Search results for: hyper singular integral equation
2829 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models
Authors: P. Srinivas, P. V. N. Prasad
Abstract:
Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands. The DTC of SRM is analysed by two methods. In one of the methods, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.Keywords: direct toque control, simplified torque equation, finite element analysis, torque ripple
Procedia PDF Downloads 4762828 On Crack Tip Stress Field in Pseudo-Elastic Shape Memory Alloys
Authors: Gulcan Ozerim, Gunay Anlas
Abstract:
In shape memory alloys, upon loading, stress increases around crack tip and a martensitic phase transformation occurs in early stages. In many studies the stress distribution in the vicinity of the crack tip is represented by using linear elastic fracture mechanics (LEFM) although the pseudo-elastic behavior results in a nonlinear stress-strain relation. In this study, the HRR singularity (Hutchinson, Rice and Rosengren), that uses Rice’s path independent J-integral, is tried to formulate the stress distribution around the crack tip. In HRR approach, the Ramberg-Osgood model for the stress-strain relation of power-law hardening materials is used to represent the elastic-plastic behavior. Although it is recoverable, the inelastic portion of the deformation in martensitic transformation (up to the end of transformation) resembles to that of plastic deformation. To determine the constants of the Ramberg-Osgood equation, the material’s response is simulated in ABAQUS using a UMAT based on ZM (Zaki-Moumni) thermo-mechanically coupled model, and the stress-strain curve of the material is plotted. An edge cracked shape memory alloy (Nitinol) plate is loaded quasi-statically under mode I and modeled using ABAQUS; the opening stress values ahead of the cracked tip are calculated. The stresses are also evaluated using the asymptotic equations of both LEFM and HRR. The results show that in the transformation zone around the crack tip, the stress values are much better represented when the HRR singularity is used although the J-integral does not show path independent behavior. For the nodes very close to the crack tip, the HRR singularity is not valid due to the non-proportional loading effect and high-stress values that go beyond the transformation finish stress.Keywords: crack, HRR singularity, shape memory alloys, stress distribution
Procedia PDF Downloads 3242827 Finite Element Method for Solving the Generalized RLW Equation
Authors: Abdel-Maksoud Abdel-Kader Soliman
Abstract:
The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.Keywords: generalized RLW equation, solitons, quartic b-spline, nonlinear partial differential equations, difference equations
Procedia PDF Downloads 4882826 Spatial Direct Numerical Simulation of Instability Waves in Hypersonic Boundary Layers
Authors: Jayahar Sivasubramanian
Abstract:
Understanding laminar-turbulent transition process in hyper-sonic boundary layers is crucial for designing viable high speed flight vehicles. The study of transition becomes particularly important in the high speed regime due to the effect of transition on aerodynamic performance and heat transfer. However, even after many years of research, the transition process in hyper-sonic boundary layers is still not understood. This lack of understanding of the physics of the transition process is a major impediment to the development of reliable transition prediction methods. Towards this end, spatial Direct Numerical Simulations are conducted to investigate the instability waves generated by a localized disturbance in a hyper-sonic flat plate boundary layer. In order to model a natural transition scenario, the boundary layer was forced by a short duration (localized) pulse through a hole on the surface of the flat plate. The pulse disturbance developed into a three-dimensional instability wave packet which consisted of a wide range of disturbance frequencies and wave numbers. First, the linear development of the wave packet was studied by forcing the flow with low amplitude (0.001% of the free-stream velocity). The dominant waves within the resulting wave packet were identified as two-dimensional second mode disturbance waves. Hence the wall-pressure disturbance spectrum exhibited a maximum at the span wise mode number k = 0. The spectrum broadened in downstream direction and the lower frequency first mode oblique waves were also identified in the spectrum. However, the peak amplitude remained at k = 0 which shifted to lower frequencies in the downstream direction. In order to investigate the nonlinear transition regime, the flow was forced with a higher amplitude disturbance (5% of the free-stream