Search results for: interface shape
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3515

Search results for: interface shape

3275 Device Control Using Brain Computer Interface

Authors: P. Neeraj, Anurag Sharma, Harsukhpreet Singh

Abstract:

In current years, Brain-Computer Interface (BCI) scheme based on steady-state Visual Evoked Potential (SSVEP) have earned much consideration. This study tries to evolve an SSVEP based BCI scheme that can regulate any gadget mock-up in two unique positions ON and OFF. In this paper, two distinctive gleam frequencies in low-frequency part were utilized to evoke the SSVEPs and were shown on a Liquid Crystal Display (LCD) screen utilizing Lab View. Two stimuli shading, Yellow, and Blue were utilized to prepare the system in SSVEPs. The Electroencephalogram (EEG) signals recorded from the occipital part. Elements of the brain were separated by utilizing discrete wavelet Transform. A prominent system for multilayer system diverse Neural Network Algorithm (NNA), is utilized to characterize SSVEP signals. During training of the network with diverse calculation Regression plot results demonstrated that when Levenberg-Marquardt preparing calculation was utilized the exactness turns out to be 93.9%, which is superior to another training algorithm.

Keywords: brain computer interface, electroencephalography, steady-state visual evoked potential, wavelet transform, neural network

Procedia PDF Downloads 317
3274 Swastika Shape Multiband Patch Antenna for Wireless Applications on Low Cost Substrate

Authors: Md. Samsuzzaman, M. T. Islam, J. S. Mandeep, N. Misran

Abstract:

In this article, a compact simple structure modified Swastika shape patch multiband antenna on a substrate of available low cost polymer resin composite material is designed for Wi-Fi and WiMAX applications. The substrate material consists of an epoxy matrix reinforced by woven glass. The designed micro-strip line fed compact antenna comprises of a planar wide square slot ground with four slits and Swastika shape radiation patch with a rectangular slot. The effect of the different substrate materials on the reflection coefficients of the proposed antennas was also analyzed. It can be clearly seen that the proposed antenna provides a wider bandwidth and acceptable return loss value compared to other reported materials. The simulation results exhibits that the antenna has an impedance bandwidth with -10 dB return loss at 3.01-3.89 GHz and 4.88-6.10 GHz which can cover both the WLAN, WiMAX and public safety WLAN bands. The proposed swastika shape antenna was designed and analyzed by using a finite element method based simulator HFSS and designed on a low cost FR4 (polymer resin composite material) printed circuit board. The electrical performances and superior frequency characteristics make the proposed material antenna desirable for wireless communications.

Keywords: epoxy resin polymer, multiband, swastika shaped, wide slot, WLAN/WiMAX

Procedia PDF Downloads 432
3273 Identification of EEG Attention Level Using Empirical Mode Decompositions for BCI Applications

Authors: Chia-Ju Peng, Shih-Jui Chen

Abstract:

This paper proposes a method to discriminate electroencephalogram (EEG) signals between different concentration states using empirical mode decomposition (EMD). Brain-computer interface (BCI), also called brain-machine interface, is a direct communication pathway between the brain and an external device without the inherent pathway such as the peripheral nervous system or skeletal muscles. Attention level is a common index as a control signal of BCI systems. The EEG signals acquired from people paying attention or in relaxation, respectively, are decomposed into a set of intrinsic mode functions (IMF) by EMD. Fast Fourier transform (FFT) analysis is then applied to each IMF to obtain the frequency spectrums. By observing power spectrums of IMFs, the proposed method has the better identification of EEG attention level than the original EEG signals between different concentration states. The band power of IMF3 is the most obvious especially in β wave, which corresponds to fully awake and generally alert. The signal processing method and results of this experiment paves a new way for BCI robotic system using the attention-level control strategy. The integrated signal processing method reveals appropriate information for discrimination of the attention and relaxation, contributing to a more enhanced BCI performance.

