Search results for: infinite feature selection
3692 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 593691 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis
Authors: Amir Hajian, Sepehr Damavandinejadmonfared
Abstract:
In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)
Procedia PDF Downloads 3653690 Logistics Information and Customer Service
Authors: Š. Čemerková, M. Wilczková
Abstract:
The paper deals with the importance of information flow for providing of defined level of customer service in the firms. Setting of the criteria for the selection and implementation of logistics information system is a prerequisite for ensuring of the flow of information in firms. The decision on the selection and implementation of logistics information system is linked to the investment costs and operating costs, which are included in the total logistics costs. The article also deals with the conclusions of the research focused on the logistics information system selection in companies in the Czech Republic.Keywords: customer service, information system, logistics, research
Procedia PDF Downloads 3613689 Applying Fuzzy Analytic Hierarchy Process for Subcontractor Selection
Authors: Halimi Mohamed Taher, Kordoghli Bassem, Ben Hassen Mohamed, Sakli Faouzi
Abstract:
Textile and clothing manufacturing industry is based largely on subcontracting system. Choosing the right subcontractor became a strategic decision that can affect the financial position of the company and even his market position. Subcontracting firms in Tunisia are lead to define an appropriate selection process which takes into account several quantitative and qualitative criteria. In this study, a methodology is proposed that includes a Fuzzy Analytic Hierarchy Process (AHP) in order to incorporate the ambiguities and uncertainties in qualitative decision. Best subcontractors for two Tunisian firms are determined based on model results.Keywords: AHP, subcontractor, multicriteria, selection
Procedia PDF Downloads 6893688 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language
Authors: Daleesha M. Viswanathan, Sumam Mary Idicula
Abstract:
Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.Keywords: orientation features, discrete feature vector, HMM., Indian sign language
Procedia PDF Downloads 3703687 Multimodal Convolutional Neural Network for Musical Instrument Recognition
Authors: Yagya Raj Pandeya, Joonwhoan Lee
Abstract:
The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean
Procedia PDF Downloads 2153686 The Effect of Gender Differences on Mate Selection in Private University
Authors: Hui Min Kong, Rajalakshmi A/P Ganesan
Abstract:
The present study was conducted to investigate the effect of gender differences in mate selection in a private university. Mate selection is an important process and decision to the people around the world, especially for single people. The future partner we have chosen could be our lifetime friend, supporter, and lover. Mate selection is important to us, but we have never fully understood the evolution of gender differences in mate selection. Besides, there was an insufficient empirical finding of gender differences in mate selection in Malaysia. Hence, the research would allow us to understand our feelings and thoughts about our future partners. The research null hypotheses have stated that there was no significant difference on 18 mate selections characteristics between males and females. A quantitative method was performed to test the hypotheses through independent t-test. There was a total of 373 heterosexual participants with the age range of 18 to 35 in the study. The instrument used was Factors in choosing a mate developed by Buss and Barnes (1986). Results indicated that females (M= 26.69) were found to be highly valued on refinement and neatness, good financial prospect, dependable character, emotional stability and maturity, desire for home and children, favorable social status or rating, similar religious background, ambition and industriousness, mutual attraction, good health and education and intelligence than males (M= 23.25). These results demonstrated that there were 61.11% significant gender differences in mate selections characteristics. Findings of this research have highlighted the importance of human mate selections in Malaysia. Further research is needed to identify the factors that could have a possible moderating effect of gender differences in mate selection.Keywords: gender differences, mate selections, evolution, future partner
Procedia PDF Downloads 1113685 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 1883684 Nonlinear Defects and Discombinations in Anisotropic Solids
Authors: Ashkan Golgoon, Arash Yavari
Abstract:
In this paper, we present some analytical solutions for the stress fields of nonlinear anisotropic solids with line and point defects distributions. In particular, we determine the induced stress fields of a parallel cylindrically-symmetric distribution of screw dislocations in infinite orthotropic and monoclinic media as well as a cylindrically-symmetric distribution of parallel wedge disclinations in an infinite orthotropic medium. For a given distribution of edge dislocations, the material manifold is constructed using Cartan's moving frames and the stress field is obtained assuming that the medium is orthotropic. Also, we consider a spherically-symmetric distribution of point defects in a transversely isotropic spherical ball. We show that for an arbitrary incompressible transversely isotropic ball with the radial material preferred direction, a uniform point defect distribution results in a uniform hydrostatic stress field inside the spherical region the distribution is supported in. Finally, we find the stresses induced by a discombination in an orthotropic medium.Keywords: defects, disclinations, dislocations, monoclinic solids, nonlinear elasticity, orthotropic solids, transversely isotropic solids
Procedia PDF Downloads 2543683 Supplier Selection Using Sustainable Criteria in Sustainable Supply Chain Management
Authors: Richa Grover, Rahul Grover, V. Balaji Rao, Kavish Kejriwal
Abstract:
Selection of suppliers is a crucial problem in the supply chain management. On top of that, sustainable supplier selection is the biggest challenge for the organizations. Environment protection and social problems have been of concern to society in recent years, and the traditional supplier selection does not consider about this factor; therefore, this research work focuses on introducing sustainable criteria into the structure of supplier selection criteria. Sustainable Supply Chain Management (SSCM) is the management and administration of material, information, and money flows, as well as coordination among business along the supply chain. All three dimensions - economic, environmental, and social - of sustainable development needs to be taken care of. Purpose of this research is to maximize supply chain profitability, maximize social wellbeing of supply chain and minimize environmental impacts. Problem statement is selection of suppliers in a sustainable supply chain network by ranking the suppliers against sustainable criteria identified. The aim of this research is twofold: To find out what are the sustainable parameters that can be applied to the supply chain, and to determine how these parameters can effectively be used in supplier selection. Multicriteria decision making tools will be used to rank both criteria and suppliers. AHP Analysis will be used to find out ratings for the criteria identified. It is a technique used for efficient decision making. TOPSIS will be used to find out rating for suppliers and then ranking them. TOPSIS is a MCDM problem solving method which is based on the principle that the chosen option should have the maximum distance from the negative ideal solution (NIS) and the minimum distance from the ideal solution.Keywords: sustainable supply chain management, sustainable criteria, MCDM tools, AHP analysis, TOPSIS method
Procedia PDF Downloads 3253682 Morphological Parameters and Selection of Turkish Edible Seed Pumpkins (Cucurbita pepo L.) Germplasm
Authors: Onder Turkmen, Musa Seymen, Sali Fidan, Mustafa Paksoy
Abstract:
There is a requirement for registered edible seed pumpkin suitable for eating in Turkey. A total of 81 genotypes collected from the researchers in 2005 originated from Eskisehir, Konya, Nevsehir, Tekirdag, Sakarya, Kayseri and Kirsehir provinces were utilized. The used genetic materials were brought to S5 generation by the research groups among 2006 and 2010 years. In this research, S5 stage reached in the genotype given some of the morphological features, and selection of promising genotypes generated scale were made. Results showed that the A-1 (420), A-7 (410), A-8 (420), A-32 (420), B-17 (410), B-24 (410), B-25 (420), B-33 (400), C-24 (420), C-25 (410), C-26 (410) and C-30 (420) genotypes are expected to be promising varieties.Keywords: candidate cultivar, edible seed pumpkin, morphologic parameters, selection
Procedia PDF Downloads 3833681 Possibility Theory Based Multi-Attribute Decision-Making: Application in Facility Location-Selection Problem under Uncertain and Extreme Environment
Authors: Bezhan Ghvaberidze
Abstract:
A fuzzy multi-objective facility location-selection problem (FLSP) under uncertain and extreme environments based on possibility theory is developed. The model’s uncertain parameters in the q-rung orthopair fuzzy values are presented and transformed in the Dempster-Shaper’s belief structure environment. An objective function – distribution centers’ selection ranking index as an extension of Dempster’s extremal expectations under discrimination q-rung orthopair fuzzy information is constructed. Experts evaluate each humanitarian aid from distribution centers (HADC) against each of the uncertain factors. HADCs location problem is reduced to the bicriteria problem of partitioning the set of customers by the set of centers: (1) – Minimization of transportation costs; (2) – Maximization of centers’ selection ranking indexes. Partitioning type constraints are also constructed. For an illustration of the obtained results, a numerical example is created from the facility location-selection problem.Keywords: FLSP, multi-objective combinatorial optimization problem, evidence theory, HADC, q-rung orthopair fuzzy set, possibility theory
Procedia PDF Downloads 1193680 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering
Authors: Tianyang Xu
Abstract:
Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics
Procedia PDF Downloads 1323679 Joint Optimization of Carsharing Stations with Vehicle Relocation and Demand Selection
Authors: Jiayuan Wu. Lu Hu
Abstract:
With the development of the sharing economy and mobile technology, carsharing becomes more popular. In this paper, we focus on the joint optimization of one-way station-based carsharing systems. We model the problem as an integer linear program with six elements: station locations, station capacity, fleet size, initial vehicle allocation, vehicle relocation, and demand selection. A greedy-based heuristic is proposed to address the model. Firstly, initialization based on the location variables relaxation using Gurobi solver is conducted. Then, according to the profit margin and demand satisfaction of each station, the number of stations is downsized iteratively. This method is applied to real data from Chengdu, Sichuan taxi data, and it’s efficient when dealing with a large scale of candidate stations. The result shows that with vehicle relocation and demand selection, the profit and demand satisfaction of carsharing systems are increased.Keywords: one-way carsharing, location, vehicle relocation, demand selection, greedy algorithm
Procedia PDF Downloads 1373678 Problem of Services Selection in Ubiquitous Systems
Authors: Malika Yaici, Assia Arab, Betitra Yakouben, Samia Zermani
Abstract:
Ubiquitous computing is nowadays a reality through the networking of a growing number of computing devices. It allows providing users with context aware information and services in a heterogeneous environment, anywhere and anytime. Selection of the best context-aware service, between many available services and providers, is a tedious problem. In this paper, a service selection method based on Constraint Satisfaction Problem (CSP) formalism is proposed. The services are considered as variables and domains; and the user context, preferences and providers characteristics are considered as constraints. The Backtrack algorithm is used to solve the problem to find the best service and provider which matches the user requirements. Even though this algorithm has an exponential complexity, but its use guarantees that the service, that best matches the user requirements, will be found. A comparison of the proposed method with the existing solutions finishes the paper.Keywords: ubiquitous computing, services selection, constraint satisfaction problem, backtrack algorithm
Procedia PDF Downloads 2453677 An Analysis of Present Supplier Selection Criteria of State Pharmaceutical Corporation (SPC) Sri Lanka: A Case Study
Authors: Gamalath M. B. P. Abeysekara
Abstract:
Primary objective of any organization is to enhance the bottom line profit. Strategic procurement is one of the prominent aspects in view of receiving this ultimate objective. Strategic procurement is an activity used in each and every organization in their operations. Pharmaceutical procurement is an especially significant task for any organizations, particularly state sector concerned. The whole pharmaceutical procurement requirement of the country is procured through the State Pharmaceutical Corporation (SPC) of Sri Lanka. They follow Pharmaceutical Procurement Guideline of 2006 as the procurement principle. The main objective of this project is to identify the importance of State Pharmaceutical Corporation supplier selection criteria and critical analysis of pharmaceutical procurement procedure. State Pharmaceutical Corporations applied net price, product quality, past performance, and delivery of suppliers’ as main criteria for the selection suppliers. Data collection for this study was taken place through a questionnaire, given to fifty doctors within the Colombo district attached to five main state hospitals. Data analysis is carried out with mean and standard deviation functions. The ultimate outcomes indicated product quality, net price, and delivery of suppliers’ are the most important criteria behind the selection of suppliers. Critical analysis proved State Pharmaceutical Corporation should focus on net price reduction, improving laboratory testing facilities and effective communication between up and down stream of supply chain.Keywords: government procurement procedure, pharmaceutical procurement supplier selection criteria, importance of SPC supplier selection criteria
