Search results for: material point method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26646

Search results for: material point method

26406 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: nano-enhanced phase change material (NEPCM), phase change material (PCM), nanoparticles, latent heat storage unit (LHSU), melting.

Procedia PDF Downloads 393
26405 Simulation and Experimental of Solid Mixing of Free Flowing Material Using Solid Works in V-Blender

Authors: Amina Bouhaouche, Zineb Kaoua, Lila Lahreche, Sid Ali Kaoua, Kamel Daoud

Abstract:

The objective of this study is to present a novel approach for analyzing the solid dispersion and mixing performance by a numerical simulation method using solid works software of a monodisperse particles for a large span of time reached 20 minutes. To assure the viability of a numerical simulation, an experimental study of a binary mixture of monodiperse particles taken as free flowing material in a V blender was developed on the basis of relative standard deviation curves, and the arrangement of the particles in the vessel. The experimental results were discussed and compared to the numerical simulation results.

Keywords: non-cohesive material, solid mixing, solid works, v-blender

Procedia PDF Downloads 376
26404 Adomian’s Decomposition Method to Functionally Graded Thermoelastic Materials with Power Law

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

This paper presents an iteration method for the numerical solutions of a one-dimensional problem of generalized thermoelasticity with one relaxation time under given initial and boundary conditions. The thermoelastic material with variable properties as a power functional graded has been considered. Adomian’s decomposition techniques have been applied to the governing equations. The numerical results have been calculated by using the iterations method with a certain algorithm. The numerical results have been represented in figures, and the figures affirm that Adomian’s decomposition method is a successful method for modeling thermoelastic problems. Moreover, the empirical parameter of the functional graded, and the lattice design parameter have significant effects on the temperature increment, the strain, the stress, the displacement.

Keywords: Adomian, decomposition method, generalized thermoelasticity, algorithm

Procedia PDF Downloads 126
26403 Reusing of HSS Hacksaw Blades as Rough Machining Tool

Authors: Raja V., Chokkalingam B.

Abstract:

For rough cutting, in many industries and educational institutions using carbon steels or HSS single point cutting tools in center lathe machine. In power hacksaw blades, only the cutter teeth region used to parting off the given material. The portions other than the teeth can be used as a single point cutting tool for rough turning and facing on soft materials. The hardness and Tensile strength of this used Power hacksaw blade is almost same as conventional cutting tools. In this paper, the effect of power hacksaw blades over conventional tool has been compared. Thickness of the blade (1.6 mm) is very small compared to its length and width. Hence, a special tool holding device is designed to hold the tool.

Keywords: hardness, high speed steels, power hacksaw blade, tensile strength

Procedia PDF Downloads 444
26402 A Validated Estimation Method to Predict the Interior Wall of Residential Buildings Based on Easy to Collect Variables

Authors: B. Gepts, E. Meex, E. Nuyts, E. Knaepen, G. Verbeeck

Abstract:

The importance of resource efficiency and environmental impact assessment has raised the interest in knowing the amount of materials used in buildings. If no BIM model or energy performance certificate is available, material quantities can be obtained through an estimation or time-consuming calculation. For the interior wall area, no validated estimation method exists. However, in the case of environmental impact assessment or evaluating the existing building stock as future material banks, knowledge of the material quantities used in interior walls is indispensable. This paper presents a validated method for the estimation of the interior wall area for dwellings based on easy-to-collect building characteristics. A database of 4963 residential buildings spread all over Belgium is used. The data are collected through onsite measurements of the buildings during the construction phase (between mid-2010 and mid-2017). The interior wall area refers to the area of all interior walls in the building, including the inner leaf of exterior (party) walls, minus the area of windows and doors, unless mentioned otherwise. The two predictive modelling techniques used are 1) a (stepwise) linear regression and 2) a decision tree. The best estimation method is selected based on the best R² k-fold (5) fit. The research shows that the building volume is by far the most important variable to estimate the interior wall area. A stepwise regression based on building volume per building, building typology, and type of house provides the best fit, with R² k-fold (5) = 0.88. Although the best R² k-fold value is obtained when the other parameters ‘building typology’ and ‘type of house’ are included, the contribution of these variables can be seen as statistically significant but practically irrelevant. Thus, if these parameters are not available, a simplified estimation method based on only the volume of the building can also be applied (R² k-fold = 0.87). The robustness and precision of the method (output) are validated three times. Firstly, the prediction of the interior wall area is checked by means of alternative calculations of the building volume and of the interior wall area; thus, other definitions are applied to the same data. Secondly, the output is tested on an extension of the database, so it has the same definitions but on other data. Thirdly, the output is checked on an unrelated database with other definitions and other data. The validation of the estimation methods demonstrates that the methods remain accurate when underlying data are changed. The method can support environmental as well as economic dimensions of impact assessment, as it can be used in early design. As it allows the prediction of the amount of interior wall materials to be produced in the future or that might become available after demolition, the presented estimation method can be part of material flow analyses on input and on output.

