Search results for: low vision aids
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1551

Search results for: low vision aids

1311 Web Page Design Optimisation Based on Segment Analytics

Authors: Varsha V. Rohini, P. R. Shreya, B. Renukadevi

Abstract:

In the web analytics the information delivery and the web usage is optimized and the analysis of data is done. The analytics is the measurement, collection and analysis of webpage data. Page statistics and user metrics are the important factor in most of the web analytics tool. This is the limitation of the existing tools. It does not provide design inputs for the optimization of information. This paper aims at providing an extension for the scope of web analytics to provide analysis and statistics of each segment of a webpage. The number of click count is calculated and the concentration of links in a web page is obtained. Its user metrics are used to help in proper design of the displayed content in a webpage by Vision Based Page Segmentation (VIPS) algorithm. When the algorithm is applied on the web page it divides the entire web page into the visual block tree. The visual block tree generated will further divide the web page into visual blocks or segments which help us to understand the usage of each segment in a page and its content. The dynamic web pages and deep web pages are used to extend the scope of web page segment analytics. Space optimization concept is used with the help of the output obtained from the Vision Based Page Segmentation (VIPS) algorithm. This technique provides us the visibility of the user interaction with the WebPages and helps us to place the important links in the appropriate segments of the webpage and effectively manage space in a page and the concentration of links.

Keywords: analytics, design optimization, visual block trees, vision based technology

Procedia PDF Downloads 266
1310 Statistical Analysis of Natural Images after Applying ICA and ISA

Authors: Peyman Sheikholharam Mashhadi

Abstract:

Difficulties in analyzing real world images in classical image processing and machine vision framework have motivated researchers towards considering the biology-based vision. It is a common belief that mammalian visual cortex has been adapted to the statistics of the real world images through the evolution process. There are two well-known successful models of mammalian visual cortical cells: Independent Component Analysis (ICA) and Independent Subspace Analysis (ISA). In this paper, we statistically analyze the dependencies which remain in the components after applying these models to the natural images. Also, we investigate the response of feature detectors to gratings with various parameters in order to find optimal parameters of the feature detectors. Finally, the selectiveness of feature detectors to phase, in both models is considered.

Keywords: statistics, independent component analysis, independent subspace analysis, phase, natural images

Procedia PDF Downloads 339
1309 The Effects of Highly Active Antiretroviral Therapy (HAART) on the Expression of Muc1 and P65 in a Cervical Cancer Cell Line, HCS-2

Authors: K. R. Thabethe, G. A. Adefolaju, M. J. Hosie

Abstract:

Cervical cancer is the third most commonly diagnosed cancer globally and it is one of three AIDS defining malignancies. Highly active antiretroviral therapy (HAART) is a combination of three or more antiretroviral drugs and has been shown to play a significant role in reducing the incidence of some AIDS defining malignancies, although its effect on cervical cancer is still unclear. The aim of this study was to investigate the relationship between cervical cancer and HAART. This was achieved by studying the expression of two signalling molecules expressed in cervical cancer; MUC1 and P65. Following the 24 hour treatment of a cervical cancer cell line, HCS-2, with drugs which are commonly used as part of HAART at their clinical plasma concentrations, real-time qPCR and immunofluorescence were used in order to study gene and protein expression. A one way ANOVA followed by a Tukey Kramer Post Hoc test was conducted using JMP 11 software on both sets of data. The drug classified as a protease inhibitor (PI) (i.e. LPV/r) reduced MUC1 and P65 gene and protein expression more than the other drug tested. PIs are known to play a significant role in cell death, therefore the cells were thought to be more susceptible to cell death following treatment with PIs. In conclusion, the drugs used, especially the PI showed some anticancer effects by facilitating cell death through decreased gene and protein expression of MUC1 and P65 and present promising agents for cancer treatment.