Procedia PDF Downloads 4513676 Identification and Selection of a Supply Chain Target Process for Re-Design
Authors: Jaime A. Palma-Mendoza
Abstract:
A supply chain consists of different processes and when conducting supply chain re-design is necessary to identify the relevant processes and select a target for re-design. A solution was developed which consists to identify first the relevant processes using the Supply Chain Operations Reference (SCOR) model, then to use Analytical Hierarchy Process (AHP) for target process selection. An application was conducted in an Airline MRO supply chain re-design project which shows this combination can clearly aid the identification of relevant supply chain processes and the selection of a target process for re-design.Keywords: decision support systems, multiple criteria analysis, supply chain management
Procedia PDF Downloads 4923675 Qualitative and Quantitative Analysis of Motivation Letters to Model Turnover in Non-Governmental Organization
Authors: A. Porshnev, A. Zaporozhtchuk
Abstract:
Motivation regarded as a key factor of labor turnover, is especially important for volunteers working on an altruistic basis in NGO. Despite the motivational letter, candidate selection depends on the impression of the selection committee, which can be subject to human bias. We expect that structured and unstructured information provided in motivation letters could be used to improve candidate selection procedures. In our paper, we perform qualitative and quantitative analysis of 2280 motivation letters, create logistic regression, and build a decision tree to improve selection procedures. Our analysis showed that motivation factors are significant and enable human resources department to forecast labor turnover and provide extra information to demographic, professional and timing questions. In spite of the average level of accuracy the model demonstrates the selection procedures of company of under consideration can be improved. We also discuss interrelation between answers to open and closed motivation questions, recommend changes in motivational letter templates to ensure more relevant information about applicants and further steps to create more accurate model.Keywords: decision trees, logistic regression, model, motivational letter, non-governmental organization, retention, turnover
Procedia PDF Downloads 1773674 Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data
Authors: Salam Khalifa, Naveed Ahmed
Abstract:
We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive frames independent of their resolution. Our new motion vectors based dynamic alignment method then fully reconstruct a spatio-temporally coherent 3D animation. We perform extensive quantitative validation using novel error functions to analyze the results. We show that despite the limiting factors of temporal and spatial noise associated to RGB-D data, it is possible to extract temporal coherence to faithfully reconstruct a temporally coherent 3D animation from RGB-D video data.Keywords: 3D video, 3D animation, RGB-D video, temporally coherent 3D animation
Procedia PDF Downloads 3733673 Site Selection and Construction Mechanism of the Island Settlements in China Based on CFD-GIS Technology
Authors: Weng Jiantao, Wu Yiqun
Abstract:
The efficiency of natural ventilation, wind pressure distribution on building surface, wind comfort for pedestrians and buildings’ wind tolerance in traditional settlements are closely related to the pattern of terrain. On the basis of field research on the typical island terrain in China, the physical and mathematical models are established by using CFD software, and then the simulation results of the wind field are exported. We discuss the relationship between wind direction and wind field results. Furthermore simulation results are imported into ArcGIS platform. The evaluation model of island site selection is established with considering slope factor. We realize the visual model of site selection on complex island terrain. The multi-plans of certain residential are discussed based on wind simulation; at last the optimal project is selected. Results can provide the theory guidance for settlement planning and construction in China's traditional island.Keywords: CFD, island terrain, site selection, construction mechanism
Procedia PDF Downloads 5093672 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping
Procedia PDF Downloads 4083671 Roullete Wheel Selection Mechanism for Solving Travelling Salesman Problem in Ant Colony Optimization
Authors: Sourabh Joshi, Geetinder Kaur, Sarabjit Kaur, Gulwatanpreet Singh, Geetika Mannan
Abstract:
In this paper, we have use an algorithm that able to obtain an optimal solution to travelling salesman problem from a huge search space, quickly. This algorithm is based upon the ant colony optimization technique and employees roulette wheel selection mechanism. To illustrate it more clearly, a program has been implemented which is based upon this algorithm, that presents the changing process of route iteration in a more intuitive way. In the event, we had find the optimal path between hundred cities and also calculate the distance between two cities.Keywords: ant colony, optimization, travelling salesman problem, roulette wheel selection
Procedia PDF Downloads 4413670 Human Action Retrieval System Using Features Weight Updating Based Relevance Feedback Approach
Authors: Munaf Rashid
Abstract:
For content-based human action retrieval systems, search accuracy is often inferior because of the following two reasons 1) global information pertaining to videos is totally ignored, only low level motion descriptors are considered as a significant feature to match the similarity between query and database videos, and 2) the semantic gap between the high level user concept and low level visual features. Hence, in this paper, we propose a method that will address these two issues and in doing so, this paper contributes in two ways. Firstly, we introduce a method that uses both global and local information in one framework for an action retrieval task. Secondly, to minimize the semantic gap, a user concept is involved by incorporating features weight updating (FWU) Relevance Feedback (RF) approach. We use statistical characteristics to dynamically update weights of the feature descriptors so that after every RF iteration feature space is modified accordingly. For testing and validation purpose two human action recognition datasets have been utilized, namely Weizmann and UCF. Results show that even with a number of visual challenges the proposed approach performs well.Keywords: relevance feedback (RF), action retrieval, semantic gap, feature descriptor, codebook
Procedia PDF Downloads 4733669 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret
Procedia PDF Downloads 6673668 A Case Study on Evaluating and Selecting Soil /Pipeline Interaction Analysis Software for the Oil and Gas Industry
Authors: Abdinasir Mohamed, Ashraf El-Hamalawi, Steven Yeomans, Matthew Frost, Andy Connell
Abstract:
The evaluation and selection of appropriate software solutions to meet with an organisation’s inherent business requirements can be a problematic software engineering process that if done incorrectly can have a significant, costly and adverse effect on the business and its processes. The aim of this paper is to show the process and evaluation criteria followed to select the right engineering solution for the identified business requirement. The research adopted an action research method within an organisation in the oil and gas industry, which required a solution suitable for conducting stress analysis for soil-pipeline interaction analysis (SPIA). Through the use of the presented software selection and evaluation approach, to capture and measure key requirements, it was possible to determine a suitable software for the organisation. This paper investigates methodologies for selecting software packages, software evaluation techniques, and software evaluation criteria in evaluating software packages before providing an explanation of the developed methodology adopted. The key findings of the study are: (1) that there is a need to create a framework for software selection methodologies, (2) there are no universal selection criteria in the engineering industry, and (3) there is a need to validate the findings by creating an application based on the evaluation technique and evaluation criteria for selecting software packages for the engineering industry. The findings of the study are offered to support organisations in the oil and gas sector improve software selection methodologies for SPIA.Keywords: software evaluation, end user programs, soil pipeline analysis, software selection
Procedia PDF Downloads 1923667 A New Sign Subband Adaptive Filter Based on Dynamic Selection of Subbands
Authors: Mohammad Shams Esfand Abadi, Mehrdad Zalaghi, Reza ebrahimpour
Abstract:
In this paper, we propose a sign adaptive filter algorithm with the ability of dynamic selection of subband filters which leads to low computational complexity compared with conventional sign subband adaptive filter (SSAF) algorithm. Dynamic selection criterion is based on largest reduction of the mean square deviation at each adaption. We demonstrate that this simple proposed algorithm has the same performance of the conventional SSAF and somewhat faster than it. In the presence of impulsive interferences robustness of the simple proposed algorithm as well as the conventional SSAF and outperform the conventional normalized subband adaptive filter (NSAF) algorithm. Therefore, it is preferred for environments under impulsive interferences. Simulation results are presented to verify these above considerations very well have been achieved.Keywords: acoustic echo cancellation (AEC), normalized subband adaptive filter (NSAF), dynamic selection subband adaptive filter (DS-NSAF), sign subband adaptive filter (SSAF), impulsive noise, robust filtering
Procedia PDF Downloads 5993666 Infinite Impulse Response Digital Filters Design
Authors: Phuoc Si Nguyen
Abstract:
Infinite impulse response (IIR) filters can be designed from an analogue low pass prototype by using frequency transformation in the s-domain and bilinear z-transformation with pre-warping frequency; this method is known as frequency transformation from the s-domain to the z-domain. This paper will introduce a new method to transform an IIR digital filter to another type of IIR digital filter (low pass, high pass, band pass, band stop or narrow band) using a technique based on inverse bilinear z-transformation and inverse matrices. First, a matrix equation is derived from inverse bilinear z-transformation and Pascal’s triangle. This Low Pass Digital to Digital Filter Pascal Matrix Equation is used to transform a low pass digital filter to other digital filter types. From this equation and the inverse matrix, a Digital to Digital Filter Pascal Matrix Equation can be derived that is able to transform any IIR digital filter. This paper will also introduce some specific matrices to replace the inverse matrix, which is difficult to determine due to the larger size of the matrix in the current method. This will make computing and hand calculation easier when transforming from one IIR digital filter to another in the digital domain.Keywords: bilinear z-transformation, frequency transformation, inverse bilinear z-transformation, IIR digital filters
Procedia PDF Downloads 4233665 The Key Factors in Shipping Company's Port Selection for Providing Their Supplies
Authors: Sedigheh Zarei
Abstract:
The aim of this research is to identify the key factors in shipping company’s port selection in order to providing their requirement. To identify and rank factors that are play the main role in selecting port for providing the ship supplies. At the first step, Data were collected via Semi-structured interviews, The aim was to generate knowledge on how shipping company select the port and suppliers for providing their needs. 37 port selection factors were chosen from the previous researches and field interviews and have been categorized into two groups of port's factor and the factors of services of suppliers companies. The current study adopts a questionnaire survey to the main shipping companies' operators in Iran. Their responses reveal that level of services of supplying companies and customs rules play the important role in selecting the ports. Our findings could affect decisions made by port authorities to consider that supporting the privet sections for ship chandelling business could have the best result in attracting ships.Keywords: ship supplier, port selection, ship chandler, provision
Procedia PDF Downloads 4573664 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset
Procedia PDF Downloads 3533663 Sparsity Order Selection and Denoising in Compressed Sensing Framework
Authors: Mahdi Shamsi, Tohid Yousefi Rezaii, Siavash Eftekharifar
Abstract:
Compressed sensing (CS) is a new powerful mathematical theory concentrating on sparse signals which is widely used in signal processing. The main idea is to sense sparse signals by far fewer measurements than the Nyquist sampling rate, but the reconstruction process becomes nonlinear and more complicated. Common dilemma in sparse signal recovery in CS is the lack of knowledge about sparsity order of the signal, which can be viewed as model order selection procedure. In this paper, we address the problem of sparsity order estimation in sparse signal recovery. This is of main interest in situations where the signal sparsity is unknown or the signal to be recovered is approximately sparse. It is shown that the proposed method also leads to some kind of signal denoising, where the observations are contaminated with noise. Finally, the performance of the proposed approach is evaluated in different scenarios and compared to an existing method, which shows the effectiveness of the proposed method in terms of order selection as well as denoising.Keywords: compressed sensing, data denoising, model order selection, sparse representation
Procedia PDF Downloads 483