velocity). The developing wave packet grows linearly at first before reaching the nonlinear regime. The wall pressure disturbance spectrum confirmed that the wave packet developed linearly at first. The response of the flow to the high amplitude pulse disturbance indicated the presence of a fundamental resonance mechanism. Lower amplitude secondary peaks were also identified in the disturbance wave spectrum at approximately half the frequency of the high amplitude frequency band, which would be an indication of a sub-harmonic resonance mechanism. The disturbance spectrum indicates, however, that fundamental resonance is much stronger than sub-harmonic resonance.Keywords: boundary layer, DNS, hyper sonic flow, instability waves, wave packet
Procedia PDF Downloads 1822825 A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory
Authors: Damir Latypov
Abstract:
A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance.Keywords: quantum linear system algorithm, boundary integral equations, dense matrices, electromagnetic scattering theory
Procedia PDF Downloads 1522824 Migration as a Climate Change Adaptation Strategy: A Conceptual Equation for Analysis
Authors: Elisha Kyirem
Abstract:
Undoubtedly, climate change is a major global challenge that could threaten the very foundation upon which life on earth is anchored, with its impacts on human mobility attracting the attention of policy makers and researchers. There is an increasing body of literature and case studies suggesting that migration could be a way through which the vulnerable move away from areas exposed to climate extreme events to improve their lives and that of their families. This presents migration as a way through which people voluntarily move to seek opportunities that could help reduce their exposure and avoid danger from climate events. Thus, migration is seen as a proactive adaptation strategy aimed at building resilience and improving livelihoods to enable people to adapt to future changing events. However, there has not been any mathematical equation linking migration and climate change adaptation. Drawing from literature in development studies, this paper develops an equation that seeks to link the relationship between migration and climate change adaptation. The mathematical equation establishes the linkages between migration, resilience, poverty reduction and vulnerability, and these the paper maintains, are the key variables for conceptualizing the migration-climate change adaptation nexus. The paper then tests the validity of the equation using the sustainable livelihood framework and publicly available data on migration and tourism in Ghana.Keywords: migration, adaptation, climate change, adaptation, poverty reduction
Procedia PDF Downloads 3942823 Large Time Asymptotic Behavior to Solutions of a Forced Burgers Equation
Authors: Satyanarayana Engu, Ahmed Mohd, V. Murugan
Abstract:
We study the large time asymptotics of solutions to the Cauchy problem for a forced Burgers equation (FBE) with the initial data, which is continuous and summable on R. For which, we first derive explicit solutions of FBE assuming a different class of initial data in terms of Hermite polynomials. Later, by violating this assumption we prove the existence of a solution to the considered Cauchy problem. Finally, we give an asymptotic approximate solution and establish that the error will be of order O(t^(-1/2)) with respect to L^p -norm, where 1≤p≤∞, for large time.Keywords: Burgers equation, Cole-Hopf transformation, Hermite polynomials, large time asymptotics
Procedia PDF Downloads 3322822 Modeling of Nitrogen Solubility in Stainless Steel
Authors: Saeed Ghali, Hoda El-Faramawy, Mamdouh Eissa, Michael Mishreky
Abstract:
Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacement of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600oC. [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range.Keywords: solubility, nitrogen, stainless steel, Schaeffler
Procedia PDF Downloads 2372821 Controller Design for Highly Maneuverable Aircraft Technology Using Structured Singular Value and Direct Search Method
Authors: Marek Dlapa
Abstract:
The algebraic approach is applied to the control of the HiMAT (Highly Maneuverable Aircraft Technology). The objective is to find a robust controller which guarantees robust stability and decoupled control of longitudinal model of a scaled remotely controlled vehicle version of the advanced fighter HiMAT. Control design is performed by decoupling the nominal MIMO (multi-input multi-output) system into two identical SISO (single-input single-output) plants which are approximated by a 4th order transfer function. The algebraic approach is then used for pole placement design, and the nominal closed-loop poles are tuned so that the peak of the µ-function is minimal. As an optimization tool, evolutionary algorithm Differential Migration is used in order to overcome the multimodality of the cost function yielding simple controller with decoupling for nominal plant which is compared with the D-K iteration through simulations of standard longitudinal manoeuvres documenting decoupled control obtained from algebraic approach for nominal plant as well as worst case perturbation.Keywords: algebraic approach, evolutionary computation, genetic algorithms, HiMAT, robust control, structured singular value
Procedia PDF Downloads 1382820 Non Linear Stability of Non Newtonian Thin Liquid Film Flowing down an Incline
Authors: Lamia Bourdache, Amar Djema
Abstract:
The effect of non-Newtonian property (power law index n) on traveling waves of thin layer of power law fluid flowing over an inclined plane is investigated. For this, a simplified second-order two-equation model (SM) is used. The complete model is second-order four-equation (CM). It is derived by combining the weighted residual integral method and the lubrication theory. This is due to the fact that at the beginning of the instability waves, a very small number of waves is observed. Using a suitable set of test functions, second order terms are eliminated from the calculus so that the model is still accurate to the second order approximation. Linear, spatial, and temporal stabilities are studied. For travelling waves, a particular type of wave form that is steady in a moving frame, i.e., that travels at a constant celerity without changing its shape is studied. This type of solutions which are characterized by their celerity exists under suitable conditions, when the widening due to dispersion is balanced exactly by the narrowing effect due to the nonlinearity. Changing the parameter of celerity in some range allows exploring the entire spectrum of asymptotic behavior of these traveling waves. The (SM) model is converted into a three dimensional dynamical system. The result is that the model exhibits bifurcation scenarios such as heteroclinic, homoclinic, Hopf, and period-doubling bifurcations for different values of the power law index n. The influence of the non-Newtonian parameter on the nonlinear development of these travelling waves is discussed. It is found at the end that the qualitative characters of bifurcation scenarios are insensitive to the variation of the power law index.Keywords: inclined plane, nonlinear stability, non-Newtonian, thin film
Procedia PDF Downloads 2832819 Superconvergence of the Iterated Discrete Legendre Galerkin Method for Fredholm-Hammerstein Equations
Authors: Payel Das, Gnaneshwar Nelakanti
Abstract:
In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equations with smooth kernel. Using sufficiently accurate numerical quadrature rule, we obtain superconvergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and $L^2$-norm. Numerical examples are given to illustrate the theoretical results.Keywords: hammerstein integral equations, spectral method, discrete galerkin, numerical quadrature, superconvergence
Procedia PDF Downloads 4672818 Minimum Ratio of Flexural Reinforcement for High Strength Concrete Beams
Authors: Azad A. Mohammed, Dunyazad K. Assi, Alan S. Abdulrahman
Abstract:
Current ACI 318 Code provides two limits for minimum steel ratio for concrete beams. When concrete compressive strength be larger than 31 MPa the limit of √(fc')/4fy usually governs. In this paper shortcomings related to using this limit was fairly discussed and showed that the limit is based on 90% safety factor and was derived based on modulus of rupture equation suitable for concretes of compressive strength lower than 31 MPa. Accordingly, the limit is nor suitable and critical for concretes of higher compressive strength. An alternative equation was proposed for minimum steel ratio of rectangular beams and was found that the proposed limit is accurate for beams of wide range of concrete compressive strength. Shortcomings of the current ACI 318 Code equation and accuracy of the proposed equation were supported by test data obtained from testing six reinforced concrete beams.Keywords: concrete beam, compressive strength, minimum steel ratio, modulus of rupture
Procedia PDF Downloads 5472817 Numerical Computation of Generalized Rosenau Regularized Long-Wave Equation via B-Spline Over Butcher’s Fifth Order Runge-Kutta Approach
Authors: Guesh Simretab Gebremedhin, Saumya Rajan Jena
Abstract:
In this work, a septic B-spline scheme has been used to simplify the process of solving an approximate solution of the generalized Rosenau-regularized long-wave equation (GR-RLWE) with initial boundary conditions. The resulting system of first-order ODEs has dealt with Butcher’s fifth order Runge-Kutta (BFRK) approach without using finite difference techniques for discretizing the time-dependent variables at each time level. Here, no transformation or any kind of linearization technique is employed to tackle the nonlinearity of the equation. Two test problems have been selected for numerical justifications and comparisons with other researchers on the basis of efficiency, accuracy, and results of the two invariants Mᵢ (mass) and Eᵢ (energy) of some motion that has been used to test the conservative properties of the proposed scheme.Keywords: septic B-spline scheme, Butcher's fifth order Runge-Kutta approach, error norms, generalized Rosenau-RLW equation
Procedia PDF Downloads 602816 Multiple-Lump-Type Solutions of the 2D Toda Equation
Authors: Jian-Ping Yu, Wen-Xiu Ma, Yong-Li Sun, Chaudry Masood Khalique
Abstract:
In this paper, a 2d Toda equation is studied, which is a classical integrable system and plays a vital role in mathematics, physics and other areas. New lump-type solution is constructed by using the Hirota bilinear method. One interesting feature of this research is that this lump-type solutions possesses two types of multiple-lump-type waves, which are one- and two-lump-type waves. Moreover, the corresponding 3d plots, density plots and contour plots are given to show the dynamical features of the obtained multiple-lump-type solutions.Keywords: 2d Toda equation, Hirota bilinear method, Lump-type solution, multiple-lump-type solution
Procedia PDF Downloads 2202815 Modeling and Controlling the Rotational Degree of a Quadcopter Using Proportional Integral and Derivative Controller
Authors: Sanjay Kumar, Lillie Dewan
Abstract:
The study of complex dynamic systems has advanced through various scientific approaches with the help of computer modeling. The common design trends in aerospace system design can be applied to quadcopter design. A quadcopter is a nonlinear, under-actuated system with complex aerodynamics parameters and creates challenges that demand new, robust, and effective control approaches. The flight control stability can be improved by planning and tracking the trajectory and reducing the effect of sensors and the operational environment. This paper presents a modern design Simmechanics visual modeling approach for a mechanical model of a quadcopter with three degrees of freedom. The Simmechanics model, considering inertia, mass, and geometric properties of a dynamic system, produces multiple translation and rotation maneuvers. The proportional, integral, and derivative (PID) controller is integrated with the Simmechanics model to follow a predefined quadcopter rotational trajectory for a fixed time interval. The results presented are satisfying. The simulation of the quadcopter control performed operations successfully.Keywords: nonlinear system, quadcopter model, simscape modelling, proportional-integral-derivative controller
Procedia PDF Downloads 1932814 The Prediction of Effective Equation on Drivers' Behavioral Characteristics of Lane Changing
Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi
Abstract:
According to the increasing volume of traffic, lane changing plays a crucial role in traffic flow. Lane changing in traffic depends on several factors including road geometrical design, speed, drivers’ behavioral characteristics, etc. A great deal of research has been carried out regarding these fields. Despite of the other significant factors, the drivers’ behavioral characteristics of lane changing has been emphasized in this paper. This paper has predicted the effective equation based on personal characteristics of lane changing by regression models.Keywords: effective equation, lane changing, drivers’ behavioral characteristics, regression models
Procedia PDF Downloads 4482813 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data
Authors: Flavia Smarrazzo
Abstract:
Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures
Procedia PDF Downloads 2812812 Seismic Performance of Micropiles in Sand with Predrilled Oversized Holes
Authors: Cui Fu, Yi-Zhou Zhuang, Sheng-Zhi Wang
Abstract:
Full scale tests of six micropiles with different predrilled-hole parameters under low frequency cyclic lateral loading in-sand were carried out using the MTS hydraulic loading system to analyze the seismic performance of micropiles. Hysteresis curves, skeleton curves, energy dissipation capacity and ductility of micropiles were investigated. The experimental results show the hysteresis curves appear like plump bows in the elastic–plastic stage and failure stage which exhibit good hysteretic characteristics without pinching phenomena and good energy dissipating capacities. The ductility coefficient varies from 2.51 to 3.54 and the depth and loose backfill of oversized holes can improve ductility, but the diameter of predrilled-hole has a limited effect on enhancing its ductility. These findings and conclusions could make contribution to the practical application of the semi-integral abutment bridges and provide a reference for the predrilled oversized hole technology in integral abutment bridges.Keywords: ductility, energy dissipation capacity, micropile with predrilled oversized hole, seismic performance, semi-integral abutment bridge