Keywords: buildings as material banks, building stock, estimation method, interior wall area

Procedia PDF Downloads 3
26401 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.

Keywords: artificial neural network, cement, circular economy, concrete, by products

Procedia PDF Downloads 103
26400 Numerical Solution to Coupled Heat and Moisture Diffusion in Bio-Sourced Composite Materials

Authors: Mnasri Faiza, El Ganaoui Mohammed, Khelifa Mourad, Gabsi Slimane

Abstract:

The main objective of this paper is to describe the hydrothermal behavior through porous material of construction due to temperature gradient. The construction proposed a bi-layer structure which composed of two different materials. The first is a bio-sourced panel named IBS-AKU (inertia system building), the second is the Neopor material. This system (IBS-AKU Neopor) is developed by a Belgium company (Isohabitat). The study suggests a multi-layer structure of the IBS-AKU panel in one dimension. A numerical method was proposed afterwards, by using the finite element method and a refined mesh area to strong gradients. The evolution of temperature fields and the moisture content has been processed.

Keywords: heat transfer, moisture diffusion, porous media, composite IBS-AKU, simulation

Procedia PDF Downloads 494
26399 Physical Properties of Crushed Aggregates in Some Selected Quarries in Kwara State, Nigeria

Authors: S. A. Agbalajobi, W. A. Bello

Abstract:

This study examines rock properties of crushed aggregate in some selected quarries in Kwara state, Nigeria. Some physical properties (chemical composition, mineral composition, particle size distribution) of gneiss sample were determined using ISRM standards. The physicomechanical properties (specific gravity, dry density, porosity, water absorption, point load index, tensile, and compressive strength) of the gneiss rock were evaluated. The analysis on the gneiss samples revealed the mean dry density and the unit weight are 2.52 g/m3, 2.63 g/m3, 2.38 g/m3; and 24.1 kN/m3, 25.78 kN/m3, 23.33 kN/m3, respectively (for locations A,B,C). The water absorption level of the gneiss rock sample ranged from 0.38 % – 0.57 % for the three locations. The mean Schmidt hammer rebound value ranged from 51.0 – 52.4 for the three locations and mean point load index values ranged from 9.89 – 10.56 MPa classified as very high strength while the uniaxial compressive strength of the rock samples revealed that its strength ranged from 120 - 139 MPa (for location A, B, and C) classified as strong rock. The aggregate impact value test and aggregate crushing value test conducted on the gneiss aggregates from the three locations in accordance with British Standard. The gneiss sample from the three locations (A, B, and C) is a good material for the production of construction works such as concrete, bricks, pavement, embankment among others, the compressive strength of the material is within the accepted limit.

Keywords: gneiss, aggregate impact, aggregate crushing, physic-mechanical properties, rock hardness

Procedia PDF Downloads 295
26398 Conductivity-Depth Inversion of Large Loop Transient Electromagnetic Sounding Data over Layered Earth Models

Authors: Ravi Ande, Mousumi Hazari

Abstract:

One of the common geophysical techniques for mapping subsurface geo-electrical structures, extensive hydro-geological research, and engineering and environmental geophysics applications is the use of time domain electromagnetic (TDEM)/transient electromagnetic (TEM) soundings. A large transmitter loop for energising the ground and a small receiver loop or magnetometer for recording the transient voltage or magnetic field in the air or on the surface of the earth, with the receiver at the center of the loop or at any random point inside or outside the source loop, make up a large loop TEM system. In general, one can acquire data using one of the configurations with a large loop source, namely, with the receiver at the center point of the loop (central loop method), at an arbitrary in-loop point (in-loop method), coincident with the transmitter loop (coincidence-loop method), and at an arbitrary offset loop point (offset-loop method), respectively. Because of the mathematical simplicity associated with the expressions of EM fields, as compared to the in-loop and offset-loop systems, the central loop system (for ground surveys) and coincident loop system (for ground as well as airborne surveys) have been developed and used extensively for the exploration of mineral and geothermal resources, for mapping contaminated groundwater caused by hazardous waste and thickness of permafrost layer. Because a proper analytical expression for the TEM response over the layered earth model for the large loop TEM system does not exist, the forward problem used in this inversion scheme is first formulated in the frequency domain and then it is transformed in the time domain using Fourier cosine or sine transforms. Using the EMLCLLER algorithm, the forward computation is initially carried out in the frequency domain. As a result, the EMLCLLER modified the forward calculation scheme in NLSTCI to compute frequency domain answers before converting them to the time domain using Fourier Cosine and/or Sine transforms.

Keywords: time domain electromagnetic (TDEM), TEM system, geoelectrical sounding structure, Fourier cosine

Procedia PDF Downloads 80
26397 Analyzing the Ergonomic Design of Manual Material Handling in Chemical Industry: Case Study of Activity Task Weigh Liquid Catalyst to the Container Storage

Authors: Yayan Harry Yadi, L. Meily Kurniawidjaja

Abstract:

Work activities for MMH (Manual Material Handling) in the storage of liquid catalyst raw material workstations in chemical industries identify high-risk MSDs (Musculoskeletal Disorders). Their work is often performed frequently requires an awkward body posture, twisting, bending because of physical space limited, cold, slippery, and limited tools for transfer container and weighing the liquid chemistry of the catalyst into the container. This study aims to develop an ergonomic work system design on the transfer and weighing process of liquid catalyst raw materials at the storage warehouse. A triangulation method through an interview, observation, and detail study team with assessing the level of risk work posture and complaints. Work postures were analyzed using the RULA method, through the support of CATIA software. The study concludes that ergonomic design can make reduce 3 levels of risk scores awkward posture. CATIA Software simulation provided a comprehensive solution for a better posture of manual material handling at task weigh. An addition of manual material handling tools such as adjustable conveyors, trolley and modification tools semi-mechanical weighing with techniques based on rule ergonomic design can reduce the hazard of chemical fluid spills.

Keywords: ergonomic design, MSDs, CATIA software, RULA, chemical industry

Procedia PDF Downloads 152
26396 Improved Traveling Wave Method Based Fault Location Algorithm for Multi-Terminal Transmission System of Wind Farm with Grounding Transformer

Authors: Ke Zhang, Yongli Zhu

Abstract:

Due to rapid load growths in today’s highly electrified societies and the requirement for green energy sources, large-scale wind farm power transmission system is constantly developing. This system is a typical multi-terminal power supply system, whose structure of the network topology of transmission lines is complex. What’s more, it locates in the complex terrain of mountains and grasslands, thus increasing the possibility of transmission line faults and finding the fault location with difficulty after the faults and resulting in an extremely serious phenomenon of abandoning the wind. In order to solve these problems, a fault location method for multi-terminal transmission line based on wind farm characteristics and improved single-ended traveling wave positioning method is proposed. Through studying the zero sequence current characteristics by using the characteristics of the grounding transformer(GT) in the existing large-scale wind farms, it is obtained that the criterion for judging the fault interval of the multi-terminal transmission line. When a ground short-circuit fault occurs, there is only zero sequence current on the path between GT and the fault point. Therefore, the interval where the fault point exists is obtained by determining the path of the zero sequence current. After determining the fault interval, The location of the short-circuit fault point is calculated by the traveling wave method. However, this article uses an improved traveling wave method. It makes the positioning accuracy more accurate by combining the single-ended traveling wave method with double-ended electrical data. What’s more, a method of calculating the traveling wave velocity is deduced according to the above improvements (it is the actual wave velocity in theory). The improvement of the traveling wave velocity calculation method further improves the positioning accuracy. Compared with the traditional positioning method, the average positioning error of this method is reduced by 30%.This method overcomes the shortcomings of the traditional method in poor fault location of wind farm transmission lines. In addition, it is more accurate than the traditional fixed wave velocity method in the calculation of the traveling wave velocity. It can calculate the wave velocity in real time according to the scene and solve the traveling wave velocity can’t be updated with the environment and real-time update. The method is verified in PSCAD/EMTDC.