Keywords: cervical cancer, haart, MUC1, P65

Procedia PDF Downloads 333
1308 Use of Nanosensors in Detection and Treatment of HIV

Authors: Sayed Obeidullah Abrar

Abstract:

Nanosensor is the combination of two terms nanoparticles and sensors. These are chemical or physical sensor constructed using nanoscale components, usually microscopic or submicroscopic in size. These sensors are very sensitive and can detect single virus particle or even very low concentrations of substances that could be potentially harmful. Nanosensors have a large scope of research especially in the field of medical sciences, military applications, pharmaceuticals etc.

Keywords: HIV/AIDS, nanosensors, DNA, RNA

Procedia PDF Downloads 299
1307 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution

Authors: Pitigalage Chamath Chandira Peiris

Abstract:

A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.

Keywords: single image super resolution, computer vision, vision transformers, image restoration

Procedia PDF Downloads 105
1306 Hand Detection and Recognition for Malay Sign Language

Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Norhafilah Bara

Abstract:

Developing a software application using an interface with computers and peripheral devices using gestures of human body such as hand movements keeps growing in interest. A review on this hand gesture detection and recognition based on computer vision technique remains a very challenging task. This is to provide more natural, innovative and sophisticated way of non-verbal communication, such as sign language, in human computer interaction. Nevertheless, this paper explores hand detection and hand gesture recognition applying a vision based approach. The hand detection and recognition used skin color spaces such as HSV and YCrCb are applied. However, there are limitations that are needed to be considered. Almost all of skin color space models are sensitive to quickly changing or mixed lighting circumstances. There are certain restrictions in order for the hand recognition to give better results such as the distance of user’s hand to the webcam and the posture and size of the hand.

Keywords: hand detection, hand gesture, hand recognition, sign language

Procedia PDF Downloads 306
1305 Street-Connected Youth: A Priority for Global HIV Prevention

Authors: Shorena Sadzaglishvili, Teona Gotsiridze, Ketevan Lekishvili, Darejan Javakhishvili, Alida Bouris

Abstract:

Globally, adolescents and young people experience high levels of HIV vulnerability and risk. Estimates suggest that AIDS-related deaths among young people are increasing, suggesting poor prioritization of adolescents in national plans for HIV testing and treatment services. HIV/AIDS is currently the sixth leading cause of death in people aged 10-24 years. Among young people, street connected youth are clearly distinguished as being among the most at risk for HIV infection. The present study recognizes the urgent need to scale up effective HIV responses that are tailored to the unique needs of street connected youth for the global HIV agenda and especially, the former Soviet country - Georgia, where 'street kids' are a new phenomenon and estimated to be about 2,500. During two months trained interviewers conducted individual semi-structured qualitative interviews with 22 key informants from the local governmental and nongovernmental service organizations, including psychologists, social workers, peer educators, mobile health workers, and managers. Informants discussed social network characteristics influencing street connected youth’s sexual risk behaviors. Data were analyzed using Dedoose. It was revealed that there are three types of homogeneous networks of street-connected youth aged 10-19 based on ethnical background: (1) Georgians; (2) migrant kids of Azeri-Kurdish origin, and (3) local Roma-Moldavian kids. These networks are distinguished with various HIV risk through both risky sexual and drug-related behaviors. In addition, there are several cases of HIV infection identified through reactive social services. Street connected youth do not have basic information about the HIV related sexual, alcohol and drug behaviors nor there are any systematic programs providing HIV testing and consultation for reducing the vulnerability of HIV infection. There is a need to systematically examine street-connected youth risk-taking behaviors by applying an integrated, multilevel framework to a population at great risk of HIV. Acknowledgment: This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [#FR 17_31], Ilia State University.

Keywords: street connected youth, social networks, HIV/AIDS, HIV testing

Procedia PDF Downloads 165
1304 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision

Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias

Abstract:

Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.