Procedia PDF Downloads 4312811 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease
Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.Keywords: Parkinson's disease, step method, delay differential equation, two delays
Procedia PDF Downloads 2022810 Free Vibration of Functionally Graded Smart Beams Based on the First Order Shear Deformation Theory
Authors: A. R. Nezamabadi, M. Veiskarami
Abstract:
This paper studies free vibration of simply supported functionally graded beams with piezoelectric layers based on the first order shear deformation theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. The governing equation is established. Resulting equation is solved using the Euler's equation. The effects of the constituent volume fractions, the influences of applied voltage on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.Keywords: mechanical buckling, functionally graded beam, first order shear deformation theory, free vibration
Procedia PDF Downloads 4752809 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 4462808 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations
Authors: Shank Kulkarni, Alireza Tabarraei
Abstract:
The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test
Procedia PDF Downloads 2412807 Exact Solutions of Discrete Sine-Gordon Equation
Authors: Chao-Qing Dai
Abstract:
Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering.Keywords: exact solutions, variable-coefficient Jacobian elliptic function method, discrete sine-Gordon equation, dynamical behaviors
Procedia PDF Downloads 4192806 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals
Authors: Masoud Ghermezi
Abstract:
Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory
Procedia PDF Downloads 3642805 Fast and Accurate Finite-Difference Method Solving Multicomponent Smoluchowski Coagulation Equation
Authors: Alexander P. Smirnov, Sergey A. Matveev, Dmitry A. Zheltkov, Eugene E. Tyrtyshnikov
Abstract:
We propose a new computational technique for multidimensional (multicomponent) Smoluchowski coagulation equation. Using low-rank approximations in Tensor Train format of both the solution and the coagulation kernel, we accelerate the classical finite-difference Runge-Kutta scheme keeping its level of accuracy. The complexity of the taken finite-difference scheme is reduced from O(N^2d) to O(d^2 N log N ), where N is the number of grid nodes and d is a dimensionality of the problem. The efficiency and the accuracy of the new method are demonstrated on concrete problem with known analytical solution.Keywords: tensor train decomposition, multicomponent Smoluchowski equation, runge-kutta scheme, convolution
Procedia PDF Downloads 4282804 Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation
Authors: A. Guezane-Lakoud, S. Bensebaa
Abstract:
In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained.Keywords: positive solution, fractional caputo derivative, Banach contraction principle, Avery and Peterson fixed point theorem
Procedia PDF Downloads 4122803 Innovation Management: A Comparative Analysis among Organizations from United Arab Emirates, Saudi Arabia, Brazil and China
Authors: Asmaa Abazaid, Maram Al-Ostah, Nadeen Abu-Zahra, Ruba Bawab, Refaat Abdel-Razek
Abstract:
Innovation audit is defined as a tool that can be used to reflect on how the innovation is managed in an organization. The aim of this study is to audit innovation in the second top Engineering Firms in the world, and one of the Small Medium Enterprises (SMEs) companies that are working in United Arab Emirates (UAE). The obtained results are then compared with four international companies from China and Brazil. The Diamond model has been used for auditing innovation in the two companies in UAE to evaluate their innovation management and to identify each company’s strengths and weaknesses from an innovation perspective. The results of the comparison between the two companies (Jacobs and Hyper General Contracting) revealed that Jacobs has support for innovation, its innovation processes are well managed, the company is committed to the development of its employees worldwide and the innovation system is flexible. Jacobs was doing best in all