Keywords: biomedical engineering, brain computer interface, electroencephalography, rehabilitation

Procedia PDF Downloads 374
3272 Form-Finding of Tensioned Fabric Structure in Mathematical Monkey Saddle Model

Authors: Yee Hooi Min, Abdul Hadi, M. N., A. G. Kay Dora

Abstract:

Form-finding has to be carried out for tensioned fabric structure in order to determine the initial equilibrium shape under prescribed support condition and pre-stress pattern. Tensioned fabric structures are normally designed to be in the form of equal tensioned surface. Tensioned fabric structure is highly suited to be used for realizing surfaces of complex or new forms. However, research study on a new form as a tensioned fabric structure has not attracted much attention. Another source of inspiration minimal surface which could be adopted as form for tensioned fabric structure is very crucial. The aim of this study is to propose initial equilibrium shape of tensioned fabric structures in the form of Monkey Saddle. Computational form-finding is frequently used to determine the possible form of uniformly stressed surfaces. A tensioned fabric structure must curve equally in opposite directions to give the resulting surface a three dimensional stability. In an anticlastic doubly curved surface, the sum of all positive and all negative curvatures is zero. This study provides an alternative choice for structural designer to consider the Monkey Saddle applied in tensioned fabric structures. The results on factors affecting initial equilibrium shape can serve as a reference for proper selection of surface parameter for achieving a structurally viable surface. Such in-sight will lead to improvement of rural basic infrastructure, economic gains, sustainability of built environment and green technology initiative.

Keywords: anticlastic, curvatures, form-finding, initial equilibrium shape, minimal surface, tensioned fabric structure

Procedia PDF Downloads 514
3271 Evaluation of Corrosion by Impedance Spectroscopy of Embedded Steel in an Alternative Concrete Exposed a Chloride Ion

Authors: E. Ruíz, W. Aperador

Abstract:

In this article evaluates the protective effect of the concrete alternative obtained from the fly ash and iron and steel slag mixed in binary form and were placed on structural steel ASTM A 706. The study was conducted comparatively with specimens exposed to natural conditions free of chloride ion. The effect of chloride ion on the specimens was generated of form accelerated under controlled conditions (3.5% NaCl and 25 ° C temperature). The Impedance data were acquired over a range of 1 mHz to 100 kHz. At frequencies high is found the response of the interface means of the exposure-concrete and to frequency low the response of the interface corresponding to concrete-steel.

Keywords: alternative concrete, corrosion, alkaline activation, impedance spectroscopy

Procedia PDF Downloads 339
3270 Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface

Authors: Ping Tan, Xiaomeng Su, Yi Shen

Abstract:

The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods.

Keywords: non-uniform filter banks, motor imagery, brain-computer interface, minimum distance to Riemannian mean

Procedia PDF Downloads 92
3269 Micro-Droplet Formation in a Microchannel under the Effect of an Electric Field: Experiment

Authors: Sercan Altundemir, Pinar Eribol, A. Kerem Uguz

Abstract:

Microfluidics systems allow many-large scale laboratory applications to be miniaturized on a single device in order to reduce cost and advance fluid control. Moreover, such systems enable to generate and control droplets which have a significant role on improved analysis for many chemical and biological applications. For example, they can be employed as the model for cells in microfluidic systems. In this work, the interfacial instability of two immiscible Newtonian liquids flowing in a microchannel is investigated. When two immiscible liquids are in laminar regime, a flat interface is formed between them. If a direct current electric field is applied, the interface may deform, i.e. may become unstable and it may be ruptured and form micro-droplets. First, the effect of thickness ratio, total flow rate, viscosity ratio of the silicone oil and ethylene glycol liquid couple on the critical voltage at which the interface starts to destabilize is investigated. Then the droplet sizes are measured under the effect of these parameters at various voltages. Moreover, the effect of total flow rate on the time elapsed for the interface to be ruptured to form droplets by hitting the wall of the channel is analyzed. It is observed that an increase in the viscosity or the thickness ratio of the silicone oil to the ethylene glycol has a stabilizing effect, i.e. a higher voltage is needed while the total flow rate has no effect on it. However, it is observed that an increase in the total flow rate results in shortening of the elapsed time for the interface to hit the wall. Moreover, the droplet size decreases down to 0.1 μL with an increase in the applied voltage, the viscosity ratio or the total flow rate or a decrease in the thickness ratio. In addition to these observations, two empirical models for determining the critical electric number, i.e., the dimensionless voltage and the droplet size and another model which is a combination of both models, for determining the droplet size at the critical voltage are established.