Keywords: grounding transformer, multi-terminal transmission line, short circuit fault location, traveling wave velocity, wind farm

Procedia PDF Downloads 251
26395 Utilization of Aluminium Dross as a Main Raw Material for Synthesize the Geopolymers via Mechanochemistry Method

Authors: Pimchanok Puksisuwan, Pitak Laorattanakul, Benya Cherdhirunkorn

Abstract:

The use of aluminium dross as a raw material for geopolymer synthesis via mechanochemistry method was studied. The geopolymers were prepared using aluminium dross from secondary aluminium industry, fly ash from a biomass power plant and liquid alkaline activators, which is a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide solution (NaOH) (Na2SiO3/NaOH ratio 4:1, 3:1 and 2:1). Aluminium dross consists mostly of alumina (Al2O3), silicon oxide (SiO2) and aluminium nitride (AlN). The raw materials were mixed and milled using the high energy ball milling method for 5, 10 and 15 minutes in order to reduce the particle size. The milled powders were uniaxially pressed into a cylinder die with the pressure of 2200 psi. The cylinder samples were cured in the sealed plastic bags for 3, 7 and 14 days at the room temperature and 60°C for 24 hour. The mechanical property of geopolymers was investigated. In addition, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were carried out in order to study the microstructure and phase structures of the geopolymers, respectively. The results showed that aluminium dross could enhance the mechanical property of geopolymers product by mechanochemistry method and meet the TISI requirements.

Keywords: aluminium dross, fly ash, geopolymer, mechanochemistry

Procedia PDF Downloads 236
26394 A Study on Reinforced Concrete Beams Enlarged with Polymer Mortar and UHPFRC

Authors: Ga Ye Kim, Hee Sun Kim, Yeong Soo Shin

Abstract:

Many studies have been done on the repair and strengthening method of concrete structure, so far. The traditional retrofit method was to attach fiber sheet such as CFRP (Carbon Fiber Reinforced Polymer), GFRP (Glass Fiber Reinforced Polymer) and AFRP (Aramid Fiber Reinforced Polymer) on the concrete structure. However, this method had many downsides in that there are a risk of debonding and an increase in displacement by a shortage of structure section. Therefore, it is effective way to enlarge the structural member with polymer mortar or Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) as a means of strengthening concrete structure. This paper intends to investigate structural performance of reinforced concrete (RC) beams enlarged with polymer mortar and compare the experimental results with analytical results. Nonlinear finite element analyses were conducted to compare the experimental results and predict structural behavior of retrofitted RC beams accurately without cost consuming experimental process. In addition, this study aims at comparing differences of retrofit material between commonly used material (polymer mortar) and recently used material (UHPFRC) by conducting nonlinear finite element analyses. In the first part of this paper, the RC beams having different cover type were fabricated for the experiment and the size of RC beams was 250 millimeters in depth, 150 millimeters in width and 2800 millimeters in length. To verify the experiment, nonlinear finite element models were generated using commercial software ABAQUS 6.10-3. From this study, both experimental and analytical results demonstrated good strengthening effect on RC beam and showed similar tendency. For the future, the proposed analytical method can be used to predict the effect of strengthened RC beam. In the second part of the study, the main parameters were type of retrofit materials. The same nonlinear finite element models were generated to compare the polymer mortar with UHPFRCC. Two types of retrofit material were evaluated and retrofit effect was verified by analytical results.

Keywords: retrofit material, polymer mortar, UHPFRC, nonlinear finite element analysis

Procedia PDF Downloads 404
26393 Generalization of Zhou Fixed Point Theorem

Authors: Yu Lu

Abstract:

Fixed point theory is a basic tool for the study of the existence of Nash equilibria in game theory. This paper presents a significant generalization of the Veinott-Zhou fixed point theorem for increasing correspondences, which serves as an essential framework for investigating the existence of Nash equilibria in supermodular and quasisupermodular games. To establish our proofs, we explore different conceptions of multivalued increasingness and provide comprehensive results concerning the existence of the largest/least fixed point. We provide two distinct approaches to the proof, each offering unique insights and advantages. These advancements not only extend the applicability of the Veinott-Zhou theorem to a broader range of economic scenarios but also enhance the theoretical framework for analyzing equilibrium behavior in complex game-theoretic models. Our findings pave the way for future research in the development of more sophisticated models of economic behavior and strategic interaction.