innovation management dimensions: strategy, process, organization, linkages and learning, while Hyper General Contracting did not score as Jacobs in any of the innovation dimensions. Furthermore, the audit results of both companies were compared with international companies to examine how well the two construction companies in UAE manage innovation relative to SABIC (Saudi company), Poly Easy and Arnious (Brazilian companies), Huagong tools and Guizohou Yibai (Chinese companies). The results revealed that Jacobs is doing best in learning and organization dimensions, while PolyEasy and Jacobs are equal in the linkage dimension. Huagong Tools scored the highest score in process dimension among all the compared companies. However, the highest score of strategy dimension was given to PolyEasy. On the other hand, Hyper General Contracting scored the lowest in all of the innovation management dimensions. It needs to improve its management of all the innovation management dimensions with special attention to be given to strategy, process, and linkage as they got scores below 4 out of 7 comparing with other dimensions. Jacobs scored the highest in three innovation management dimensions related to the six companies. However, the strategy dimension is considered low, and special attention is needed in this dimension.Keywords: Brazil, China, innovation audit, innovation evaluation, innovation management, Saudi Arabia, United Arab Emirates
Procedia PDF Downloads 2842802 Numerical Solution of Space Fractional Order Solute Transport System
Authors: Shubham Jaiswal
Abstract:
In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system.Keywords: spatial fractional order advection-dispersion equation, second-kind shifted Chebyshev polynomial, collocation method, conservative system, non-conservative system
Procedia PDF Downloads 2592801 A Corpus-Based Diachronic Study on Indefinite Pronominal Anaphora in English
Authors: Qiong Hu
Abstract:
From old English to modern English, the gender category has changed from grammatical gender system to natural gender system. The word classes that reflected gender has changed from pronouns, adjectives, and numerals in old English to only pronouns in modern English. In present-day English, the third person singular pronouns are the only paradigm that keeps an intact gender. 'He' and 'they' used as epicene pronouns are one of the two commonest phenomena of gender disagreement (the other being those against the natural gender). Considering the convenience of corpus concordance, epicene pronoun usage is selected in this study in which the anaphors are restricted to possessives (eg. his, their), and the antecedents are restricted to compound indefinite pronouns (eg. someone, somebody). Factors like writing form (eg. someone vs. some one), the semantics of the prefixes (eg. some- vs. any-), and suffixes (eg. -one vs. -body), as well as frequency, are taken into consideration. Statistics indicate that 'their' is increasingly used as the epicene pronoun compared with the decline of 'his' (when both writing forms are considered). This is influenced by social factors such as feminist movement, as well as the semantics and frequency of antecedents. Their (plural) used in anaphoric reference to various indefinite pronouns (singular in form) can also be treated as number variation in third person pronouns, and the trend that 'their' in place of his can also be treated as a change in number category. Among different candidates for the gender-neutral function, 'their' is proven to be the most promising one based on the diachronic data. This does not reject any new competitors in the future which still remains to be seen.Keywords: language variation and change, epicene pronouns, gender, number
Procedia PDF Downloads 1852800 The Solution of Nonlinear Partial Differential Equation for The Phenomenon of Instability in Homogeneous Porous Media by Homotopy Analysis Method
Authors: Kajal K. Patel, M. N. Mehta, T. R. Singh
Abstract:
When water is injected in oil formatted area in secondary oil recovery process the instability occurs near common interface due to viscosity difference of injected water and native oil. The governing equation gives rise to the non-linear partial differential equation and its solution has been obtained by Homotopy analysis method with appropriate guess value of the solution together with some conditions and standard relations. The solution gives the average cross-sectional area occupied by the schematic fingers during the occurs of instability phenomenon. The numerical and graphical presentation has developed by using Maple software.Keywords: capillary pressure, homotopy analysis method, instability phenomenon, viscosity
Procedia PDF Downloads 494