planning system (TPS) using GYN GEC-ESTRO guidelines on cervical carcinoma. Three sets of plans were generated for each fraction using IPSA, graphical optimization (GrOPT) and geometrical optimization (GOPT) methods. All patients were treated to a dose of 20 Gy in 2 fractions. The main objective was to cover at least 95% of HR-CTV with 100% of the prescribed dose (V100 ≥ 95% of HR-CTV). IPSA, GrOPT, and GOPT based plans were compared in terms of target coverage, OAR doses, homogeneity index (HI) and conformity index (COIN) using dose-volume histogram (DVH). Target volume coverage (mean V100) was found to be 93.980.87%, 91.341.02% and 85.052.84% for IPSA, GrOPT and GOPT plans respectively. Mean D90 (minimum dose received by 90% of HR-CTV) values for IPSA, GrOPT and GOPT plans were 10.19 ± 1.07 Gy, 10.17 ± 0.12 Gy and 7.99 ± 1.0 Gy respectively, while D100 (minimum dose received by 100% volume of HR-CTV) for IPSA, GrOPT and GOPT plans was 6.55 ± 0.85 Gy, 6.55 ± 0.65 Gy, 4.73 ± 0.14 Gy respectively. IPSA plans resulted in lower doses to the bladder (D₂Keywords: cervical cancer, HDR brachytherapy, IPSA, MUPIT
Procedia PDF Downloads 18626253 The Presence of Ochratoxin a in Breast-Milk, Urine and Serum of Lactating Women
Authors: Magdalena Twaruzek, Karolina Ropejko
Abstract:
Mycotoxins are secondary metabolites of molds. Ochratoxin A (OTA) is the most common in the Polish climate. It is produced by fungi of the genera Aspergillus and Penicillium. It is produced as a result of improper food storage. It is present in many products that are consumed both by humans and animals: cereals, wheat gluten, coffee, dried fruit, wine, grape juice, spices, beer, and products based on them. OTA is nephrotoxic, hepatotoxic, potentially carcinogenic, and teratogenic. OTA mainly enters an organism by oral intake. The aim of the study was to detect the presence of OTA in milk, urine, and serum of lactating women. A survey was also conducted regarding the daily diet of women. The research group consisted of 32 lactating women (11 were the donors from the Milk Bank in Toruń, the other 21 were recruited for this study). Results of the analysis showed the occurrence of OTA only in 3 milk samples (9.38%). The minimum level was 0.01 ng/ml, while the maximum 0.018 ng/ml and the mean 0.0013 ng/ml. Twenty-six urine samples (81.25%) were OTA positive, with minimum level 0.013 ng/ml, maximum level 0.117 ng/ml and mean 0.0192 ng/ml. Also, all 32 serum samples (100%) were contaminated by OTA, with a minimum level of 0.099 ng/ml, a maximum level of 2.38 ng/ml, and a mean of 0.4649 ng/ml. In the case of 3 women, OTA was present in all tested body fluids. Based on the results, the following conclusions can be drawn: the breast-milk of women in the study group is slightly contaminated with ochratoxin A. Ten samples of urine contained ochratoxin A above its average content in tested samples. Moreover, serum of 8 women contains ochratoxin A at a level above the average content of this mycotoxin in tested samples. The average ochratoxin A level in serum in the presented studies was 0.4649 ng/ml, which is much lower than the average serum ochratoxin A level established in several countries in the world, i.e., 0.7 ng/ml. Acknowledgment: This study was supported by the Polish Minister of Science and Higher Education under the program 'Regional Initiative of Excellence' in 2019 - 2022 (Grant No. 008/RID/2018/19).Keywords: breast-milk, urine, serum, contamination, ochratoxin A
Procedia PDF Downloads 13726252 An Enhanced MEIT Approach for Itemset Mining Using Levelwise Pruning
Authors: Tanvi P. Patel, Warish D. Patel
Abstract:
Association rule mining forms the core of data mining and it is termed as one of the well-known methodologies of data mining. Objectives of mining is to find interesting correlations, frequent patterns, associations or casual structures among sets of items in the transaction databases or other data repositories. Hence, association rule mining is imperative to mine patterns and then generate rules from these obtained patterns. For efficient targeted query processing, finding frequent patterns and itemset mining, there is an efficient way to generate an itemset tree structure named Memory Efficient Itemset Tree. Memory efficient IT is efficient for storing itemsets, but takes more time as compare to traditional IT. The proposed strategy generates maximal frequent itemsets from memory efficient itemset tree by using levelwise pruning. For that firstly pre-pruning of items based on minimum support count is carried out followed by itemset tree reconstruction. By having maximal frequent itemsets, less number of patterns are generated as well as tree size is also reduced as compared to MEIT. Therefore, an enhanced approach of memory efficient IT proposed here, helps to optimize main memory overhead as well as reduce processing time.Keywords: association rule mining, itemset mining, itemset tree, meit, maximal frequent pattern