Keywords: healthcare, fall detection, transformer, transfer learning

Procedia PDF Downloads 146
1303 Neural Style Transfer Using Deep Learning

Authors: Shaik Jilani Basha, Inavolu Avinash, Alla Venu Sai Reddy, Bitragunta Taraka Ramu

Abstract:

We can use the neural style transfer technique to build a picture with the same "content" as the beginning image but the "style" of the picture we've chosen. Neural style transfer is a technique for merging the style of one image into another while retaining its original information. The only change is how the image is formatted to give it an additional artistic sense. The content image depicts the plan or drawing, as well as the colors of the drawing or paintings used to portray the style. It is a computer vision programme that learns and processes images through deep convolutional neural networks. To implement software, we used to train deep learning models with the train data, and whenever a user takes an image and a styled image, the output will be as the style gets transferred to the original image, and it will be shown as the output.

Keywords: neural networks, computer vision, deep learning, convolutional neural networks

Procedia PDF Downloads 95
1302 The Dual Catastrophe of Behçet’s Disease Visual Loss Followed by Acute Spinal Shock After Lumbar Drain Removal

Authors: Naim Izet Kajtazi

Abstract:

Context: Increased intracranial pressure and associated symptoms such as headache, papilledema, motor or sensory deficits, seizures, and conscious disturbance are well-known in acute CVT. However, visual loss is not commonly associated with this disease, except in the case of secondary IIH associated with it. Process: We report a case of a 40-year-old male with Behçet’s disease and cerebral venous thrombosis, and other multiple comorbidities admitted with a four-day history of increasing headache and rapidly progressive visual loss bilaterally. The neurological examination was positive for bilateral papilledema of grade 3 with light perception on the left eye and counting fingers on the right eye. Brain imaging showed old findings of cerebral venous thrombosis without any intraparenchymal lesions to suggest a flare-up of Behçet’s disease. The lumbar puncture, followed by the lumbar drain insertion, gave no benefit in headache or vision. However, he completely lost sight. The right optic nerve sheath fenestration did not result in vision improvement. The acute spinal shock complicated the lumbar drain removal due to epidural hematoma. An urgent lumbar laminectomy with hematoma evacuation undertook. Intra-operatively, the neurosurgeon noted suspicious abnormal vessels at conus medullaris with the possibility of an arteriovenous malformation. Outcome: In a few days following the spinal surgery, the patient vision started to improve. Further improvement was achieved after plasma exchange sessions followed by cyclophosphamide. In the recent follow-up in the clinic, he reported better vision, drove, and completed his Ph.D. studies. Relevance: Visual loss in patients with Behçet’s disease should always be anticipated and taken reasonable care of, ensuring that they receive well-combined immunosuppression with anticoagulation and agents to reduce intracranial pressure. This patient’s story is significant for a high disease burden and complicated hospital course by acute spinal shock due to spinal lumbar drain removal with a possible underlying spinal arteriovenous malformation.

Keywords: Behcet disease, optic neuritis, IIH, CVT

Procedia PDF Downloads 73
1301 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 143
1300 Prevalence of Near Visual Impairment and Associated Factors among School Teachers in Gondar City, North West Ethiopia, 2022

Authors: Bersufekad Wubie

Abstract:

Introduction: Near visual impairment is presenting near visual acuity of the eye worse than N6 at a 40 cm distance. Teachers' regular duties, such as reading books, writing on the blackboard, and recognizing students' faces, need good near vision. If a teacher has near-visual impairment, the work output is unsatisfactory. Objective: The study was aimed to assess the prevalence and associated factors near vision impairment among school teachers at Gondar city Northwest Ethiopia, August 2022. Methods: To select 567 teachers in Gondar city schools, an institutional-based cross-sectional study design with a multistage sampling technique were used. The study was conducted in selected schools from May 1 to May 30, 2022. Trained data collectors used well-structured Amharic and English language questionnaires and ophthalmic instruments for examination. The collected data were checked for completeness and entered into Epi data version 4.6, then exported to SPSS version 26 for further analysis. A binary and multivariate logistic regression model was fitted. And associated factors of the outcome variable. Result: The prevalence of near visual impairment was 64.6%, with a confidence interval of 60.3%–68.4%. Near visual impairment was significantly associated with age >= 35 years (AOR: 4.90 at 95% CI: 3.15, 7.65), having prolonged years of teaching experience (AOR: 3.29 at 95% CI: 1.70, 4.62), having a history of ocular surgery (AOR: 1.96 at 95% CI: 1.10, 4.62), smokers (AOR: 2.21 at 95% CI: 1.22, 4.07), history of ocular trauma (AOR : 1.80 at 95%CI:1.11,3.18 and uncorrected refractive error (AOR:2.01 at 95%CI:1.13,4.03). Conclusion and recommendations: This study showed the prevalence of near vision impairment among school teachers was high, and it is not a problem of the presbyopia age group alone; it also happens at a young age. So teachers' ocular health should be well accommodated in the school's eye health.