Keywords: droplet formation, electrohydrodynamics, microfluidics, two-phase flow

Procedia PDF Downloads 160
3268 Political Perspectives Regarding International Laws

Authors: Hamid Vahidkia

Abstract:

This exposition investigates the connection between two viewpoints on the nature of human rights. Agreeing with the “political” or “practical” point of view, human rights are claims that people have against certain regulation structures in specific present-day states, in the ethicalness of interface they have in settings that incorporate them. Agreeing with the more conventional “humanist” or “naturalistic” viewpoint, human rights are pre-institutional claims that people have against all other people in the ethicalness of interface characteristic of their common humankind. This paper contends that once we recognize the two viewpoints in their best light, we are able to see that they are complementary, and, in reality, we require both to form a great standardizing sense of the modern home of human rights. It clarifies how humanist and political contemplations can and ought to work in couple to account for the concept, substance, and legitimization of human rights.

Keywords: politics, human rights, humanities, mankind, law

Procedia PDF Downloads 34
3267 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset

Authors: Adrienne Kline, Jaydip Desai

Abstract:

Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.

Keywords: brain-machine interface, EEGLAB, emotiv EEG neuroheadset, OpenViBE, simulink

Procedia PDF Downloads 477
3266 Detect Circles in Image: Using Statistical Image Analysis

Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee

Abstract:

The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.

Keywords: image processing, median filter, projection, scale-space, segmentation, threshold

Procedia PDF Downloads 406
3265 Investigation of Martensitic Transformation Zone at the Crack Tip of NiTi under Mode-I Loading Using Microscopic Image Correlation

Authors: Nima Shafaghi, Gunay Anlaş, C. Can Aydiner

Abstract:

A realistic understanding of martensitic phase transition under complex stress states is key for accurately describing the mechanical behavior of shape memory alloys (SMAs). Particularly regarding the sharply changing stress fields at the tip of a crack, the size, nature and shape of transformed zones are of great interest. There is significant variation among various analytical models in their predictions of the size and shape of the transformation zone. As the fully transformed region remains inside a very small boundary at the tip of the crack, experimental validation requires microscopic resolution. Here, the crack tip vicinity of NiTi compact tension specimen has been monitored in situ with microscopic image correlation with 20x magnification. With nominal 15 micrometer grains and 0.2 micrometer per pixel optical resolution, the strains at the crack tip are mapped with intra-grain detail. The transformation regions are then deduced using an equivalent strain formulation.

Keywords: digital image correlation, fracture, martensitic phase transition, mode I, NiTi, transformation zone

Procedia PDF Downloads 334
3264 Product Form Bionic Design Based on Eye Tracking Data: A Case Study of Desk Lamp

Authors: Huan Lin, Liwen Pang

Abstract:

In order to reduce the ambiguity and uncertainty of product form bionic design, a product form bionic design method based on eye tracking is proposed. The eye-tracking experiment is designed to calculate the average time ranking of the specific parts of the bionic shape that the subjects are looking at. Key bionic shape is explored through the experiment and then applied to a desk lamp bionic design. During the design case, FAHP (Fuzzy Analytic Hierachy Process) and SD (Semantic Differential) method are firstly used to identify consumer emotional perception model toward desk lamp before product design. Through investigating different desk lamp design elements and consumer views, the form design factors on the desk lamp product are reflected and all design schemes are sequenced after caculation. Desk lamp form bionic design method is combined the key bionic shape extracted from eye-tracking experiment and priority of desk lamp design schemes. This study provides an objective and rational method to product form bionic design.

Keywords: Bionic design; Form; Eye tracking; FAHP; Desk lamp

Procedia PDF Downloads 192
3263 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots

Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee

Abstract:

Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor (exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

Keywords: inertial measurement unit, laser range finder, real-time recognition of the ground shape, proprioceptive sensor

Procedia PDF Downloads 268
3262 The Catalytic Activity of CU2O Microparticles

Authors: Kanda Wongwailikhit

Abstract:

Copper (I) oxide microparticles with the morphology of cubic and hollow sphere were synthesized with the assistance of a surfactant as the shape controller. Both particles were then subjected to a study of the catalytic activity and the results of shape effects of catalysts on rate of catalytic reaction was observed. The decolorizing reaction of crystal violet and sodium hydroxide was chosen and the decrease of reactant with respect to time was measured using a spectrophotometer. The result revealed that morphology of the crystal had no effect on the catalytic activity for the crystal violet reaction but contributed to total surface area predominantly.

