Search results for: hate speech detection
3975 Grammatical Interference in Russian-Spanish Bilingualism
Authors: Olga A. Gnatyuk
Abstract:
The article is devoted to the phenomenon of interference that occurs in the case of the Russian-Spanish language contact. The questions of the definition of the term and levels, as well as prerequisites of interference occurrence, are considered. Interference, which is an essential part of bilingualism, may become apparent at different linguistic levels. Interference is especially evident in oral speech. The article reviews some examples of grammatical interference in Russian-Spanish bilingualism of Russian immigrants living in Spain. According to the results of the research, some cases of mother-tongue interference in Russian-Speaking Spanish language learners’ speech were revealed. Special attention is paid to such key spheres of grammatical interference as articles, personal pronouns, gender, and number of nouns. In the research, the drop of a link-verb, as well as its usage in some incorrect form, are observed in Russian immigrants’ speech. Conclusions are drawn that in the Spanish language, interference errors appear because of a consequence of both the absence in the Russian language of certain phenomena and categories of the Spanish language and the discrepancy of the linguistic systems of the two languages.Keywords: bilingualism, interference, grammatical interference, Russian language, Spanish language
Procedia PDF Downloads 1603974 Role of Speech Language Pathologists in Vocational Rehabilitation
Authors: Marlyn Mathew
Abstract:
Communication is the key factor in any vocational /job set-up. However many persons with disabilities suffer a deficit in this very area in terms of comprehension, expression and cognitive skills making it difficult for them to get employed appropriately or stay employed. Vocational Rehabilitation is a continuous and coordinated process which involves the provision of vocational related services designed to enable a person with disability to obtain and maintain employment. Therefore the role of the speech language pathologist is crucial in assessing the communication deficits and needs of the individual at the various phases of employment- right from the time of seeking a job and attending interview with suitable employers and also at regular intervals of the employment. This article discusses the various communication deficits and the obstacles faced by individuals with special needs including but not limited to cognitive- linguistic deficits, execution function deficits, speech and language processing difficulties and strategies that can be introduced in the workplace to overcome these obstacles including use of visual cues, checklists, flow charts. The paper also throws light on the importance of educating colleagues and work partners about the communication difficulties faced by the individual. This would help to reduce the communication barriers in the workplace, help colleagues develop an empathetic approach and also reduce misunderstandings that can arise as a result of the communication impairment.Keywords: vocational rehabilitation, disability, speech language pathologist, cognitive, linguistics
Procedia PDF Downloads 1353973 An Architectural Model for APT Detection
Authors: Nam-Uk Kim, Sung-Hwan Kim, Tai-Myoung Chung
Abstract:
Typical security management systems are not suitable for detecting APT attack, because they cannot draw the big picture from trivial events of security solutions. Although SIEM solutions have security analysis engine for that, their security analysis mechanisms need to be verified in academic field. Although this paper proposes merely an architectural model for APT detection, we will keep studying on correlation analysis mechanism in the future.Keywords: advanced persistent threat, anomaly detection, data mining
Procedia PDF Downloads 5283972 Lane Detection Using Labeling Based RANSAC Algorithm
Authors: Yeongyu Choi, Ju H. Park, Ho-Youl Jung
Abstract:
In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.Keywords: Canny edge detection, k-means algorithm, RANSAC, inverse perspective mapping
Procedia PDF Downloads 2433971 The Analysis of One Million Reddit Confessions Corpus: The Use of Emotive Verbs and First Person Singular Pronoun as Linguistic Psychotherapy Features
Authors: Natalia Wojarnik
Abstract:
The paper aims to present the analysis of a Reddit confessions corpus. The interpretation focuses on the use of emotional language, in particular emotive verbs, in the context of personal pronouns. The analysis of the linguistic properties answers the question of what the Reddit users confess about and who is the subject of confessions. The study reveals that the specific language patterns used in Reddit confessions reflect the language of depression and the language used by patients during different stages of their psychotherapy sessions. The paper concludes that Reddit users are more willing to confess about their own experiences, not rarely very private and intimate, extensively using the first person singular pronoun I. It indicates that the Reddit users use the language of depression and the language used by psychotherapy patients. The language they use is very emotionally impacted and includes many emotive verbs such as want, feel, need, hate, love. This finding in Reddit confessions correlates with the extensive use of stative affective verbs in the first stages of the psychotherapy sessions. Lastly, the paper refers to the positive and negative lexicon and helps determine how online posts can serve as a depression detector and “talking cure” for the users.Keywords: confessions, emotional language, emotive verbs, pronouns, first person pronoun, language of depression, depression detection, psychotherapy language
Procedia PDF Downloads 1193970 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images
Authors: Gherbi Nabil
Abstract:
Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM
Procedia PDF Downloads 183969 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement
Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu
Abstract:
The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain
Procedia PDF Downloads 1223968 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 1233967 Stereo Camera Based Speed-Hump Detection Process for Real Time Driving Assistance System in the Daytime
Authors: Hyun-Koo Kim, Yong-Hun Kim, Soo-Young Suk, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective speed hump detection process at the day-time. we focus only on round types of speed humps in the day-time dynamic road environment. The proposed speed hump detection scheme consists mainly of two process as stereo matching and speed hump detection process. Our proposed process focuses to speed hump detection process. Speed hump detection process consist of noise reduction step, data fusion step, and speed hemp detection step. The proposed system is tested on Intel Core CPU with 2.80 GHz and 4 GB RAM tested in the urban road environments. The frame rate of test videos is 30 frames per second and the size of each frame of grabbed image sequences is 1280 pixels by 670 pixels. Using object-marked sequences acquired with an on-vehicle camera, we recorded speed humps and non-speed humps samples. Result of the tests, our proposed method can be applied in real-time systems by computation time is 13 ms. For instance; our proposed method reaches 96.1 %.Keywords: data fusion, round types speed hump, speed hump detection, surface filter
Procedia PDF Downloads 5103966 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism
Authors: Kun Xu, Yuan Xu, Jia Qiao
Abstract:
The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.Keywords: document detection, corner detection, attention mechanism, lightweight
Procedia PDF Downloads 3543965 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection
Authors: Jiandong Lv, Xingang Wang, Cuiling Shao
Abstract:
The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer
Procedia PDF Downloads 2463964 Real-Time Pedestrian Detection Method Based on Improved YOLOv3
Authors: Jingting Luo, Yong Wang, Ying Wang
Abstract:
Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3
Procedia PDF Downloads 1413963 Comparison of Vessel Detection in Standard vs Ultra-WideField Retinal Images
Authors: Maher un Nisa, Ahsan Khawaja
Abstract:
Retinal imaging with Ultra-WideField (UWF) view technology has opened up new avenues in the field of retinal pathology detection. Recent developments in retinal imaging such as Optos California Imaging Device helps in acquiring high resolution images of the retina to help the Ophthalmologists in diagnosing and analyzing eye related pathologies more accurately. This paper investigates the acquired retinal details by comparing vessel detection in standard 450 color fundus images with the state of the art 2000 UWF retinal images.Keywords: color fundus, retinal images, ultra-widefield, vessel detection
Procedia PDF Downloads 4483962 Effect of Palatal Lift Prosthesis on Speech Clarity in Flaccid Dysarthria
Authors: Firas Alfwaress, Abdelraheem Bebers Abdelhadi Hamasha, Maha Abu Awaad
Abstract:
Objectives: The aim of the present study was to investigate the effect of Palatal Lift Prosthesis (PLP) on speech clarity in patients with Flaccid Dysarthria. Five speech measures were investigated including Nasalance Scores, Diadchokinetic (DDK), Vowel Duration, airflow, and Sound Intensity. Participants: Twelve (7 Males and 5 females) native speakers of Jordanian Arabic with Flaccid Dysarthria following stroke, traumatic brain injury, and amyotrophic lateral sclerosis were included. The age of the participants ranged from 8–65 years with an average of 31.75 years. Design: Nasalance Scores, Diadchokinetic rate, Vowel Duration, and Sound Intensity were obtained using the Nasometer II, Model 6450 in three conditions. The first condition included obtaining the five measures without wearing the customized Palatal Lift Prosthesis. The second and third conditions included obtaining the five measures immediately after wearing the Palatal Lift Prosthesis and three months later. Results: Palatal lift prosthesis was found to be effective in individuals with flaccid dysarthria. Results showed decrease in the Nasalance Scores for the syllable repetition tasks and vowel prolongation tasks when comparing the means in the pre PLP with the post PLP at p≤0.001 except for the /m/ prolongation task. Results showed increased DDK repetition task, airflow amount, and sound intensity, and a decrease in vowel length at p≤0.001. Conclusions: The use of palatal lift prosthesis is effective in improving the speech of patients with flaccid dysarthria.Keywords: palatal lift prosthesis, flaccid dysarthria, hypernasality, speech clarity, diadchokinetic rate
Procedia PDF Downloads 3863961 Setswana Speech Rhythm Development in High-Socioeconomic Status Setswana-English Bilingual Children
Authors: Boikanyego Sebina
Abstract:
The present study investigates the effects of socioeconomic status (SES) and bilingualism on the Setswana speech rhythm of Batswana (citizens) children aged 6-7 years with typical development born and residing in Botswana. Botswana is a country in which there is a diglossic Setswana/English language setting, where English is the dominant high-status language in educational and public contexts. Generally, children from low SES have lower linguistic and cognitive profiles than their age-matched peers from high SES. A greater understanding of these variables would allow educators to distinguish between underdeveloped language skills in children due to impairment and environmental issues for them to successfully enroll children in language development enhancement programs specific to the child’s needs. There are 20 participants: 10 high SES private English-medium educated early sequential Setswana-English bilingual children, taught full-time in English (L2) from the age of 3 years, and for whom English has become dominant; and 10 low SES children who are educated in public schools for whom English is considered a learner language, i.e., L1 Setswana is dominant. The aim is to see whether SES and bilingualism, have had an effect on the Setswana speech rhythm of children in either group. The study primarily uses semi-spontaneous speech based on the telling of the wordless picture storybook. A questionnaire is used to elicit the language use pattern of the children and that of their parents, as well as the education level of the parents and the school the children attend. A comparison of the rhythm shows that children from high SES have a lower durational variability than those from low SES. The findings of the study are that the low durational variability by children from high SES may suggest an underdeveloped rhythm. In conclusion, the results of the present study are against the notion that children from high SES outperform those from low SES in linguistic development.Keywords: bilingualism, Setswana English, socio-economic status, speech-rhythm
Procedia PDF Downloads 673960 Critical Discourse Analysis of President Mamnoon Hussain Speech in the Joint Session of Parliament.
Authors: Saeed Qaisrani
Abstract:
This article briefly reviews the rise of Critical Discourse Analysis about the Pakistani President Mamnoon Hussain speech which delivered in the joint session of Parliament and teases out a detailed analysis of the various critiques that have been levelled at CDA and its practitioners over the last twenty years, both by scholars working within the “critical” paradigm and by other critics. A range of criticisms are discussed which target the underlying premises, the analytical methodology and the disputed areas of reader response and the integration of contextual factors. Controversial issues such as the predominantly negative focus of much CDA scholarship, and the status of CDA as an emergent “intellectual orthodoxy”, are also reviewed. The conclusions offer a summary of the principal criticisms that emerge from this overview, and suggest some ways in which these problems could be attenuated. It also focused on the different views about president speech and how it is presented in the Pakistani print and electronic media.Keywords: Critical Discourse Analysis, Analytical methodology, Corpus linguistics, Reader response theory, Critical paradigm, Contextualization.