Keywords: Gondar, near visual impairment, school, teachers

Procedia PDF Downloads 138
1299 Development of Orbital TIG Welding Robot System for the Pipe

Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim

Abstract:

This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).

Keywords: adaptive welding, automatic welding, pipe welding, orbital welding, laser vision sensor, LVS, welding D/B

Procedia PDF Downloads 688
1298 Meat Products Demand in Oyo West Local Government: An Application of Almost Ideal Demand System (LA/AIDS)

Authors: B. A. Adeniyi, S. A. Daud, O. Amao

Abstract:

The study investigates consumer demand for meat products in Oyo West Local Government using linear approximate almost ideal demand system (LA/AIDS). Questions that were addressed by the study include: first, what is the type and quantity of meat products available to the household and their demand pattern? Second is the investigation of the factors that affect meat products demand pattern and proportion of income that is spent on them. For the above purpose cross-sectional data were collected from 156 households of the study area and analyzed to reveal the functional relationship between meat products consumption and some socio-economic variables of the household. Results indicated that per capita meat consumption increased as household income and education increased but decreased with age. It was also found that male tend to consume more meat products than their female counterparts and that increase in household size will first increased per caput meat consumption but later decreased it. Price also tends to greatly influence the demand pattern of meat products. The results of elasticity computed from the results of regression analysis revealed that own price elasticity for all meat products were negative which indicated that they were normal products while cross and expenditure elasticity were positive which further confirmed that meat products were normal and substitute products. This study therefore concludes that the relevance of these variables imposed a great challenge to the policy makers and the government, in the sense that more cost effective methods of meat production technology have to be devised in other to make consumption of meat products more affordable.

Keywords: meat products, consumption, animal production, technology

Procedia PDF Downloads 247
1297 Design of a Backlight Hyperspectral Imaging System for Enhancing Image Quality in Artificial Vision Food Packaging Online Inspections

Authors: Ferran Paulí Pla, Pere Palacín Farré, Albert Fornells Herrera, Pol Toldrà Fernández

Abstract:

Poor image acquisition is limiting the promising growth of industrial vision in food control. In recent years, the food industry has witnessed a significant increase in the implementation of automation in quality control through artificial vision, a trend that continues to grow. During the packaging process, some defects may appear, compromising the proper sealing of the products and diminishing their shelf life, sanitary conditions and overall properties. While failure to detect a defective product leads to major losses, food producers also aim to minimize over-rejection to avoid unnecessary waste. Thus, accuracy in the evaluation of the products is crucial, and, given the large production volumes, even small improvements have a significant impact. Recently, efforts have been focused on maximizing the performance of classification neural networks; nevertheless, their performance is limited by the quality of the input data. Monochrome linear backlight systems are most commonly used for online inspections of food packaging thermo-sealing zones. These simple acquisition systems fit the high cadence of the production lines imposed by the market demand. Nevertheless, they provide a limited amount of data, which negatively impacts classification algorithm training. A desired situation would be one where data quality is maximized in terms of obtaining the key information to detect defects while maintaining a fast working pace. This work presents a backlight hyperspectral imaging system designed and implemented replicating an industrial environment to better understand the relationship between visual data quality and spectral illumination range for a variety of packed food products. Furthermore, results led to the identification of advantageous spectral bands that significantly enhance image quality, providing clearer detection of defects.