Procedia PDF Downloads 36926251 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data
Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores
Abstract:
Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.Keywords: SAR, generalized gamma distribution, detection curves, radar detection
Procedia PDF Downloads 45026250 Prospective Teachers’ Metacognitive Awareness and Goal Orientation as Predictors of Academic Success
Authors: Gidado Lawal Likko
Abstract:
The study examined the relationship of achievement goals, metacognitive awareness and academic success among students of colleges of education in North Western Nigeria. The study was guided by three objectives. The first two were to find out whether students’ achievement goals and metacognitive awareness correlate with their academic success. 358 students comprising 242 males (67.6%) and 116 females (32.4%) were studied. Correlation survey was employed in the conduct of the study. The instruments used to collect data were students’ bio data form, achievement goals inventory (Roedel, Schraw and Plake, 1994), metacognitive awareness inventory (Schraw & Dennison, 1994) and students’ CGPA (NCCE minimum standard, 2013) was used as the index of academic success. Pearson Product Moment and regression analysis were the statistical techniques used to analyze the data. Results of the analysis indicated that students’ achievement goals (r=0.554, p=0.004) and metacognitive awareness (r= 0.67, p=0.001) positively correlated with their academic success. Similarly, significant relationship exists between achievement goals and metacognitive awareness (r=0.77, p=0.000). Part of the recommendations is the need for the management of all colleges of education to have educational interventions aimed at developing students’ metacognitive awareness which will foster purposeful self-regulation of their learning. This could be achieved by periodic assessment of students’ metacognitive awareness which will serve as feedback as they move from one educational level to another.Keywords: academic success, goal orientation, metacognitive awareness, prospective teachers
Procedia PDF Downloads 22626249 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference
Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade
Abstract:
In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory
Procedia PDF Downloads 8626248 Evaluating Models Through Feature Selection Methods Using Data Driven Approach
Authors: Shital Patil, Surendra Bhosale
Abstract:
Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE
Procedia PDF Downloads 11726247 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation
Authors: Joseph Chen, N. Hundal
Abstract:
Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.Keywords: surface roughness, Taguchi parameter design, turning center, turn-milling operations, vertical machining center
Procedia PDF Downloads 32726246 Effect of Orientation of the Wall Window on Energy Saving under Clear Sky Conditions
Authors: Madhu Sudan, G. N. Tiwari
Abstract:
In this paper, an attempt has been made to analyze the effect of wall window orientation on Daylight Illuminance Ratio (DIR) and energy saving in a building known as “SODHA BERS COMPLEX (SBC)” at Varanasi, UP, India. The building has been designed incorporating all passive concepts for thermal comfort as well daylighting concepts to maximize the use of natural daylighting for the occupants in the day to day activities. The annual average DIR and the energy saving has been estimated by using the DIR model for wall window with different orientations under clear sky condition. It has been found that for south oriented window the energy saving per square meter is more compared to the other orientations due to the higher level of solar insolation for the south window in northern hemisphere whereas energy saving potential is minimum for north oriented wall window. The energy saving potential was 26%, 81% and 51% higher for east, south and west oriented window in comparison to north oriented window. The average annual DIR has same trends of variation as the annual energy saving and it is maximum for south oriented window and minimum for north oriented window.Keywords: clear sky, daylight factor, energy saving, wall window
Procedia PDF Downloads 40626245 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction
Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar
Abstract:
In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy
Procedia PDF Downloads 62426244 Study for an Optimal Cable Connection within an Inner Grid of an Offshore Wind Farm
Authors: Je-Seok Shin, Wook-Won Kim, Jin-O Kim
Abstract:
The offshore wind farm needs to be designed carefully considering economics and reliability aspects. There are many decision-making problems for designing entire offshore wind farm, this paper focuses on an inner grid layout which means the connection between wind turbines as well as between wind turbines and an offshore substation. A methodology proposed in this paper determines the connections and the cable type for each connection section using K-clustering, minimum spanning tree and cable selection algorithms. And then, a cost evaluation is performed in terms of investment, power loss and reliability. Through the cost evaluation, an optimal layout of inner grid is determined so as to have the lowest total cost. In order to demonstrate the validity of the methodology, the case study is conducted on 240MW offshore wind farm, and the results show that it is helpful to design optimally offshore wind farm.Keywords: offshore wind farm, optimal layout, k-clustering algorithm, minimum spanning algorithm, cable type selection, power loss cost, reliability cost
Procedia PDF Downloads 38426243 Climate Variability and Its Impacts on Rice (Oryza sativa) Productivity in Dass Local Government Area of Bauchi State, Nigeria
Authors: Auwal Garba, Rabiu Maijama’a, Abdullahi Muhammad Jalam
Abstract:
Variability in climate has affected the agricultural production all over the globe. This concern has motivated important changes in the field of research during the last decade. Climate variability is believed to have declining effects towards rice production in Nigeria. This study examined climate variability and its impact on rice productivity in Dass Local Government Area, Bauchi State, by employing Linear Trend Model (LTM), analysis of variance (ANOVA) and regression analysis. Annual seasonal data of the climatic variables for temperature (min. and max), rainfall, and solar radiation from 1990 to 2015 were used. Results confirmed that 74.4% of the total variation in rice yield in the study area was explained by the changes in the independent variables. That is to say, temperature (minimum and maximum), rainfall, and solar radiation explained rice yield with 74.4% in the study area. Rising mean maximum temperature would lead to reduction in rice production while moderate increase in mean minimum temperature would be advantageous towards rice production, and the persistent rise in the mean maximum temperature, in the long run, will have more negatively affect rice production in the future. It is, therefore, important to promote agro-meteorological advisory services, which will be useful in farm planning and yield sustainability. Closer collaboration among the meteorologist and agricultural scientist is needed to increase the awareness about the existing database, crop weather models among others, with a view to reaping the full benefits of research on specific problems and sustainable yield management and also there should be a special initiative by the ADPs (State Agricultural Development Programme) towards promoting best agricultural practices that are resilient to climate variability in rice production and yield sustainability.Keywords: climate variability, impact, productivity, rice
Procedia PDF Downloads 10126242 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner
Authors: Loke Kean Koay, Mani Maran Ratnam
Abstract:
A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However, the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of the mirror was selected since it attains minimum stress level while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.Keywords: torsional scanner, design optimization, computer-aided design, magnet position variation
Procedia PDF Downloads 36626241 Experimental Investigation on Sustainable Machining of Hastelloy C-276 Utilizing Different Cooling Strategies
Authors: Balkar Singh, Gurpreet Singh, Vivek Aggarwal, Sehijpal Singh
Abstract:
The present research focused to improve the machinability of Hastelloy C-276 at different machining speeds such as 31, 55, and 79 m/min. The use of CO2 gas and Minimum quantity lubrication (MQL) was applied as coolant and lubrication purposes to enhance the machinability of the superalloy. The output in the form of surface roughness (S.R) and heat generation was monitored under dry, MQL, and MQL-CO2-cooled conditions. The Design of the Experiment was prepared using MINITAB software utilizing Taguchi L-27 orthogonal arrays followed by ANOVA analysis for finding the impact of input variables on output responses. At different speeds and lubrication conditions, different behavioral patterns for Surface Roughness and the temperature was observed. ANOVA analysis depicted that the cooling environment impacted the S.R. majorly (50%) followed by cutting speed (29.84%), feed rate (5.09%), and least through depth of cut (4.95%). On the other side, the temperature was greatly influenced by cutting speed (69.12%), Cryo-MQL (8.09%), feed rate (7.59%), and depth of cut (6.20%). Experimental results revealed that Cryo-MQL cooling enhanced the Surface roughness by 12% compared to MQL condition.Keywords: Hastelloy C-276, minimum quantity lubrication, olive oil, cryogenic Cooling (CO2)