Keywords: copper (I) oxide, catalytic activity, crystal violet

Procedia PDF Downloads 478
3261 A Novel Antenna Design for Telemedicine Applications

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

To develop a reliable and cost effective communication platform for the telemedicine applications, novel antenna design has been presented using bacterial foraging optimization (BFO) technique. The proposed antenna geometry is achieved by etching a modified Koch curve fractal shape at the edges and a square shape slot at the center of the radiating element of a patch antenna. It has been found that the new antenna has achieved 43.79% size reduction and better resonating characteristic than the original patch. Representative results for both simulations and numerical validations are reported in order to assess the effectiveness of the developed methodology.

Keywords: BFO, electrical permittivity, fractals, Koch curve

Procedia PDF Downloads 487
3260 User Experience Measurement of User Interfaces

Authors: Mohammad Hashemi, John Herbert

Abstract:

Quantifying and measuring Quality of Experience (QoE) are important and difficult concerns in Human Computer Interaction (HCI). Quality of Service (QoS) and the actual User Interface (UI) of the application are both important contributors to the QoE of a user. This paper describes a framework that measures accurately the way a user uses the UI in order to model users' behaviours and profiles. It monitors the use of the mouse and use of UI elements with accurate time measurement. It does this in real-time and does so unobtrusively and efficiently allowing the user to work as normal with the application. This real-time accurate measurement of the user's interaction provides valuable data and insight into the use of the UI, and is also the basis for analysis of the user's QoE.

Keywords: user modelling, user interface experience, quality of experience, user experience, human and computer interaction

Procedia PDF Downloads 482
3259 A Simple Approach for the Analysis of First Vibration Mode of Layered Soil Profiles

Authors: Haizhong Zhang, Yan-Gang Zhao

Abstract:

Fundamental period, mode shape, and participation factor are important basic information for the understanding of earthquake response of ground. In this study, a simple approach is presented to calculate these basic information of layered soil profiles. To develop this method, closed form equations are derived for analysis of free vibration of layered soil profiles firstly, based on equilibrium between inertia and elastic forces. Then, by further associating with the Madera procedure developed for estimation of fundamental period, a simple method that can directly determine the fundamental period, mode shape and participation factor is proposed. The proposed approach can be conveniently implemented in simple spreadsheets and easily used by practicing engineers. In addition, the accuracy of the proposed approach is investigated by analyzing first vibration mode of 67 representative layered soil profiles, it is found that results by the proposed method agree very well with accurate results.

Keywords: layered soil profile, natural vibration, fundamental period, fundamental mode shape

Procedia PDF Downloads 304
3258 Effect of Footing Shape on Bearing Capacity and Settlement of Closely Spaced Footings on Sandy Soil

Authors: A. Shafaghat, H. Khabbaz, S. Moravej, Ah. Shafaghat

Abstract:

The bearing capacity of closely spaced shallow footings alters with their spacing and the shape of footing. In this study, the bearing capacity and settlement of two adjacent footings constructed on a sand layer are investigated. The effect of different footing shapes including square, circular, ring and strip on sandy soil is captured in the calculations. The investigations are carried out numerically using PLAXIS-3D software and analytically employing conventional settlement equations. For this purpose, foundations are modelled in the program with practical dimensions and various spacing ratios ranging from 1 to 5. The spacing ratio is defined as the centre-to-centre distance to the width of foundations (S/B). Overall, 24 models are analyzed; and the results are compared and discussed in detail. It can be concluded that the presence of adjacent foundation leads to the reduction in bearing capacity for round shape footings while it can increase the bearing capacity of rectangular footings in some specific distances.

Keywords: bearing capacity, finite element analysis, loose sand, settlement equations, shallow foundation

Procedia PDF Downloads 238
3257 Defects Classification of Stator Coil Generators by Phase Resolve Partial Discharge

Authors: Chun-Yao Lee, Nando Purba, Benny Iskandar

Abstract:

This paper proposed a phase resolve partial discharge (PRPD) shape method to classify types of defect stator coil generator by using off-line PD measurement instrument. The recorded PRPD, by using the instruments MPD600, can illustrate the PRPD patterns of partial discharge of unit’s defects. In the paper, two of large units, No.2 and No.3, in Inalum hydropower plant, North Sumatera, Indonesia is adopted in the experimental measurement. The proposed PRPD shape method is to mark auxiliary lines on the PRPD patterns. The shapes of PRPD from two units are marked with the proposed method. Then, four types of defects in IEC 60034-27 standard is adopted to classify the defect types of the two units, which types are microvoids (S1), delamination tape layer (S2), slot defect (S3) and internal delamination (S4). Finally, the two units are actually inspected to validate the availability of the proposed PRPD shape method.