Keywords: artificial vision, food packaging, hyperspectral imaging, image acquisition, quality control

Procedia PDF Downloads 22
1296 Variation of Refractive Errors among Right and Left Eyes in Jos, Plateau State, Nigeria

Authors: F. B. Masok, S. S Songdeg, R. R. Dawam

Abstract:

Vision is an important process for learning and communication as man depends greatly on vision to sense his environment. Prevalence and variation of refractive errors conducted between December 2010 and May 2011 in Jos, revealed that 735 (77.50%) out 950 subjects examined for refractive error had various refractive errors. Myopia was observed in 373 (49.79%) of the subjects, the error in the right eyes was 263 (55.60%) while the error in the left was 210(44.39%). The mean myopic error was found to be -1.54± 3.32. Hyperopia was observed in 385 (40.53%) of the sampled population comprising 203(52.73%) of the right eyes and 182(47.27%). The mean hyperopic error was found to be +1.74± 3.13. Astigmatism accounted for 359 (38.84%) of the subjects, out of which 193(53.76%) were in the right eyes while 168(46.79%) were in the left eyes. Presbyopia was found in 404(42.53%) of the subjects, of this figure, 164(40.59%) were in the right eyes while 240(59.41%) were in left eyes. The number of right eyes and left eyes with refractive errors was observed in some age groups to increase with age and later had its peak within 60 – 69 age groups. This pattern of refractive errors could be attributed to exposure to various forms of light particularly the ultraviolet rays (e.g rays from television and computer screen). There was no remarkable differences between the mean Myopic error and mean Hyperopic error in the right eyes and in the left eyes which suggest the right eye and the left eye are similar.

Keywords: left eye, refractive errors, right eye, variation

Procedia PDF Downloads 433
1295 Livestock Activity Monitoring Using Movement Rate Based on Subtract Image

Authors: Keunho Park, Sunghwan Jeong

Abstract:

The 4th Industrial Revolution, the next-generation industrial revolution, which is made up of convergence of information and communication technology (ICT), is no exception to the livestock industry, and various studies are being conducted to apply the livestock smart farm. In order to monitor livestock using sensors, it is necessary to drill holes in the organs such as the nose, ears, and even the stomach of the livestock to wear or insert the sensor into the livestock. This increases the stress of livestock, which in turn lowers the quality of livestock products or raises the issue of animal ethics, which has become a major issue in recent years. In this paper, we conducted a study to monitor livestock activity based on vision technology, effectively monitoring livestock activity without increasing animal stress and violating animal ethics. The movement rate was calculated based on the difference images between the frames, and the livestock activity was evaluated. As a result, the average F1-score was 96.67.

Keywords: barn monitoring, livestock, machine vision, smart farm

Procedia PDF Downloads 123
1294 Cantilever Secant Pile Constructed in Sand: Numerical Comparative Study and Design Aids – Part II

Authors: Khaled R. Khater

Abstract:

All civil engineering projects include excavation work and therefore need some retaining structures. Cantilever secant pile walls are an economical supporting system up to 5.0-m depths. The parameters controlling wall tip displacement are the focus of this paper. So, two analysis techniques have been investigated and arbitrated. They are the conventional method and finite element analysis. Accordingly, two computer programs have been used, Excel sheet and Plaxis-2D. Two soil models have been used throughout this study. They are Mohr-Coulomb soil model and Isotropic Hardening soil models. During this study, two soil densities have been considered, i.e. loose and dense sand. Ten wall rigidities have been analyzed covering ranges of perfectly flexible to completely rigid walls. Three excavation depths, i.e. 3.0-m, 4.0-m and 5.0-m were tested to cover the practical range of secant piles. This work submits beneficial hints about secant piles to assist designers and specification committees. Also, finite element analysis, isotropic hardening, is recommended to be the fair judge when two designs conflict. A rational procedure using empirical equations has been suggested to upgrade the conventional method to predict wall tip displacement ‘δ’. Also, a reasonable limitation of ‘δ’ as a function of excavation depth, ‘h’ has been suggested. Also, it has been found that, after a certain penetration depth any further increase of it does not positively affect the wall tip displacement, i.e. over design and uneconomic.