Keywords: fixed-point, Tarski’s fixed-point theorem, Nash equilibrium, supermodular game

Procedia PDF Downloads 34
26392 Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint

Authors: Melike Yaylacı, Tuğba Bilgin

Abstract:

Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint.

Keywords: life cycle assessment, carbon emission, laser cutting machine, cutting parameters

Procedia PDF Downloads 81
26391 Inverse Cauchy Problem of Doubly Connected Domains via Spectral Meshless Radial Point Interpolation

Authors: Elyas Shivanian

Abstract:

In this paper, the spectral meshless radial point interpolation (SMRPI) technique is applied to the Cauchy problems of two-dimensional elliptic PDEs in doubly connected domains. It is obtained the unknown data on the inner boundary of the domain while overspecified boundary data are imposed on the outer boundary of the domain by using the SMRPI. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high order convergence rate. In this way, localization in SMRPI can reduce the ill-conditioning for Cauchy problem. Furthermore, we improve previous results and it is revealed the SMRPI is more accurate and stable by adding strong perturbations.

Keywords: cauchy problem, doubly connected domain, radial basis function, shape function

Procedia PDF Downloads 268
26390 Open Circuit MPPT Control Implemented for PV Water Pumping System

Authors: Rabiaa Gammoudi, Najet Rebei, Othman Hasnaoui

Abstract:

Photovoltaic systems use different techniques for tracking the Maximum Power Point (MPPT) to provide the highest possible power to the load regardless of the climatic conditions variation. In this paper, the proposed method is the Open Circuit (OC) method with sudden and random variations of insolation. The simulation results of the water pumping system controlled by OC method are validated by an experimental experience in real-time using a test bench composed by a centrifugal pump powered by a PVG via a boost chopper for the adaptation between the source and the load. The output of the DC/DC converter supplies the motor pump LOWARA type, assembly by means of a DC/AC inverter. The control part is provided by a computer incorporating a card DS1104 running environment Matlab/Simulink for visualization and data acquisition. These results show clearly the effectiveness of our control with a very good performance. The results obtained show the usefulness of the developed algorithm in solving the problem of degradation of PVG performance depending on the variation of climatic factors with a very good yield.

Keywords: PVWPS (PV Water Pumping System), maximum power point tracking (MPPT), open circuit method (OC), boost converter, DC/AC inverter

Procedia PDF Downloads 439
26389 Application of Nonparametric Geographically Weighted Regression to Evaluate the Unemployment Rate in East Java

Authors: Sifriyani Sifriyani, I Nyoman Budiantara, Sri Haryatmi, Gunardi Gunardi

Abstract:

East Java Province has a first rank as a province that has the most counties and cities in Indonesia and has the largest population. In 2015, the population reached 38.847.561 million, this figure showed a very high population growth. High population growth is feared to lead to increase the levels of unemployment. In this study, the researchers mapped and modeled the unemployment rate with 6 variables that were supposed to influence. Modeling was done by nonparametric geographically weighted regression methods with truncated spline approach. This method was chosen because spline method is a flexible method, these models tend to look for its own estimation. In this modeling, there were point knots, the point that showed the changes of data. The selection of the optimum point knots was done by selecting the most minimun value of Generalized Cross Validation (GCV). Based on the research, 6 variables were declared to affect the level of unemployment in eastern Java. They were the percentage of population that is educated above high school, the rate of economic growth, the population density, the investment ratio of total labor force, the regional minimum wage and the ratio of the number of big industry and medium scale industry from the work force. The nonparametric geographically weighted regression models with truncated spline approach had a coefficient of determination 98.95% and the value of MSE equal to 0.0047.