Keywords: partial discharge (PD), stator coil, defect, phase resolve pd (PRPD)

Procedia PDF Downloads 239
3256 Effect of Particle Shape on Monotonic and Cyclic Biaxial Behaviour of Sand Using Discrete Element Method

Authors: Raj Banerjee, Y. M. Parulekar, Aniruddha Sengupta, J. Chattopadhyay

Abstract:

This study proposes a Discrete Element Method (DEM) simulation using a commercial software PFC 2D (2019) for quantitatively simulating the monotonic and cyclic behaviour of sand using irregular shapes of sand grains. A preliminary analysis of the number of particles for optimal Representative Element Volume (REV) simulation of dimension 35mm x 35mm x 70mm using the scaled Grain Size Distribution (GSD) of sand is carried out. Subsequently, the effect of particle shape on the performance of sand during monotonic and cyclic bi-axial tests is assessed using numerical simulation. The validation of the numerical simulation for one case is carried out using the test results from the literature. Further numerical studies are performed in which the particles in REV are simulated by mixing round discs with irregular clumps (100% round disc, 75% round disc 25% irregular clump, 50% round disc 50% irregular clump, 25% round disc 75% irregular clump, 100% irregular clump) in different proportions using Dry Deposition (DD) method. The macro response for monotonic loading shows that irregular sand has a higher strength than round particles and that the Mohr-Coulomb failure envelope depends on the shape of the grains. During cyclic loading, it is observed that the liquefaction resistance curve (Cyclic Stress Ratio (CSR)-Number of cycles (N)) of sand is dependent on the combination of particle shapes with different proportions.

Keywords: biaxial test, particle shape, monotonic, cyclic

Procedia PDF Downloads 54
3255 Optimization of Plastic Injection Molding Parameters by Altering Gate and Runner of Feeding System

Authors: Ali Ramezani

Abstract:

Balancing feeding system of plastic injection molding has overriding importance as it minimizes the process’s product defects such as weld line, shrinkage, sink marks and warpage. This article presents the difference between optimization of feeding system in identical multi-cavity molding and family molding using Moldflow Plastic Insight software. In this work, the effect of dimension, shape, position and type of gates and runners on the products quality was studied. The optimization was carried out by analyzing plastic injection molding process parameters, including melt temperature, mold temperature, cooling time, cooling temperature packing time and packing pressure. It was found that symmetrical feeding system is the most efficient shape for diminishing defects in identical multi-cavity molding. However, the same results were not concluded for family molding due to the differences between volume, mass, thickness and shape of cavities.

Keywords: balancing feeding system, family molding, multi-cavity, Moldflow, plastic injection

Procedia PDF Downloads 113
3254 Heat Forging Analysis Method on Blank Consist of Two Metals

Authors: Takashi Ueda, Shinichi Enoki

Abstract:

Forging parts is used to automobiles. Because they have high strength and it is possible to press them into complicated shape. When it is possible to manufacture hollow forging parts, it leads to reduce weight of the automobiles. But, hollow forging parts are confined to axisymmetrical shape. Hollow forging parts that were pressed to complicated shape are expected. Therefore, we forge a blank that aluminum alloy was inserted in stainless steel. After that, we can provide complex forging parts that are reduced weight, if it is possible to be melted the aluminum alloy away by using different of melting points. It is necessary to establish heat forging analysis method on blank consist of stainless steel and aluminum alloy. Because, this forging is different from conventional forging and this technology is not confirmed. In this study, we compared forging experiment with numerical analysis on the view point of forming load and shape after forming and establish how to set the material temperatures of two metals and material property of stainless steel on the analysis method. Consequently, temperature difference of stainless steel and aluminum alloy was obtained by experiment. We got material property of stainless steel on forging experimental by compression tests. We had compared numerical analysis that was used the temperature difference of two metals and the material property of stainless steel on forging experimental with forging experiment. Forging analysis method on blank consist of two metals was established by result of numerical analysis having agreed with result of forging experiment.

Keywords: forging, lightweight, analysis, hollow

Procedia PDF Downloads 394
3253 A Three Tier Secure KQML Interface with Novel Performatives

Authors: Dimple Juneja, Aarti Singh, Renu Hooda

Abstract:

Knowledge Query Manipulation Language (KQML) and FIPA ACL are two prime communication languages existing in multi agent systems (MAS). Both languages are more or less similar in terms of semantics (based on speech act theory) and offer cutting edge competition while establishing agent communication across Internet. In contrast to the fact that software agents operating on the internet are required to be more safeguarded from their counter-peer, both protocols lack security performatives. The paper proposes a three tier security interface with few novel security related performatives enhancing the basic architecture of KQML. The three levels are attestation, certification and trust establishment which enforces a tight security and hence reduces the security breeches.