Keywords: design aids, numerical analysis, secant pile, Wall tip displacement

Procedia PDF Downloads 189
1293 A U-Net Based Architecture for Fast and Accurate Diagram Extraction

Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal

Abstract:

In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.

Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO

Procedia PDF Downloads 137
1292 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques

Authors: Chinlun Lai, Lunjyh Jiang

Abstract:

Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.

Keywords: baby care system, Internet of Things, deep learning, machine vision

Procedia PDF Downloads 224
1291 The Impact of Shared Culture, Trust and Information Exchange on Satisfaction and Financial Performance: Moderating Effects of Supply Chain Dependence

Authors: Hung Nguyen, Norma Harrison

Abstract:

This paper examines the role supply chain dependence as contingency factors which affect the effectiveness of different critical factors (in terms trust, information exchange and shared culture) in delivering supply chain satisfaction and financial performance. Using the data of 468 manufacturing firms in the Global Manufacturing Research Group, this study shows that supply chain dependence strengthens the positive relationship between shared culture & vision and supply chain satisfaction while dampens the relationship between trust and satisfaction. The study also demonstrates the direct positive effect of satisfaction on financial performance. Supply chain managers were advised to emphasize on the alignments of common understanding, codes, languages, common shared vision and similar cultures.

Keywords: information exchange, shared culture, satisfaction, supply chain dependence

Procedia PDF Downloads 383
1290 Challenging Perceptions of Disability: Exploring the Link between Ableism, Social Stigma, Vision Impairment, and Autism Spectrum Disorder

Authors: Aikaterini Tavoulari

Abstract:

This research aims to address the types of repetitive behaviours (RBs) observed by adults in children with vision impairment (VI) or autism spectrum disorder (ASD), the explanations the adults employ to interpret these behaviours, and the impact RBs have on the child, the caregiver, the professional and society. The underlying reason for this is an attempt to discover any potential differences between two different disabilities in a comparative fashion. The study is based on the interpretivism paradigm and follows a qualitative approach. A comparative case study design based on the ecological systems theory (EST) is adopted. Thirty-five caregivers and accredited professionals were recruited (17 for the VI group, out of whom 8 were caregivers and 9 were professionals, and 18 for the ASD group, out of whom 9 were caregivers and 9 were professionals). Following the completion of a pilot study, all participants were interviewed regarding one specific child – their own child/student – via semi-structured interviews. During the interviews, the researcher used a research diary as a methodological tool and video elicitation as a facilitation tool. A cross-case analysis was conducted, and data were analysed according to the method of thematic analysis. A link has been indicated between VI and ASD, which concerns perceptions about the socially constructed manner in which an RB is perceived. ASD is perceived by the participants as a disability with challenging characteristics, such as an RB. The ASD group perceived RB as linked to ableism, social stigmatisation, and taboo, in contrast to VI, where the existence of RB seems to be a consequence of sensory loss. Bi-directionality of EST seems to have been lost completely, and the macrosystem seems to drive the interactions between the ecological systems.

Keywords: ableism, social stigma, disability, repetitive behaviour, vision impairment, autism spectrum disorder, perceptions

Procedia PDF Downloads 90
1289 Detection of Pharmaceutical Personal Protective Equipment in Video Stream

Authors: Michael Leontiev, Danil Zhilikov, Dmitry Lobanov, Lenar Klimov, Vyacheslav Chertan, Daniel Bobrov, Vladislav Maslov, Vasilii Vologdin, Ksenia Balabaeva

Abstract:

Pharmaceutical manufacturing is a complex process, where each stage requires a high level of safety and sterility. Personal Protective Equipment (PPE) is used for this purpose. Despite all the measures of control, the human factor (improper PPE wearing) causes numerous losses to human health and material property. This research proposes a solid computer vision system for ensuring safety in pharmaceutical laboratories. For this, we have tested a wide range of state-of-the-art object detection methods. Composing previously obtained results in this sphere with our own approach to this problem, we have reached a high accuracy ([email protected]) ranging from 0.77 up to 0.98 in detecting all the elements of a common set of PPE used in pharmaceutical laboratories. Our system is a step towards safe medicine production.