Keywords: East Java, nonparametric geographically weighted regression, spatial, spline approach, unemployed rate

Procedia PDF Downloads 306
26388 Preparation of Biodiesel by Three Step Method Followed Purification by Various Silica Sources

Authors: Chanchal Mewar, Shikha Gangil, Yashwant Parihar, Virendra Dhakar, Bharat Modhera

Abstract:

Biodiesel was prepared from Karanja oil by three step methods: saponification, acidification and esterification. In first step, saponification was done in presence of methanol and KOH or NaOH with Karanja oil. During second step acidification, various acids such as H3PO4, HCl, H2SO4 were used as acid catalyst. In third step, esterification followed by purification was done with various silica sources as Ludox (colloidal silicate) and fumed silica gel. It was found that there was no significant change in density, kinematic viscosity, iodine number, acid value, saponification number, flash point, cloud point, pour point and cetane number after purification by these adsorbents. The objective of this research is the comparison among different adsorbents which were used for the purification of biodiesel. Ludox (colloidal silicate) and fumed silica gel were used as adsorbents for the removal of glycerin from biodiesel and evaluate the effectiveness of biodiesel purity. Furthermore, this study compared the results of distilled water washing also. It was observed that Ludox, fumed silica gel and distilled water produced yield about 93%, 91% and 83% respectively. Highest yield was obtained with Ludox at 100 oC temperature using H3PO4 as acid catalyst and NaOH as base catalyst with methanol, (3:1) alcohol to oil molar ratio in 90 min.

Keywords: biodiesel, three step method, purification, silica sources

Procedia PDF Downloads 489
26387 Experimental and Theoratical Methods to Increase Core Damping for Sandwitch Cantilever Beam

Authors: Iyd Eqqab Maree, Moouyad Ibrahim Abbood

Abstract:

The purpose behind this study is to predict damping effect for steel cantilever beam by using two methods of passive viscoelastic constrained layer damping. First method is Matlab Program, this method depend on the Ross, Kerwin and Unger (RKU) model for passive viscoelastic damping. Second method is experimental lab (frequency domain method), in this method used the half-power bandwidth method and can be used to determine the system loss factors for damped steel cantilever beam. The RKU method has been applied to a cantilever beam because beam is a major part of a structure and this prediction may further leads to utilize for different kinds of structural application according to design requirements in many industries. In this method of damping a simple cantilever beam is treated by making sandwich structure to make the beam damp, and this is usually done by using viscoelastic material as a core to ensure the damping effect. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. There is a very good agreement of the experimental results with the theoretical findings. The main ideas of this thesis are to find the transition region for damped steel cantilever beam (4mm and 8mm thickness) from experimental lab and theoretical prediction (Matlab R2011a). Experimentally and theoretically proved that the transition region for two specimens occurs at modal frequency between mode 1 and mode 2, which give the best damping, maximum loss factor and maximum damping ratio, thus this type of viscoelastic material core (3M468) is very appropriate to use in automotive industry and in any mechanical application has modal frequency eventuate between mode 1 and mode 2.

Keywords: 3M-468 material core, loss factor and frequency, domain method, bioinformatics, biomedicine, MATLAB

Procedia PDF Downloads 257
26386 Comparative Analysis of Various Waste Oils for Biodiesel Production

Authors: Olusegun Ayodeji Olagunju, Christine Tyreesa Pillay

Abstract:

Biodiesel from waste sources is regarded as an economical and most viable fuel alternative to depleting fossil fuels. In this work, biodiesel was produced from three different sources of waste cooking oil; from cafeterias, which is vegetable-based using the transesterification method. The free fatty acids (% FFA) of the feedstocks were conducted successfully through the titration method. The results for sources 1, 2, and 3 were 0.86 %, 0.54 % and 0.20 %, respectively. The three variables considered in this process were temperature, reaction time, and catalyst concentration within the following range: 50 oC – 70 oC, 30 min – 90 min, and 0.5 % – 1.5 % catalyst. Produced biodiesel was characterized using ASTM standard methods for biodiesel property testing to determine the fuel properties, including kinematic viscosity, specific gravity, flash point, pour point, cloud point, and acid number. The results obtained indicate that the biodiesel yield from source 3 was greater than the other sources. All produced biodiesel fuel properties are within the standard biodiesel fuel specifications ASTM D6751. The optimum yield of biodiesel was obtained at 98.76%, 96.4%, and 94.53% from source 3, source 2, and source 1, respectively at optimum operating variables of 65 oC temperature, 90 minutes reaction time, and 0.5 wt% potassium hydroxide.