Procedia PDF Downloads 14126240 Breeding Biology of the House Crow Corvus splendens at Hazara University, Garden Campus, Mansehra, Pakistan
Authors: Muhammad Awais
Abstract:
Study on the nesting biology of the House Crow Corvus splendens was conducted at Hazara University, Garden Campus (125 acres), Mansehra during the 2013 breeding season (June to September). Details about nest locations, tree characteristics, nest and egg characteristics were recorded. Mean nest density of House Crow was 2.4 nests/ acre. Mean tree and nest height were 14.8±6.30 and 11.8±5.42m. Mean tree canopy spread 9.5±2.48m. Mean maximum and minimum nest diameters were 42.3±2.08 and 39.0±1.73cm respectively while maximum and minimum diameters of nest cup were 15.6±1.52 and 13.3±1.15cm respectively. Nest depth and nest cup depth were measured 19.3±2.08 and 8.3±1.15cm respectively. Mean nest weight was 1.4±0.24 kg. Mean clutch size was 4.0 (ranged 1–6). Mean egg length was 38.6±0.69mm, breadth 26.0±0.69mm, egg volume 13.3±0.83cm3 and egg shape index 1.42±0.83. Mean egg weight was 12.3±0.70g. Egg and nest success was calculated 55.1% and 69.0%. Hatchlings and fledglings produced per nest were 2.20 and 1.44 respectively. Main reasons for reproductive failures were unhatched eggs, poor nest construction, bad weather conditions and observer’s disturbance.Keywords: breeding, Corvus splendens, fledglings, Hazara university, house crow, Mansehra, populus orientalis
Procedia PDF Downloads 40626239 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity
Authors: Hoda A. Abdel Hafez
Abstract:
Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.Keywords: mining big data, big data, machine learning, telecommunication
Procedia PDF Downloads 40826238 Effect of Bacillus Pumilus Strains on Heavy Metal Accumulation in Lettuce Grown on Contaminated Soil
Authors: Sabeen Alam, Mehboob Alam
Abstract:
The research work entitled “Effect of Bacillus pumilus strains on heavy metal accumulation in lettuce grown on contaminated soil” focused on functional role of Bacillus pumilus strains inoculated with lettuce seed in mitigating heavy metal in chromite mining soil. In this experiment, factor A was three Bacillus pumilus strains (sequence C-2PMW-8, C-1 SSK-8 and C-1 PWK-7) while soil used for this experiment was collected from Prang Ghar mining site and lettuce seeds were grown in three levels of chromite mining soil (2.27, 4.65 and 7.14 %). For mining soil minimum days to germinate noted in lettuce grown on garden soil inoculated with sequence. Maximum germination percentage noted was for C-1 SSK-8 grown on garden soil, maximum lettuce height for sequence C-2 PWM-8, fresh leaf weight for C-1 PWK-7 inoculated lettuce, dry weight of lettuce leaf for lettuce inoculated with C-1 SSK-8 and C-1 PWK-7 strains, number of leaves per plant for lettuce inoculated with C-1 SSK-8, leaf area for C-2 PMW-8 inoculated lettuce, survival percentage for C-1 SSK-8 treated lettuce and chlorophyll content for C-2 PMW-8. Results related to heavy metals accumulation showed that minimum chromium was in lettuce and in soil for all three sequences, cadmium (Cd) in lettuce and in soil for all three sequences, manganese (Mn) in lettuce and in soil for three sequences, lead (Pb) in lettuce and in soil for three sequences. It can be concluded that chromite mining soil significantly reduced the growth and survival of lettuce, but when lettuce was inoculated with Bacillus.pumilus strains, it enhances growth and survival. Similarly, minimum heavy metal accumulation in plant and soil, regardless of type of Bacillus pumilus used, all three sequences has same mitigating effect on heavy metal in both soil and lettuce. All the three Bacillus pumilus strains ensured reduction in heavy metals content (Mn, Cd, Cr) in lettuce, below the maximum permissible limits of WHO 2011.Keywords: bacillus pumilus, heavy metals, permissible limits, lettuce, chromite mining soil, mitigating effect
Procedia PDF Downloads 5826237 Determining Optimal Number of Trees in Random Forests
Authors: Songul Cinaroglu
Abstract:
Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.Keywords: classification methods, decision trees, number of trees, random forest
Procedia PDF Downloads 39426236 Effects of Allium Sativum Essential Oil on MIC, MBC and Growth Curve of Vibrio Parahaemolyticus ATCC 43996 and Its Thermostable Direct Hemolysin Production
Authors: Afshin Akhondzadeh Basti, Zohreh Mashak, Ali Khanjari, Mohammad Adel Rezaei, Fatemeh Mohammadkhan
Abstract:
Vibrio parahaemolyticus is a halophilic bacterium and often causes gastroenteritis because of consumption of raw or inadequately cooked seafood. Studies showed a strong association of thermostable direct hemolysin (TDH) produced by members of this species with its pathogenicity. The effects of garlic (Allium sativum) essential oil at concentrations of 0, 0.005, 0.015, 0.03 and 0.045% on the minimum inhibitiotory concentration (MIC), minimum bactericidal concentration (MBC), growth curve and production of TDH toxin of vibrio parahaemolyticus were studied in BHI model. MIC and MBC of Allium sativum essential oil was estimated 0.03%. The results of this study revealed that the TDH production was significantly affected by Allium sativum EO and titers of TDH production in 0 and 0.005 % were 1/256 whereas this titer in 0.015 % concentration of EO. Concentrations of 0.005 and 0/015 % of garlic essential oil reduced the bacterial growth rate significantly (P < 0.05) compared to the control group. According to the results Allium sativum essential oil showed to be effective against bacterial growth and production of TDH toxin. Its potential application in food systems may be suggested.Keywords: allium sativum essential oil, vibrio parahaemolyticus, TDH, consumption
Procedia PDF Downloads 42626235 Evaluation of Polyurethane-Bonded Particleboard Manufactured with Eucalyptus Sp. and Bi-Oriented Polypropylene Wastes
Authors: Laurenn Borges de Macedo, Fabiane Salles Ferro, Tiago Hendrigo de Almeida, Gérson Moreira de Lima, André Luiz Christoforo, Francisco Antonio Rocco Lahr
Abstract:
The growth of the furniture manufacturing industry is one of the fundamental factors contributing to the growth of the particleboard industry. The use of recycled products into particleboards can contribute to the forest conservation, in addition to achieve a high quality sustainable product with low-cost production. This work investigates the effect of bi-oriented polypropylene (BOPP) waste particles and sealing product on the physical and mechanical properties of Eucalyptus sp. particleboards fabricated with a castor oil based polyurethane resin. Among the factors, only the seal coating was statistically significant. The wood panels of Treatment 2 were classified as H1, based on the internal bond strength and elastic modulus results data required by ANSI A208.1:1999. The bending strength data did not reach the minimum values recommended by NBR 14810:2006 and ANSI A208.1:1999. The thickness swelling data for 2h immersed in water achieved the standard requirement levels. High-density panels were achieved revealing their potential use in variety of particleboard applications.Keywords: BOPP, mechanical properties, particleboards, physical properties
Procedia PDF Downloads 37126234 Efficacy of Bio-Control Agents against Colletotrichum falcatum Causing Red Rot Disease of Sugarcane
Authors: Geeta Sharma, Suma Chandra
Abstract:
Sugarcane is one of the major commercial crop playing roles in agriculture and industrial economy of India. Globally sugarcane is affected by approximately 240 diseases caused by various plant pathogenic organisms. Among them, red rot disease caused by the fungus Colletotrichum falcatum, is one of the most important diseases. In the present investigation, one fungal bioagent of Trichoderma harzianum, Pant Bioagent 1 and one bacterial bioagent Pseudomonas fluorescence, Pant Bioagent 2 (PBAT 1 and PBAT 2, respectively) were tested by dual culture method against the pathogen under laboratory conditions. The effectiveness of biocontrol agents was observed against four isolates of C. falcatum. In the case of PBAT1 maximum percent inhibition of pathogen was recorded in isolated Cf 0238 (61.05%), followed by Cf 09 (60.62%) whereas, minimum percent inhibition was recorded in Cf 3220 (48.55%) and in case of PBAT2 maximum mycelial growth inhibition percent was recorded in Cf 767 (50.50%) followed by Cf 088230(48.83%), whereas minimum percent inhibition was recorded in Cf 08 (40.16%) followed by Cf 0238 (41.83%). The present study showed that these biocontrol agents have the potential of controlling the pathogen and can further be used for the management of red rot disease in field.Keywords: biocontrol agents, Colletotrichum falcatum, isolates, sugarcane
Procedia PDF Downloads 316