Keywords: sterility and safety in pharmaceutical development, personal protective equipment, computer vision, object detection, monitoring in pharmaceutical development, PPE

Procedia PDF Downloads 87
1288 The Design of Smart Tactile Textiles for Therapeutic Applications

Authors: Karen Hong

Abstract:

Smart tactile textiles are a series of textile-based products that incorporates smart embedded technology to be utilized as tactile therapeutic applications for 2 main groups of target users. The first group of users will be children with sensory processing disorder who are suffering from tactile sensory dysfunction. Children with tactile sensory issues may have difficulty tolerating the sensations generated from the touch of certain textures on the fabrics. A series of smart tactile textiles, collectively known as ‘Tactile Toys’ are developed as tactile therapy play objects, exposing children to different types of touch sensations within textiles, enabling them to enjoy tactile experiences together with interactive play which will help them to overcome fear of certain touch sensations. The second group of users will be the elderly or geriatric patients who are suffering from deteriorating sense of touch. One of the common consequences of aging is suffering from deteriorating sense of touch and a decline in motoric function. With the focus in stimulating the sense of touch for this particular group of end users, another series of smart tactile textiles, collectively known as ‘Tactile Aids’ are developed also as tactile therapy. This range of products can help to maintain touch sensitivity and at the same time allowing the elderly to enjoy interactive play to practice their hand-eye coordination and enhancing their motor skills. These smart tactile textile products are being designed and tested out by the end users and have proofed their efficacy as tactile therapy enabling the users to lead a better quality of life.

Keywords: smart textiles, embedded technology, tactile therapy, tactile aids, tactile toys

Procedia PDF Downloads 177
1287 Open-Source YOLO CV For Detection of Dust on Solar PV Surface

Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden

Abstract:

Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.

Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing

Procedia PDF Downloads 32
1286 Development of a Social Assistive Robot for Elderly Care

Authors: Edwin Foo, Woei Wen, Lui, Meijun Zhao, Shigeru Kuchii, Chin Sai Wong, Chung Sern Goh, Yi Hao He

Abstract:

This presentation presents an elderly care and assistive social robot development work. We named this robot JOS and he is restricted to table top operation. JOS is designed to have a maximum volume of 3600 cm3 with its base restricted to 250 mm and his mission is to provide companion, assist and help the elderly. In order for JOS to accomplish his mission, he will be equipped with perception, reaction and cognition capability. His appearance will be not human like but more towards cute and approachable type. JOS will also be designed to be neutral gender. However, the robot will still have eyes, eyelid and a mouth. For his eyes and eyelids, they will be built entirely with Robotis Dynamixel AX18 motor. To realize this complex task, JOS will be also be equipped with micro-phone array, vision camera and Intel i5 NUC computer and a powered by a 12 V lithium battery that will be self-charging. His face is constructed using 1 motor each for the eyelid, 2 motors for the eyeballs, 3 motors for the neck mechanism and 1 motor for the lips movement. The vision senor will be house on JOS forehead and the microphone array will be somewhere below the mouth. For the vision system, Omron latest OKAO vision sensor is used. It is a compact and versatile sensor that is only 60mm by 40mm in size and operates with only 5V supply. In addition, OKAO vision sensor is capable of identifying the user and recognizing the expression of the user. With these functions, JOS is able to track and identify the user. If he cannot recognize the user, JOS will ask the user if he would want him to remember the user. If yes, JOS will store the user information together with the capture face image into a database. This will allow JOS to recognize the user the next time the user is with JOS. In addition, JOS is also able to interpret the mood of the user through the facial expression of the user. This will allow the robot to understand the user mood and behavior and react according. Machine learning will be later incorporated to learn the behavior of the user so as to understand the mood of the user and requirement better. For the speech system, Microsoft speech and grammar engine is used for the speech recognition. In order to use the speech engine, we need to build up a speech grammar database that captures the commonly used words by the elderly. This database is built from research journals and literature on elderly speech and also interviewing elderly what do they want to robot to assist them with. Using the result from the interview and research from journal, we are able to derive a set of common words the elderly frequently used to request for the help. It is from this set that we build up our grammar database. In situation where there is more than one person near JOS, he is able to identify the person who is talking to him through an in-house developed microphone array structure. In order to make the robot more interacting, we have also included the capability for the robot to express his emotion to the user through the facial expressions by changing the position and movement of the eyelids and mouth. All robot emotions will be in response to the user mood and request. Lastly, we are expecting to complete this phase of project and test it with elderly and also delirium patient by Feb 2015.