Keywords: waste cooking oil, biodiesel, free fatty acid content, potassium hydroxide catalyst, optimization analysis

Procedia PDF Downloads 61
26385 An Analytical Study on the Vibration Reduction Method of Railway Station Using TPU

Authors: Jinho Hur, Minjung Shin, Heekyu Kim

Abstract:

In many places, new railway constructions in the city are being used to build a viaduct station to take advantage of the space below the line, for difficulty of securing railway site and disconnections of areas. The space under the viaduct has limited to use by noise and vibration. In order to use it for various purposes, reducing noise and vibration is required. The vibration reduction method for new structures is recently developed enough to use as accommodation, but the reduction method for existing structures is still far-off. In this study, it suggests vibration reduction method by filling vibration reduction material to column members which is path of structure-bone-noise from trains run. Because most of railroad stations are reinforced concrete structures. It compares vibration reduction of station applied the method and original station by FEM analysis. As a result, reduction of vibration acceleration level in bandwidth 15~30Hz can be reduced. Therefore, using this method for viaduct railroad station, vibration of station is expected to be reduced.

Keywords: structure borne noise, TPU, viaduct rail station, vibration reduction method

Procedia PDF Downloads 521
26384 The Effects of Dimethyl Adipate (DMA) on Coated Diesel Engine

Authors: Hanbey Hazar

Abstract:

An experimental study is conducted to evaluate the effects of using blends of diesel fuel with dimethyl adipate (DMA) in proportions of 2%, 6/%, and 12% on a coated engine. In this study, cylinder, piston, exhaust and inlet valves which are combustion chamber components have been coated with a ceramic material. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Due to thermal barrier coating, the diesel engine's hazardous emission values decreased.

Keywords: diesel engine, dimethyl adipate (DMA), exhaust emissions, coating

Procedia PDF Downloads 262
26383 Innovation and Analysis of Vibrating Fork Level Switch

Authors: Kuen-Ming Shu, Cheng-Yu Chen

Abstract:

A vibrating-fork sensor can measure the level height of solids and liquids and operates according to the principle that vibrations created by piezoelectric ceramics are transmitted to the vibrating fork, which produces resonance. When the vibrating fork touches an object, its resonance frequency changes and produces a signal that returns to a controller for immediate adjustment, so as to effectively monitor raw material loading. The design of the vibrating fork in a vibrating-fork material sensor is crucial. In this paper, ANSYS finite element analysis software is used to perform modal analysis on the vibrations of the vibrating fork. In addition, to design and produce a superior vibrating fork, the dimensions and welding shape of the vibrating fork are compared in a simulation performed using the Taguchi method.

Keywords: vibrating fork, piezoelectric ceramics, sound wave, ANSYS, Taguchi method, modal analysis

Procedia PDF Downloads 234
26382 Optimal Design of Shape for Increasing the Bonding Pressure Drawing of Hot Clad Pipes by Finite Element Method Analysis

Authors: Seok-Hyeon Park, Joon-Hong Park, Mok-Tan-Ahn, Seong-Hun Ha

Abstract:

Clad Pipe is made of a different kind of material, which is different from the internal and external materials, for the corrosive crude oil transportation tube. Most of the clad pipes are produced by hot rolling. However, problems arise due to high product prices and excessive process numbers. Therefore, in this study, the hot drawing process with excellent product cost, process number and productivity is applied. Due to the nature of the drawing process, the shape of the mold greatly influences the formability of the material and the bonding pressure of the two materials because it is a process of drawing the material to the die and reducing the cross-sectional area. Also, in case of hot drawing, if the mold shape is not suitable due to the increased fluidity of the material, it may cause problems such as tearing and stretching. Therefore, in this study, we try to find the shape of the mold which suppresses the occurrence of defects in the hot drawing process and maximizes the bonding pressure between the two materials through the mold shape optimization design by FEM analysis.

Keywords: clad pipe, hot drawing, bonding pressure, mold shape

Procedia PDF Downloads 288
26381 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.

Keywords: thermal performance, phase change material, energy efficiency, PCM optimization

Procedia PDF Downloads 393
26380 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection

Authors: O. Hassoon, M. Tarfoui, A. El Malk

Abstract:

Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.

Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring

Procedia PDF Downloads 350
26379 Spectroscopic Study of a Eu-Complex Containing Hybrid Material

Authors: Y. A. R. Oliveira, M. A. Couto dos Santos, N. B. C. Júnior, S. J. L. Ribeiro, L. D. Carlos

Abstract:

The Eu(TTA)3(H2O)2 complex (TTA = thenoyltrifluoroacetone) pure (EuTTA) and incorporated in an organicinorganic hybrid material (EuTTA-hyb) are revisited, this time from the crystal field parameters (CFP) and Judd-Ofelt intensity parameters (Ωλ) point of view. A detailed analysis of the emission spectra revealed that the EuTTA phase still remains in the hybrid phase. Sparkle Model calculations of the EuTTA ground state geometry have been performed and satisfactorily compared to the X-ray structure. The observed weaker crystal field strength of the phase generated by the incorporation is promptly interpreted through the existing EXAFS results of the EuTTA-hyb structure. Satisfactory predictions of the CFP, of the 7F1 level splitting and of the Ωλ in all cases were obtained by using the charge factors and polarizabilities as degrees of freedom of non-parametric models.

Keywords: crystal field parameters, europium complexes, Judd-Ofelt intensity parameters

Procedia PDF Downloads 394
26378 Affordable and Sustainable Housing Construction: Case Studies

Authors: Tony Rizk

Abstract:

Recent material advances and cost efficiencies are transforming the housing industry away from traditional lumber and gypsum material to alternate fiberboard material that is workable and resistant to fire, mold, and pest infestation. The use of these materials may add to the initial cost of construction. However, the life cycle (cradle to grave) cost of houses using these construction materials and methods are lower than the life cycle costs using traditional housing construction materials and methods. This paper will present four (4) case studies of sustainable house projects. Each project was designed and constructed using earthen-based, sustainable fiberboard material that is resistant to fire, mold, and infestation and fabricated at a very low material calorific value. These house projects have a living space ranging from 625 sq. ft. for an accessory dwelling unit and up to 3,200 sq. ft. 1-story and 2-story homes. For each case study, we will present the house engineering design and construction method, the initial construction costs, a summary of the life cycle costs, and a comparison to the life cycle cost of traditional housing available in the literature.

Keywords: residential housing, sustainable housing, life cycle cost, fire resistance, mold, infestation resistance

Procedia PDF Downloads 111
26377 Analysis Influence Variation Frequency on Characterization of Nano-Particles in Preteatment Bioetanol Oil Palm Stem (Elaeis guineensis JACQ) Use Sonication Method with Alkaline Peroxide Activators on Improvement of Celullose

Authors: Luristya Nur Mahfut, Nada Mawarda Rilek, Ameiga Cautsarina Putri, Mujaroh Khotimah

Abstract:

The use of bioetanol from lignocellulosic material has begone to be developed. In Indonesia the most abundant lignocellulosic material is stem of palm which contain 32.22% of cellulose. Indonesia produces approximatelly 300.375.000 tons of stem of palm each year. To produce bioetanol from lignocellulosic material, the first process is pretreatment. But, until now the method of lignocellulosic pretretament is uneffective. This is related to the particle size and the method of pretreatment of less than optimal so that led to an overhaul of the lignin insufficient, consequently increased levels of cellulose was not significant resulting in low yield of bioetanol. To solve the problem, this research was implemented by using the process of pretreatment method ultasonifikasi in order to produce higher pulp with nano-sized particles that will obtain higher of yield ethanol from stem of palm. Research methods used in this research is the RAK that is composed of one factor which is the frequency ultrasonic waves with three varians, they are 30 kHz, 40 kHz, 50 kHz, and use constant variable is concentration of NaOH. The analysis conducted in this research is the influence of the frequency of the wave to increase levels of cellulose and change size on the scale of nanometers on pretreatment process by using the PSA methods (Particle Size Analyzer), and a Cheason. For the analysis of the results, data, and best treatment using ANOVA and test BNT with confidence interval 5%. The best treatment was obtained by combination X3 (frequency of sonication 50 kHz) and lignin (19,6%) cellulose (59,49%) and hemicellulose (11,8%) with particle size 385,2nm (18,8%).

Keywords: bioethanol, pretreatment, stem of palm, cellulosa

Procedia PDF Downloads 315