Keywords: multiagent systems, KQML, FIPA ACL, performatives

Procedia PDF Downloads 392
3252 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections

Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz

Abstract:

In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.

Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process

Procedia PDF Downloads 194
3251 Enhancement of Interface Properties of Thermoplastic Composite Materials

Authors: Reyhan Ozbask, Emek Moroydor Derin, Mustafa Dogu

Abstract:

There are a limited number of global companies in the world that manufacture and commercially offer thermoplastic composite prepregs in accordance with aerospace requirements. High-performance thermoplastic materials supplied for aerospace structural applications are PEEK (polyetheretherketone), PPS (polyphenylsulfite), PEI (polyetherimide), and PEKK (polyetherketoneketone). Among these, PEEK is the raw material used in the first applications and has started to become widespread. However, the use of these thermoplastic raw materials in composite production is very difficult due to their high processing temperatures and impregnation difficulties. This study, it is aimed to develop carbon fiber-reinforced thermoplastic PEEK composites that comply with the requirements of the aviation industry that are superior mechanical properties as well as being lightweight. Therefore, it is aimed to obtain high-performance thermoplastic composite materials with improved interface properties by using the sizing method (suspension development through chemical synthesis and functionalization), to optimize the production process. The use of boron nitride nanotube as a bonding agent by modifying its surface constitutes the original aspect of the study as it has not been used in composite production with high-performance thermoplastic materials yet. For this purpose, laboratory-scale studies on the application of thermoplastic compatible sizing will be carried out in order to increase the fiber-matrix interfacial adhesion. The method respectively consists of the selection of appropriate sizing type, laboratory-scale carbon fiber (CF) / poly ether ether ketone (PEEK) polymer interface enhancement studies, manufacturing of laboratory-scale BNNT coated CF/PEEK woven prepreg composites and their tests.

Keywords: carbon fiber reinforced composite, interface enhancement, boron nitride nanotube, thermoplastic composite

Procedia PDF Downloads 202
3250 pscmsForecasting: A Python Web Service for Time Series Forecasting

Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou

Abstract:

pscmsForecasting is an open-source web service that implements a variety of time series forecasting algorithms and exposes them to the user via the ubiquitous HTTP protocol. It allows developers to enhance their applications by adding time series forecasting functionalities through an intuitive and easy-to-use interface. This paper provides some background on time series forecasting and gives details about the implemented algorithms, aiming to enhance the end user’s understanding of the underlying methods before incorporating them into their applications. A detailed description of the web service’s interface and its various parameterizations is also provided. Being an open-source project, pcsmsForecasting can also be easily modified and tailored to the specific needs of each application.

Keywords: time series, forecasting, web service, open source

Procedia PDF Downloads 57
3249 Crack Propagation Effect at the Interface of a Composite Beam

Authors: Mezidi Amar

Abstract:

In this research work, crack propagation at the interface of a composite beam is considered. The behavior of composite beams (CB) depends upon a law based on relationship between tangential or normal efforts with inelastic propagation. Throughout this study, composite beams are classified like composite beams with partial connection or sandwich beams of three layers. These structural systems are controlled by the same nature of differential equations regarding their behavior in the plane, as well as out-of-plane. Multi-layer elements with partial connection are typically met in the field of timber construction where the elements are assembled by joining. The formalism of the behavior in the plane and out-of-plane of these composite beams is obtained and their results concerning the engineering aspect or simple of interpretation are proposed for the case of composite beams made up of rectangular section and simply supported section. An apparent analytical peculiarity or paradox in the bending behavior of elastic–composite beams with interlayer slip, sandwich beam or other similar problems subjected to boundary moments exists. For a fully composite beam subjected to end moments, the partial composite model will render a non-vanishing uniform value for the normal force in the individual subelement. Obtained results are similar to those for the case of vibrations in the plane as well for the composite beams as for the sandwich beams where eigen-frequencies increase with related rigidity.