Keywords: social robot, vision, elderly care, machine learning

Procedia PDF Downloads 441
1285 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data

Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed

Abstract:

The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.

Keywords: disturbance automation, electric power grid, smart grid, smart switches

Procedia PDF Downloads 309
1284 Eliminating Injury in the Work Place and Realizing Vision Zero Using Accident Investigation and Analysis as Method: A Case Study

Authors: Ramesh Kumar Behera, Md. Izhar Hassan

Abstract:

Accident investigation and analysis are useful to identify deficiencies in plant, process, and management practices and formulate preventive strategies for injury elimination. In India and other parts of the world, industrial accidents are investigated to know the causes and also to fulfill legal compliances. However, findings of investigation are seldom used appropriately to strengthen Occupational Safety and Health (OSH) in expected lines. The mineral rich state of Odisha in eastern coast of India; known as a hub for Iron and Steel industries, witnessed frequent accidents during 2005-2009. This article based on study of 982 fatal ‘factory-accidents’ occurred in Odisha during the period 2001-2016, discusses the ‘turnaround-story’ resulting in reduction of fatal accident from 122 in 2009 to 45 in 2016. This paper examines various factors causing incidents; accident pattern in steel and chemical sector; role of climate and harsh weather conditions on accident causation. Software such as R, SQL, MS-Excel and Tableau were used for analysis of data. It is found that maximum fatality is caused due to ‘fall from height’ (24%); steel industries are relatively more accident prone; harsh weather conditions of summer increase chances of accident by 20%. Further, the study suggests that enforcement of partial work-restriction around lunch time during peak summer, screening and training of employees reduce accidents due to fall from height. The study indicates that learning from accident investigation and analysis can be used as a method to reduce work related accidents in the journey towards ‘Vision Zero’.

Keywords: accident investigation and analysis, fatal accidents in India, fall from height, vision zero

Procedia PDF Downloads 155
1283 Liquid Biopsy and Screening Biomarkers in Glioma Grading

Authors: Abdullah Abdu Qaseem Shamsan

Abstract:

Background: Gliomas represent the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, it tried to establish the potential association between glioma and specific blood groups antigen. Result: 78 patients were identified, among whom maximum percentage with glioblastoma possessed blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and least with O-. Liquid biopsy biomarkers comprised of ALT, LDH, lymphocytes, Urea, Alkaline phosphatase, AST Neutrophils, and CRP. The levels of all the components increased significantly with the severity of glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II respectively. Conclusion: Gliomas possess significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. Liquid biopsy is a non-invasive approach which aids to establish the status of the patient and determine the tumor grade, therefore may show diagnostic and prognostic utility. Additionally, our study provides evidence to demonstrate the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and validate their clinical usefulness to guide treatment approaches.

Keywords: GBM: glioblastoma multiforme, CT: computed tomography, MRI: magnetic resonance imaging, ctRNA: circulating tumor RNA

Procedia PDF Downloads 51
1282 Aromatic Medicinal Plant Classification Using Deep Learning

Authors: Tsega Asresa Mengistu, Getahun Tigistu

Abstract:

Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.

Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network

Procedia PDF Downloads 438