Procedia PDF Downloads 4843959 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module
Procedia PDF Downloads 3423958 Automatic Change Detection for High-Resolution Satellite Images of Urban and Suburban Areas
Authors: Antigoni Panagiotopoulou, Lemonia Ragia
Abstract:
High-resolution satellite images can provide detailed information about change detection on the earth. In the present work, QuickBird images of spatial resolution 60 cm/pixel and WorldView images of resolution 30 cm/pixel are utilized to perform automatic change detection in urban and suburban areas of Crete, Greece. There is a relative time difference of 13 years among the satellite images. Multiindex scene representation is applied on the images to classify the scene into buildings, vegetation, water and ground. Then, automatic change detection is made possible by pixel-per-pixel comparison of the classified multi-temporal images. The vegetation index and the water index which have been developed in this study prove effective. Furthermore, the proposed change detection approach not only indicates whether changes have taken place or not but also provides specific information relative to the types of changes. Experimentations with other different scenes in the future could help optimize the proposed spectral indices as well as the entire change detection methodology.Keywords: change detection, multiindex scene representation, spectral index, QuickBird, WorldView
Procedia PDF Downloads 1363957 The Laser Line Detection for Autonomous Mapping Based on Color Segmentation
Authors: Pavel Chmelar, Martin Dobrovolny
Abstract:
Laser projection or laser footprint detection is today widely used in many fields of robotics, measurement, or electronics. The system accuracy strictly depends on precise laser footprint detection on target objects. This article deals with the laser line detection based on the RGB segmentation and the component labeling. As a measurement device was used the developed optical rangefinder. The optical rangefinder is equipped with vertical sweeping of the laser beam and high quality camera. This system was developed mainly for automatic exploration and mapping of unknown spaces. In the first section is presented a new detection algorithm. In the second section are presented measurements results. The measurements were performed in variable light conditions in interiors. The last part of the article present achieved results and their differences between day and night measurements.Keywords: color segmentation, component labelling, laser line detection, automatic mapping, distance measurement, vector map
Procedia PDF Downloads 4323956 A Background Subtraction Based Moving Object Detection Around the Host Vehicle
Authors: Hyojin Lim, Cuong Nguyen Khac, Ho-Youl Jung
Abstract:
In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added.We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction.Keywords: gaussian mixture model, background subtraction, moving object detection, color space, morphological filtering
Procedia PDF Downloads 6173955 Lip Localization Technique for Myanmar Consonants Recognition Based on Lip Movements
Authors: Thein Thein, Kalyar Myo San
Abstract:
Lip reading system is one of the different supportive technologies for hearing impaired, or elderly people or non-native speakers. For normal hearing persons in noisy environments or in conditions where the audio signal is not available, lip reading techniques can be used to increase their understanding of spoken language. Hearing impaired persons have used lip reading techniques as important tools to find out what was said by other people without hearing voice. Thus, visual speech information is important and become active research area. Using visual information from lip movements can improve the accuracy and robustness of a speech recognition system and the need for lip reading system is ever increasing for every language. However, the recognition of lip movement is a difficult task because of the region of interest (ROI) is nonlinear and noisy. Therefore, this paper proposes method to detect the accurate lips shape and to localize lip movement towards automatic lip tracking by using the combination of Otsu global thresholding technique and Moore Neighborhood Tracing Algorithm. Proposed method shows how accurate lip localization and tracking which is useful for speech recognition. In this work of study and experiments will be carried out the automatic lip localizing the lip shape for Myanmar consonants using the only visual information from lip movements which is useful for visual speech of Myanmar languages.Keywords: lip reading, lip localization, lip tracking, Moore neighborhood tracing algorithm
Procedia PDF Downloads 3523954 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins
Authors: Xinyi Zhao, Furong Tian
Abstract:
Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. Forty-six papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow immunochromatographic strips on different types of mycotoxins. The papers were dated 2001-2021. Twenty five papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone:5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structure are usually used in large scale detection. In conclusion, the mycotoxin receives that most researches is aflatoxin B1 and its limit of detection is the lowest. Gold-nanopaticle based immunochromatographic test strips has the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles. In these papers, quantitative concentration results can be obtained when the user uploads the photograph of test lines using the smartphone application.Keywords: aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins
Procedia PDF Downloads 1953953 Paper-Based Detection Using Synthetic Gene Circuits
Authors: Vanessa Funk, Steven Blum, Stephanie Cole, Jorge Maciel, Matthew Lux
Abstract:
Paper-based synthetic gene circuits offer a new paradigm for programmable, fieldable biodetection. We demonstrate that by freeze-drying gene circuits with in vitro expression machinery, we can use complimentary RNA sequences to trigger colorimetric changes upon rehydration. We have successfully utilized both green fluorescent protein and luciferase-based reporters for easy visualization purposes in solution. Through several efforts, we are aiming to use this new platform technology to address a variety of needs in portable detection by demonstrating several more expression and reporter systems for detection functions on paper. In addition to RNA-based biodetection, we are exploring the use of various mechanisms that cells use to respond to environmental conditions to move towards all-hazards detection. Examples include explosives, heavy metals for water quality, and toxic chemicals.Keywords: cell-free lysates, detection, gene circuits, in vitro
Procedia PDF Downloads 3943952 Speech Disorders as Predictors of Social Participation of Children with Cerebral Palsy in the Primary Schools of the Czech Republic
Authors: Marija Zulić, Vanda Hájková, Nina Brkić–Jovanović, Srećko Potić, Sanja Tomić
Abstract:
The name cerebral palsy comes from the word cerebrum, which means the brain and the word palsy, which means seizure, and essentially refers to the movement disorder. In the clinical picture of cerebral palsy, basic neuromotor disorders are associated with other various disorders: behavioural, intellectual, speech, sensory, epileptic seizures, and bone and joint deformities. Motor speech disorders are among the most common difficulties present in people with cerebral palsy. Social participation represents an interaction between an individual and their social environment. Quality of social participation of the students with cerebral palsy at school is an important indicator of their successful participation in adulthood. One of the most important skills for the undisturbed social participation is ability of good communication. The aim of the study was to determine relation between social participation of students with cerebral palsy and presence of their speech impairment in primary schools in the Czech Republic. The study was performed in the Czech Republic in mainstream schools and schools established for the pupils with special education needs. We analysed 75 children with cerebral palsy aged between six and twelve years attending up to sixth grade by using the first and the third part of the school function assessment questionnaire as the main instrument. The other instrument we used in the research is the Gross motor function classification system–five–level classification system, which measures degree of motor functions of children and youth with cerebral palsy. Funding for this study was provided by the Grant Agency of Charles University in Prague.Keywords: cerebral palsy, social participation, speech disorders, The Czech Republic, the school function assessment
Procedia PDF Downloads 2843951 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography
Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu
Abstract:
Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli
Procedia PDF Downloads 2543950 A Highly Sensitive Dip Strip for Detection of Phosphate in Water
Authors: Hojat Heidari-Bafroui, Amer Charbaji, Constantine Anagnostopoulos, Mohammad Faghri
Abstract:
Phosphorus is an essential nutrient for plant life which is most frequently found as phosphate in water. Once phosphate is found in abundance in surface water, a series of adverse effects on an ecosystem can be initiated. Therefore, a portable and reliable method is needed to monitor the phosphate concentrations in the field. In this paper, an inexpensive dip strip device with the ascorbic acid/antimony reagent dried on blotting paper along with wet chemistry is developed for the detection of low concentrations of phosphate in water. Ammonium molybdate and sulfuric acid are separately stored in liquid form so as to improve significantly the lifetime of the device and enhance the reproducibility of the device’s performance. The limit of detection and quantification for the optimized device are 0.134 ppm and 0.472 ppm for phosphate in water, respectively. The device’s shelf life, storage conditions, and limit of detection are superior to what has been previously reported for the paper-based phosphate detection devices.Keywords: phosphate detection, paper-based device, molybdenum blue method, colorimetric assay
Procedia PDF Downloads 1703949 Correlation between Speech Emotion Recognition Deep Learning Models and Noises
Authors: Leah Lee
Abstract:
This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16
Procedia PDF Downloads 753948 Multimodal Database of Emotional Speech, Video and Gestures
Authors: Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari
Abstract:
People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.Keywords: body movement, emotion recognition, emotional corpus, facial expressions, gestures, multimodal database, speech
Procedia PDF Downloads 3493947 Adaptive Nonparametric Approach for Guaranteed Real-Time Detection of Targeted Signals in Multichannel Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
An adaptive nonparametric method is proposed for stable real-time detection of seismoacoustic sources in multichannel C-OTDR systems with a significant number of channels. This method guarantees given upper boundaries for probabilities of Type I and Type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this report.Keywords: guaranteed detection, multichannel monitoring systems, change point, interval estimation, adaptive detection
Procedia PDF Downloads 4473946 Intrusion Detection Using Dual Artificial Techniques
Authors: Rana I. Abdulghani, Amera I. Melhum
Abstract:
With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.Keywords: IDS, SI, BP, NSL_KDD, PSO
Procedia PDF Downloads 382