Keywords: composite beam, behaviour, interface, deflection, propagation

Procedia PDF Downloads 274
3248 Experimental Verification of Different Types of Shear Connectors on Composite Slab

Authors: A. Siva, R. Senthil, R. Banupriya, R. Saravanakumar

Abstract:

Cold-formed steel sheets are widely used as primary tension reinforcement in composite slabs. It also performs as formwork for concreting and better ceiling surface. The major type of failure occurring in composite slab is shear failure. When the composite slab is flexurally loaded, the longitudinal shear is generated and transferred to the steel sheet concrete interface. When the load increases, the interface slip occurs. The slip failure can be resisted by mechanical interface interlock by shear studs. In this paper, the slip failure has been resisted by shear connectors and geometry of the steel sheet alone. The geometry of the sheet is kept constant for all the specimens and the type of shear connectors has been varied. Totally, three types of shear connectors (viz., straight headed, U and J) are bolted to the trapezoidal profile sheet and the concrete is casted over it. After curing, the composite slab is subjected to flexure load and the test results are compared with the numerical results analysed by ABAQUS software. The test result shows that the U-shaped bolted stud has higher flexure strength than the other two types of shear connectors.

Keywords: cold formed steel sheet, headed studs, mechanical interlock, shear connectors, shear failure, slip failure

Procedia PDF Downloads 535
3247 Temperature Dependent Current-Voltage (I-V) Characteristics of CuO-ZnO Nanorods Based Heterojunction Solar Cells

Authors: Venkatesan Annadurai, Kannan Ethirajalu, Anu Roshini Ramakrishnan

Abstract:

Copper oxide (CuO) and zinc oxide (ZnO) based coaxial (CuO-ZnO nanorods) heterojunction has been the interest of various research communities for solar cells, light emitting diodes (LEDs) and photodetectors applications. Copper oxide (CuO) is a p-type material with the band gap of 1.5 eV and it is considered to be an attractive absorber material in solar cells applications due to its high absorption coefficient and long minority carrier diffusion length. Similarly, n-type ZnO nanorods possess many attractive advantages over thin films such as, the light trapping ability and photosensitivity owing to the presence of oxygen related hole-traps at the surface. Moreover, the abundant availability, non-toxicity, and inexpensiveness of these materials make them suitable for potentially cheap, large area, and stable photovoltaic applications. However, the efficiency of the CuO-ZnO nanorods heterojunction based devices is greatly affected by interface defects which generally lead to the poor performance. In spite of having much potential, not much work has been carried out to understand the interface quality and transport mechanism involved across the CuO-ZnO nanorods heterojunction. Therefore, a detailed investigation of CuO-ZnO heterojunction is needed to understand the interface which affects its photovoltaic performance. Herein, we have fabricated the CuO-ZnO nanorods based heterojunction by simple hydrothermal and electrodeposition technique and investigated its interface quality by carrying out temperature (300 –10 K) dependent current-voltage (I-V) measurements under dark and illumination of visible light. Activation energies extracted from the temperature dependent I-V characteristics reveals that recombination and tunneling mechanism across the interfacial barrier plays a significant role in the current flow.

Keywords: heterojunction, electrical transport, nanorods, solar cells

Procedia PDF Downloads 202
3246 An Application Framework for Integrating Wireless Sensor and Actuator Networks for Precision Farmingas Web of Things to Cloud Interface Using PaaS

Authors: Sumaya Ismail, Aijaz Ahmad Reshi

Abstract:

The advances in sensor and embedded technologies have led to rapid developments in Wireless Sensor Networks (WSNs). Presently researchers focus on the integration of WSNs to the Internet for their pervasive availability to access these network resources as the interoperable subsystems. The recent computing technologies like cloud computing has made resource sharing as a converged infrastructure with required service interfaces for the shared resources over the Internet. This paper presents application architecture for wireless Sensor and Actuator Networks (WSANS) following web of things, which allows easy integration of each node to the Internet in order to provide them with web accessibility. The architecture enables the sensors and actuator nodes accessed and controlled using cloud interface on WWW. The application architecture was implemented using existing web and its emerging technologies. In particular, the Representational State Transfer protocol (REST) was extended for the specific requirements of the application. The Cloud computing environment has been used as a development platform for the application to assess the possibility of integrating the WSAN nodes to Cloud services. The mushroom farm environment monitoring and control using WSANs has been taken as a research use case.

Keywords: WSAN, REST, web of things, ZigBee, cloud interface, PaaS, sensor gateway

Procedia PDF Downloads 82